- 相關(guān)推薦
立體幾何中二面角的平面角的定位(安慶懷寧)
立體幾何中二面角的平面角的定位(安慶懷寧) 3月20日 空間圖形的位置關(guān)系是立體幾何的重要內(nèi)容,解決立體幾何問題的關(guān)鍵在于三定:定性分析→定位作圖→定量計算,其中定性是定位、定量的基礎(chǔ),而宣則是定位、定性的深化,在面面關(guān)系中,二面角是其中的重要概念之一,它的度量歸結(jié)為平面上角的度量,一般來說,對其平面角的定位是問題解決的先決一步,可是,從以往的教學中發(fā)現(xiàn),學生往往把握不住其定位的基本思路而導致思維混亂,甚至錯誤地定其位,使問題的解決徒勞無益,本文就是針對這一點,來談一談平日教學中體會。 一、 重溫二面角的平面角的定義 如圖(1),α、β是由ι出發(fā)的兩個平面,O是ι上任意一點,OC α,且OC⊥ι;CD β,且OD⊥ι。這就是二面角的平面角的環(huán)境背景,即∠COD是二面角α—ι—β的平面角,從中不難得到下列特征: Ⅰ、過棱上任意一點,其平面角是唯一的; Ⅱ、其平面角所在平面與其兩個半平面均垂直; 另外,如果在OC上任取上一點A,作AB⊥OD垂足為B,那么 由特征Ⅱ可知AB⊥β.突出ι、OC、OD、AB,這便是另一特征; Ⅲ、體現(xiàn)出一完整的垂線定理(或逆定理)的環(huán)境背景。 對以上特征進行剖析 由于二面角的平面角是由一點和兩條射線構(gòu)成,所以二面角的平面角的定位可化歸為“定點”或“定線(面)”的問題。 特征Ⅰ表明,其平面角的定位可先在棱上取一“點”,耐人尋味的是這一點可以隨便取,但又總是不隨便取定的,它必須與問題背景相互溝通,給計算提供方便。 例1 已知正三棱錐V—ABC側(cè)棱長為a,高為b,求側(cè)面與底面所成的角的大小。 由于正三棱錐的頂點V在底面ABC上的射影H是底面的中心,所以連結(jié)CH交AB于O,且OC⊥AB,則∠VOC為側(cè)面與底面所成二面角的平面角如圖(2)。正因為正三棱錐的特性,解決此問題,可以取AB的中點O為其平面角的頂點,而且使背景突出在面VOC上,給進一步定量創(chuàng)造得天獨厚的條件。 特征Ⅱ指出,如果二面角α—ι—β的棱ι垂直某一平面γ與 α、β的交線,而交線所成的角就是α—ι—β的平面角,如圖。 由此可見,二面角的平面角的定位可以考慮找“垂平面”。 例2 矩形ABCD,AB=3,BC=4,沿對角線BD把△ABD折起, 使點A在平面BCD上的射影A′落在BC上,求二面角A—BC-—C的大小。 這是一道由平面圖形折疊成立體圖形的問題,解決問題的關(guān)鍵在 于搞清折疊前后“變”與“不變”。結(jié)果在平面圖形中過A作AE⊥BD交BD于O、交BC于E,則折疊后OA、OE與BD的垂直關(guān)系不變。但OA與OE此時變成相交兩線段并確定一平面,此平面必與棱垂直。由特征Ⅱ可知,面AOE與面ABD、面CBD的交線OA與OE所成的角,即為所求二面角的平面角。另外,A在面BCD上的射影必在OE所在的直線上,又題設(shè)射影落在BC上,所以E點就是A′,這樣的定位給下面的定量提供了優(yōu)質(zhì)服務(wù)。事實上,AO=AB·AD/BD=3*4/5=12/5,OA′=OE=BO·tgc∠CBD,而BO=AB2/BD=9/5, tg∠CBD,故OA′=27/20。在Rt△AA′O中,∠AA′O=90°所以cos∠AOA′=A′O/AO=9/16,ty∠AOA′=arccos9/16即所求的二面arccos9/16。 通過對例2的定性分析、定位作圖和定量計算,特征Ⅱ從另一角度告訴我們:要確定二面角的平面角,我們可以把構(gòu)成二面角的兩個半平面“擺平”,然后,在棱上選取一適當?shù)拇咕段,即可確定其平面角!捌矫鎴D形”與“立體圖形”相映生輝,不僅便于定性、定位,更利于定量。 特征Ⅲ顯示,如果二面角α—ι—β的兩個半平面之一,存在垂線段AB,那么過垂足B作ι的垂線交ι于O,連結(jié)AO,由三垂線定理可知OA⊥ι;或者由A作ι的垂線交ι于O,連結(jié)OB,由三垂線定理逆定理可知OB⊥ι,此時,∠AOB就是二面角α—ι—β的平面角,如圖。 由此可見,地面角的平面角的定位可以找“垂線段”。 例3 在正方體ABCD—A1B1C1D1中,棱長為2,E為BC的中點。求面B1D1E與面積BB1C1C所成的二面角的大小。 例3的環(huán)境背景表明,面B1D1E與面BB1C1C構(gòu)成兩個二面角, 由特征Ⅱ可知,這兩個二面角的大小必定互補,下面,如 果思維由特征Ⅲ監(jiān)控,背景中的線段C1D1會使眼睛一亮,我們只須由C1(或D1)作B1E的垂線交B1E于O,然后連結(jié)OD1(或OC1),即得面D1BE與面CC1B1E所成二面角的平面角∠C1OD1,如圖,計算可得C1O=4*51/2/5。 在Rt△D1C1O中,tg∠C1OD=D1C1/C1O=51/2/2。 故所求的二面角角為arctg51/2/2或π-arctg=51/2/2 三、三個特征的關(guān)系 以上三個特征提供的思路在解決具體總是時各具特色,其標的是 分別找“點”、“垂面”、“垂線段”。事實上,我們只要找到其中一個,另兩個就接踵而來。掌握這種關(guān)系對提高解題技能和培養(yǎng)空間想象力非常重要。 1、 融合三個特征對思維的監(jiān)控,可有效地克服、抑制思維的 消極作用,培養(yǎng)思維的廣闊性和批判性。 例3 將棱長為a的正四面體的一個面與棱長為a的正四棱錐的 一個側(cè)面吻合,則吻合后的幾何呈現(xiàn)幾個面? 這是一道競賽題,考生答“7個面”的占99.9%,少數(shù)應(yīng)服從多數(shù)嗎? 如圖,過兩個幾何體的高線VP、VQ的垂足P、Q分別作BC的垂線,則垂足重合于O,且O為BC的中點,OP延長過A,OQ延長交ED于R。由特征Ⅲ,∠AOR為二面角A—BC—R平面角,結(jié)合特征Ⅰ、Ⅱ,可得VAOR為平行四邊形,VA//BE,所以V、A、B、E共面,同理V、A、C、D共面,所以這道題的答案應(yīng)該是5個面! 2、 三個特征,雖然客觀存在,互相聯(lián)系,但在許多同題中卻 表現(xiàn)得含糊而冷漠——三個“標的”均藏而不露,在這種形勢下,逼你去作,那么作誰? 由特征Ⅲ,有了“垂線段”便可定位。 例4 已知Rt△ABC的兩直角邊AC=2,BC=3,P為斜邊上一 點,沿CP將此直角三角形折成直二面角A—CP—B,當AB=71/2時,求二面角P—AC—B的大小。 作法一:∵A—CP—B為直角二面角, ∴過B作BD⊥CP交CP的延長線于D,則BD⊥DM APC。 ∴過D作DE ⊥AC,垂足為E,連BE。 ∴∠DEB為二面角A—CP—B的平面角。 作法二:過P點作PD′⊥PC交BC于D′,則PD′⊥面APC。 ∴過D′作D′E′⊥AC,垂足為E′,邊PE′, ∴∠D′E′P為二面角P—AC—B的平面角。 再說,定位是為了定理,求角的大小往往要化歸到一個三角形中去解,有了“垂線段”就可把它化歸為解一個直角三角形。 由此可見,要作,最好考慮作“垂線段”。 綜上所述,二面角其平面角的正確而合理的定位,要在正確其定義的基礎(chǔ)上,掌握其三個基本特征,并靈活運用它們考察問題的環(huán)境背景,建立良好的主觀心理空間和客觀心理空間,以不變應(yīng)萬變。 (載1995年第6期《中學數(shù)學教學參考》) 安慶懷寧
【立體幾何中二面角的平面角的定位安慶懷寧】相關(guān)文章:
立體幾何教學反思08-25
高中數(shù)學教案《二面角》08-22
空間向量對立體幾何教與學的影響08-18
高一數(shù)學立體幾何教案01-07
定位自己作文11-21
中二的語錄02-01
找準定位作文10-26
中二優(yōu)秀作文05-24
確定位置教學反思08-24
李鴻章歷史定位論綱08-17