丁香婷婷网,黄色av网站裸体无码www,亚洲午夜无码精品一级毛片,国产一区二区免费播放

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>八年級(jí)數(shù)學(xué)教案>八年級(jí)數(shù)學(xué)教案

八年級(jí)數(shù)學(xué)教案

時(shí)間:2024-11-05 07:49:58 八年級(jí)數(shù)學(xué)教案 我要投稿

八年級(jí)數(shù)學(xué)教案(通用15篇)

  作為一位杰出的老師,時(shí)常需要用到教案,編寫(xiě)教案有利于我們科學(xué)、合理地支配課堂時(shí)間。那么寫(xiě)教案需要注意哪些問(wèn)題呢?下面是小編整理的八年級(jí)數(shù)學(xué)教案,歡迎大家分享。

八年級(jí)數(shù)學(xué)教案(通用15篇)

八年級(jí)數(shù)學(xué)教案1

  菱形

  學(xué)習(xí)目標(biāo)(學(xué)習(xí)重點(diǎn)):

  1.經(jīng)歷探索菱形的識(shí)別方法的過(guò)程,在活動(dòng)中培養(yǎng)探究意識(shí)與合作交流的習(xí)慣;

  2.運(yùn)用菱形的識(shí)別方法進(jìn)行有關(guān)推理.

  補(bǔ)充例題:

  例1. 如圖,在△ABC中,AD是△ABC的角平分線(xiàn)。DE∥AC交AB于E,DF∥AB交AC于F.四邊形AEDF是菱形嗎?說(shuō)明你的理由.

  例2.如圖,平行四邊形ABCD的對(duì) 角線(xiàn)AC的垂直平分線(xiàn)與邊AD、BC分別交于E、F.

  四邊形AFCE是菱形嗎?說(shuō)明理由.

  例3.如圖 , ABCD是矩形紙片,翻折B、D,使BC、AD恰好落在AC上,設(shè)F、H分別是B、D落在AC上的兩點(diǎn),E、G分別是折痕CE、AG與AB、CD的交點(diǎn)

  (1)試說(shuō)明四邊形AECG是平行四邊形;

  (2)若AB=4cm,BC=3cm,求線(xiàn)段EF的長(zhǎng);

  (3)當(dāng)矩形兩邊AB、BC具備怎樣的'關(guān)系時(shí),四邊形AECG是菱形.

  課后續(xù)助:

  一、填空題

  1.如果四邊形ABCD是平行四邊形,加上條件___________________,就可以是矩形;加上條件_______________________,就可以是菱形

  2.如圖,D、E、F分別是△ABC的邊BC、CA、AB上的點(diǎn),

  且DE∥BA,DF∥ CA

  (1)要使四邊形AFDE是菱形,則要增加條件______________________

  (2)要使四邊形AFDE是矩形,則要增加條件______________________

  二、解答題

  1.如圖,在□ABCD中 ,若2,判斷□ABCD是矩形還是菱形?并說(shuō)明理由。

  2.如圖 ,平行四邊形A BCD的兩條對(duì)角線(xiàn)AC,BD相交于點(diǎn)O,OA=4,OB=3,AB=5.

  (1) AC,BD互相垂直嗎?為什么?

  (2) 四邊形ABCD是菱形 嗎?

  3.如圖,在□ABCD中,已知ADAB,ABC的平分線(xiàn)交AD于E,EF∥AB交BC于F,試問(wèn): 四 邊形ABFE是菱形嗎?請(qǐng)說(shuō)明理由。

  4.如圖,把一張矩形的紙ABCD沿對(duì)角線(xiàn)BD折疊,使點(diǎn)C落在點(diǎn)E處,BE與AD交于點(diǎn)F.

 、徘笞C:ABF≌

  ⑵若將折疊的圖形恢復(fù)原狀,點(diǎn)F與BC邊上的點(diǎn)M正好重合,連接DM,試判斷四邊形BMDF的形狀,并說(shuō)明理由.

八年級(jí)數(shù)學(xué)教案2

  教學(xué)目標(biāo):

  1、知識(shí)目標(biāo):

  (1)掌握已知三邊畫(huà)三角形的方法;

  (2)掌握邊邊邊公理,能用邊邊邊公理證明兩個(gè)三角形全等;

  (3)會(huì)添加較明顯的輔助線(xiàn).

  2、能力目標(biāo):

  (1)通過(guò)尺規(guī)作圖使學(xué)生得到技能的訓(xùn)練;

  (2)通過(guò)公理的初步應(yīng)用,初步培養(yǎng)學(xué)生的邏輯推理能力.

  3、情感目標(biāo):

  (1)在公理的形成過(guò)程中滲透:實(shí)驗(yàn)、觀察、歸納;

  (2)通過(guò)變式訓(xùn)練,培養(yǎng)學(xué)生“舉一反三”的學(xué)習(xí)習(xí)慣.

  教學(xué)重點(diǎn):SSS公理、靈活地應(yīng)用學(xué)過(guò)的各種判定方法判定三角形全等。

  教學(xué)難點(diǎn):如何根據(jù)題目條件和求證的結(jié)論,靈活地選擇四種判定方法中最適當(dāng)?shù)姆椒ㄅ卸▋蓚(gè)三角形全等。

  教學(xué)用具:直尺,微機(jī)

  教學(xué)方法:自學(xué)輔導(dǎo)

  教學(xué)過(guò)程:

  1、新課引入

  投影顯示

  問(wèn)題:有一塊三角形玻璃窗戶(hù)破碎了,要去配一塊新的,你最少要對(duì)窗框測(cè)量哪幾個(gè)數(shù)據(jù)?如果你手頭沒(méi)有測(cè)量角度的儀器,只有尺子,你能保證新配的玻璃恰好不大不小嗎?

  這個(gè)問(wèn)題讓學(xué)生議論后回答,他們的答案或許只是一種感覺(jué)。于是教師要引導(dǎo)學(xué)生,抓住問(wèn)題的本質(zhì):三角形的三個(gè)元素――三條邊。

  2、公理的獲得

  問(wèn):通過(guò)上面問(wèn)題的分析,滿(mǎn)足什么條件的兩個(gè)三角形全等?

  讓學(xué)生粗略地概括出邊邊邊的公理。然后和學(xué)生一起畫(huà)圖做實(shí)驗(yàn),根據(jù)三角形全等定義對(duì)公理進(jìn)行驗(yàn)證。(這里用尺規(guī)畫(huà)圖法)

  公理:有三邊對(duì)應(yīng)相等的`兩個(gè)三角形全等。

  應(yīng)用格式: (略)

  強(qiáng)調(diào)說(shuō)明:

  (1)、格式要求:先指出在哪兩個(gè)三角形中證全等;再按公理順序列出三個(gè)條件,并用括號(hào)把它們括在一起;寫(xiě)出結(jié)論。

  (2)、在應(yīng)用時(shí),怎樣尋找已知條件:已知條件包含兩部分,一是已知中給出的,二時(shí)圖形中隱含的(如公共邊)

  (3)、此公理與前面學(xué)過(guò)的公理區(qū)別與聯(lián)系

  (4)、三角形的穩(wěn)定性:演示三角形的穩(wěn)定性與四邊形的不穩(wěn)定性。在演示中,其實(shí)可以去掉組成三角形的一根小木條,以顯示三角形條件不可減少,這也為下面總結(jié)“三角形全等需要有3全獨(dú)立的條件”做好了準(zhǔn)備,進(jìn)行了溝通。

  (5)說(shuō)明AAA與SSA不能判定三角形全等。

  3、公理的應(yīng)用

  (1) 講解例1。學(xué)生分析完成,教師注重完成后的點(diǎn)評(píng)。

  例1 如圖△ABC是一個(gè)鋼架,AB=ACAD是連接點(diǎn)A與BC中點(diǎn)D的支架

  求證:AD⊥BC

  分析:(設(shè)問(wèn)程序)

  (1)要證AD⊥BC只要證什么?

  (2)要證∠1= 只要證什么?

  (3)要證∠1=∠2只要證什么?

  (4)△ABD和△ACD全等的條件具備嗎?依據(jù)是什么?

  證明:(略)

  (2)講解例2(投影例2 )

  例2已知:如圖AB=DC,AD=BC

  求證:∠A=∠C

  (1)學(xué)生思考、分析、討論,教師巡視,適當(dāng)參與討論。

  (2)找學(xué)生代表口述證明思路。

  思路1:連接BD(如圖)

  證△ABD≌△CDB(SSS)先得∠A=∠C

  思路2:連接AC證△ABC≌CDA(SSS)先得∠1=∠2,∠3=∠4再由∠1+∠4=∠2+∠3得∠BAD=∠BCD

  (3)教師共同討論后,說(shuō)明思路1較優(yōu),讓學(xué)生用思路1在練習(xí)本上寫(xiě)出證明,一名學(xué)生板書(shū),教師強(qiáng)調(diào)解題格式:在“證明”二字的后面,先將所作的輔助線(xiàn)寫(xiě)出,再證明。

  例3如圖,已知AB=AC,DB=DC

  (1)若E、F、G、H分別是各邊的中點(diǎn),求證:EH=FG

  (2)若AD、BC連接交于點(diǎn)P,問(wèn)AD、BC有何關(guān)系?證明你的結(jié)論。

  學(xué)生思考、分析,適當(dāng)點(diǎn)撥,找學(xué)生代表口述證明思路

  讓學(xué)生在練習(xí)本上寫(xiě)出證明,然后選擇投影顯示。

  證明:(略)

  說(shuō)明:證直線(xiàn)垂直可證兩直線(xiàn)夾角等于 ,而由兩鄰補(bǔ)角相等證兩直線(xiàn)的夾角等于 ,又是很重要的一種方法。

  例4 如圖,已知:△ABC中,BC=2AB,AD、AE分別是△ABC、△ABD的中線(xiàn),

  求證:AC=2AE.

  證明:(略)

  學(xué)生口述證明思路,教師強(qiáng)調(diào)說(shuō)明:“中線(xiàn)”條件下的常規(guī)作輔助線(xiàn)法。

  5、課堂小結(jié):

  (1)判定三角形全等的方法:3個(gè)公理1個(gè)推論(SAS、ASA、AAS、SSS)

  在這些方法中,每一個(gè)都需要3個(gè)條件,3個(gè)條件中都至少包含條邊。

  (2)三種方法的綜合運(yùn)用

  讓學(xué)生自由表述,其它學(xué)生補(bǔ)充,自己將知識(shí)系統(tǒng)化,以自己的方式進(jìn)行建構(gòu)。

  6、布置作業(yè):

  a、書(shū)面作業(yè)P70#11、12

  b、上交作業(yè)P70#14 P71B組3

八年級(jí)數(shù)學(xué)教案3

  教學(xué)目標(biāo):

  1、理解并掌握等腰三角形的判定定理及推論。

  2、能利用其性質(zhì)與判定證明線(xiàn)段或角的相等關(guān)系。

  教學(xué)重點(diǎn):

  等腰三角形的判定定理及推論的運(yùn)用。

  教學(xué)難點(diǎn):

  正確區(qū)分等腰三角形的判定與性質(zhì),能夠利用等腰三角形的.判定定理證明線(xiàn)段的相等關(guān)系。

  教學(xué)過(guò)程:

  一、復(fù)習(xí)等腰三角形的性質(zhì)。

  二、新授:

  i提出問(wèn)題,創(chuàng)設(shè)情境

  出示投影片、某地質(zhì)專(zhuān)家為估測(cè)一條東西流向河流的寬度,選擇河流北岸上一棵樹(shù)(b點(diǎn))為b標(biāo),然后在這棵樹(shù)的正南方(南岸a點(diǎn)抽一小旗作標(biāo)志)沿南偏東60°方向走一段距離到c處時(shí),測(cè)得∠acb為30°,這時(shí),地質(zhì)專(zhuān)家測(cè)得ac的長(zhǎng)度就可知河流寬度。

  學(xué)生們很想知道,這樣估測(cè)河流寬度的根據(jù)是什么?帶著這個(gè)問(wèn)題,引導(dǎo)學(xué)生學(xué)習(xí)“等腰三角形的判定”。

  ii引入新課

  1、由性質(zhì)定理的題設(shè)和結(jié)論的變化,引出研究的內(nèi)容——在△abc中,苦∠b=∠c,則ab=ac嗎?

  作一個(gè)兩個(gè)角相等的三角形,然后觀察兩等角所對(duì)的邊有什么關(guān)系?

  2、引導(dǎo)學(xué)生根據(jù)圖形,寫(xiě)出已知、求證。

  2、小結(jié),通過(guò)論證,這個(gè)命題是真命題,即“等腰三角形的判定定理”(板書(shū)定理名稱(chēng))。

  強(qiáng)調(diào)此定理是在一個(gè)三角形中把角的相等關(guān)系轉(zhuǎn)化成邊的相等關(guān)系的重要依據(jù),類(lèi)似于性質(zhì)定理可簡(jiǎn)稱(chēng)“等角對(duì)等邊”。

  4、引導(dǎo)學(xué)生說(shuō)出引例中地質(zhì)專(zhuān)家的測(cè)量方法的根據(jù)。

八年級(jí)數(shù)學(xué)教案4

  知識(shí)目標(biāo):

  理解變量與函數(shù)的概念以及相互之間的關(guān)系

  能力目標(biāo):

  增強(qiáng)對(duì)變量的理解

  情感目標(biāo):

  滲透事物是運(yùn)動(dòng)的,運(yùn)動(dòng)是有規(guī)律的辨證思想

  重點(diǎn):

  變量與常量

  難點(diǎn):

  對(duì)變量的判斷

  教學(xué)媒體:

  多媒體電腦,繩圈

  教學(xué)說(shuō)明:

  本節(jié)滲透找變量之間的簡(jiǎn)單關(guān)系,試列簡(jiǎn)單關(guān)系式

  教學(xué)設(shè)計(jì):

  引入:

  信息1:當(dāng)你坐在摩天輪上時(shí),想一想,隨著時(shí)間的變化,你離開(kāi)地面的高度是如何變化的?

  信息2:汽車(chē)以60km/h的速度勻速前進(jìn),行駛里程為skm,行駛的時(shí)間為th,先填寫(xiě)下面的表格,在試用含t的式子表示s、

  t/m 1 2 3 4 5

  s/km

  新課:

  問(wèn)題:

  (1)每張電影票的售價(jià)為10元,如果早場(chǎng)售出票150張,日?qǐng)鍪鄢銎?05張,晚場(chǎng)售出票310張,三場(chǎng)電影的票房收入各多少元?設(shè)一場(chǎng)電影受出票x張,票房收入為y元,怎樣用含x的式子表示y?

 。2)在一根彈簧的下端懸掛中重物,改變并記錄重物的質(zhì)量,觀察并記錄彈簧長(zhǎng)度的變化規(guī)律,如果彈簧原長(zhǎng)10cm,每1kg重物使彈簧伸長(zhǎng)0.5cm,怎樣用含重物質(zhì)量m(單位:kg)的式子表示受力后彈簧長(zhǎng)度l(單位:cm)?

  (3)要畫(huà)一個(gè)面積為10cm2的`圓,圓的半徑應(yīng)取多少?圓的面積為20cm2呢?怎樣用含圓面積s的式子表示圓的半徑r?

 。4)用10m長(zhǎng)的繩子圍成長(zhǎng)方形,試改變長(zhǎng)方形的長(zhǎng)度,觀察長(zhǎng)方形的面積怎樣變化。記錄不同的長(zhǎng)方形的長(zhǎng)度值,計(jì)算相應(yīng)的長(zhǎng)方形面積的值,探索它們的變化規(guī)律,設(shè)長(zhǎng)方形的長(zhǎng)為xm,面積為sm2,怎樣用含x的式子表示s?

  在一個(gè)變化過(guò)程中,我們稱(chēng)數(shù)值發(fā)生變化的量為變量(variable)、數(shù)值始終不變的量為常量。

  指出上述問(wèn)題中的變量和常量。

  范例:寫(xiě)出下列各問(wèn)題中所滿(mǎn)足的關(guān)系式,并指出各個(gè)關(guān)系式中,哪些量是變量,哪些量是常量?

 。1)用總長(zhǎng)為60m的籬笆圍成矩形場(chǎng)地,求矩形的面積s(m2)與一邊長(zhǎng)x(m)之間的關(guān)系式;

 。2)購(gòu)買(mǎi)單價(jià)是0.4元的鉛筆,總金額y(元)與購(gòu)買(mǎi)的鉛筆的數(shù)量n(支)的關(guān)系;

 。3)運(yùn)動(dòng)員在4000m一圈的跑道上訓(xùn)練,他跑一圈所用的時(shí)間t(s)與跑步的速度v(m/s)的關(guān)系;

  (4)銀行規(guī)定:五年期存款的年利率為2.79%,則某人存入x元本金與所得的本息和y(元)之間的關(guān)系。

  活動(dòng):

  1、分別指出下列各式中的常量與變量、

 。1)圓的面積公式s=πr2;

  (2)正方形的l=4a;

 。3)大米的單價(jià)為2.50元/千克,則購(gòu)買(mǎi)的大米的數(shù)量x(kg)與金額與金額y的關(guān)系為y=2.5x、

  2、寫(xiě)出下列問(wèn)題的關(guān)系式,并指出不、常量和變量、

  (1)某種活期儲(chǔ)蓄的月利率為0、16%,存入10000元本金,按國(guó)家規(guī)定,取款時(shí),應(yīng)繳納利息部分的20%的利息稅,求這種活期儲(chǔ)蓄扣除利息稅后實(shí)得的本息和y(元)與所存月數(shù)x之間的關(guān)系式、

 。2)如圖,每個(gè)圖中是由若干個(gè)盆花組成的圖案,每條邊(包括兩個(gè)頂點(diǎn))有n盆花,每個(gè)圖案的花盆總數(shù)是s,求s與n之間的關(guān)系式、

  思考:

  怎樣列變量之間的關(guān)系式?

  小結(jié):

  變量與常量

  作業(yè):

  閱讀教材5頁(yè),11、1、2函數(shù)

八年級(jí)數(shù)學(xué)教案5

  一、教材分析教材的地位和作用:

  本節(jié)內(nèi)容是第一課時(shí)《軸對(duì)稱(chēng)》,本節(jié)立足于學(xué)生已有的生活經(jīng)驗(yàn)和數(shù)學(xué)活動(dòng)經(jīng)歷,從觀察生活中的軸對(duì)稱(chēng)現(xiàn)象開(kāi)始,從整體的角度認(rèn)識(shí)軸對(duì)稱(chēng)的特征;同時(shí)本節(jié)內(nèi)容與圖形的三種變換操作(平移、翻折、旋轉(zhuǎn))之一的“翻折”有著不可分割的聯(lián)系,通過(guò)對(duì)這一節(jié)課的學(xué)習(xí),使學(xué)生從對(duì)圖形的感性認(rèn)識(shí)上升到對(duì)軸對(duì)稱(chēng)的理性認(rèn)識(shí),為進(jìn)一步學(xué)習(xí)軸對(duì)稱(chēng)性質(zhì)及后面學(xué)習(xí)等腰三角形和圓等有關(guān)知識(shí)奠定基礎(chǔ)。同時(shí)這一節(jié)也是聯(lián)系數(shù)學(xué)與生活的橋梁。

  二、學(xué)情分析

  八年級(jí)學(xué)生有一定的知識(shí)水平,已經(jīng)初步形成了一定觀察能力、語(yǔ)言表達(dá)能力,這節(jié)課是在學(xué)生學(xué)習(xí)了“全等三角形”相關(guān)內(nèi)容之后安排的一節(jié)課,學(xué)生已經(jīng)具備了一定的推理能力,因此,這節(jié)課通過(guò)觀察生活中的實(shí)例和動(dòng)手實(shí)踐,讓學(xué)生自己去發(fā)現(xiàn)和總結(jié)軸對(duì)稱(chēng)圖形和軸對(duì)稱(chēng)的概念及它們之間的區(qū)別與聯(lián)系是切實(shí)可行的。

  三、教學(xué)目標(biāo)及重點(diǎn)、難點(diǎn)的確定

  根據(jù)新課程標(biāo)準(zhǔn)、教材內(nèi)容特點(diǎn)、和學(xué)生已有的認(rèn)知結(jié)構(gòu)、心理特征,我確定本節(jié)教學(xué)目標(biāo)、重點(diǎn)、難點(diǎn)如下:

 。ㄒ唬┙虒W(xué)目標(biāo):

  1、知識(shí)技能

 。1)理解并掌握軸對(duì)稱(chēng)圖形的概念,對(duì)稱(chēng)軸;能準(zhǔn)確判斷哪些事物是軸對(duì)稱(chēng)圖形;找出軸對(duì)稱(chēng)圖形的對(duì)稱(chēng)軸、

 。2)理解并掌握軸對(duì)稱(chēng)的概念,對(duì)稱(chēng)軸;了解對(duì)稱(chēng)點(diǎn)、

  (3)了解軸對(duì)稱(chēng)圖形和軸對(duì)稱(chēng)的聯(lián)系與區(qū)別、

  2、過(guò)程與方法目標(biāo)

  經(jīng)歷“觀察——比較——操作——概括——總結(jié)一應(yīng)用”的學(xué)習(xí)過(guò)程,培養(yǎng)學(xué)生的動(dòng)手實(shí)踐能力、抽象思維和語(yǔ)言表達(dá)能力、

  3、情感、態(tài)度與價(jià)值觀

  通過(guò)對(duì)生活中數(shù)學(xué)問(wèn)題的探究,進(jìn)一步提高學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識(shí),在自主探究、合作交流的過(guò)程中,體會(huì)數(shù)學(xué)的重要作用,培養(yǎng)學(xué)生的學(xué)習(xí)興趣,熱愛(ài)生活的情感和欣賞圖形的對(duì)稱(chēng)美。

  (二)教學(xué)重點(diǎn):軸對(duì)稱(chēng)圖形和軸對(duì)稱(chēng)的有關(guān)概念、

  (三)教學(xué)難點(diǎn):軸對(duì)稱(chēng)圖形與軸對(duì)稱(chēng)的聯(lián)系、區(qū)別

  四、教法和學(xué)法設(shè)計(jì)

  本節(jié)課根據(jù)教材內(nèi)容的特點(diǎn)和八年級(jí)學(xué)生的知識(shí)結(jié)構(gòu)和心理特征。我選擇的:

  教法策略:采用以直觀演示法和實(shí)驗(yàn)發(fā)現(xiàn)法為主,設(shè)疑誘導(dǎo)法為輔。教學(xué)中教學(xué)中通過(guò)豐富的圖片展示,創(chuàng)設(shè)出問(wèn)題情景,誘導(dǎo)學(xué)生思考、操作,教師適時(shí)地演示,并運(yùn)用多媒體化靜為動(dòng),激發(fā)學(xué)生探求知識(shí)的欲望,逐步推導(dǎo)歸納得出結(jié)論,使學(xué)生始終處于主動(dòng)探索問(wèn)題的積極狀態(tài),使不同層次學(xué)生的知識(shí)水平得到恰當(dāng)?shù)陌l(fā)展和提高。

  學(xué)法策略:讓學(xué)生在“觀察————比較——操作——概括——檢驗(yàn)——應(yīng)用”的學(xué)習(xí)過(guò)程中,自主參與知識(shí)的發(fā)生、發(fā)展、形成的過(guò)程,使學(xué)生在自主探索和合作交流中理解和掌握本節(jié)課的有關(guān)內(nèi)容。

  輔助策略:我利用多媒體課件輔助教學(xué),適時(shí)呈現(xiàn)問(wèn)題情景,以豐富學(xué)生的感性認(rèn)識(shí),增強(qiáng)直觀效果,提高課堂效率

  五、說(shuō)程序設(shè)計(jì):

  新的課程標(biāo)準(zhǔn)指出學(xué)生的學(xué)習(xí)內(nèi)容應(yīng)該是現(xiàn)實(shí)的有意義的,有利于學(xué)生進(jìn)行觀察、試驗(yàn)、猜測(cè)、驗(yàn)證、推理與交流等數(shù)學(xué)活動(dòng)。為了達(dá)到預(yù)期的教學(xué)目標(biāo),我對(duì)整個(gè)教學(xué)過(guò)程進(jìn)行了設(shè)計(jì)。

  (一)、觀圖激趣、設(shè)疑導(dǎo)入。

  出示圖片,設(shè)計(jì)故事。一日,春光明媚,蝴蝶和蜜蜂來(lái)到花叢中游玩,這時(shí)蝴蝶對(duì)蜜蜂說(shuō):“我們長(zhǎng)得真象”,蜜蜂百思不得其解。你能說(shuō)出為什么長(zhǎng)得象嗎?今天我們就來(lái)共同探討這一問(wèn)題――軸對(duì)稱(chēng)。

  [設(shè)計(jì)意圖]以興趣為先導(dǎo),創(chuàng)設(shè)學(xué)生喜聞樂(lè)見(jiàn)的故事情景,激發(fā)了學(xué)生濃厚的學(xué)習(xí)興趣。

 。ǘ、實(shí)踐探索、感悟特征、

  活動(dòng)一(課件演示)觀察這些圖形有什么特點(diǎn)?》在這個(gè)環(huán)節(jié)中我首先出示一組常見(jiàn)的具有代表性的典型的軸對(duì)稱(chēng)圖形,出示后先讓學(xué)生自己觀察,并引導(dǎo)學(xué)生感知,無(wú)論是隨風(fēng)起舞的風(fēng)箏,凌空翱翔的飛機(jī),還是古今中外各式風(fēng)格的典型建筑很多圖形都給我們以美得感受。然后,教師適時(shí)提出問(wèn)題:這些圖形有什么共同特征?是如何對(duì)稱(chēng)?怎樣才能使對(duì)稱(chēng)?部分重合呢?讓學(xué)生觀察、猜想、探究、討論,教師可以適當(dāng)?shù)匾龑?dǎo),讓學(xué)生發(fā)現(xiàn):把一個(gè)圖形的某一部分沿著一條直線(xiàn)翻折180度后能與這個(gè)圖形另一部分完全重合。從而引出軸對(duì)稱(chēng)圖形和對(duì)稱(chēng)軸的概念。在得出概念之后再引導(dǎo)學(xué)生例舉生活中的事例。以便加深對(duì)軸對(duì)稱(chēng)圖形概念的理解。

  為了進(jìn)一步認(rèn)識(shí)軸對(duì)稱(chēng)圖形的特點(diǎn)又出示了一組練習(xí)

 。ň毩(xí)1)這是一組常見(jiàn)幾何圖形,要求學(xué)生判斷是否是對(duì)稱(chēng)圖形,若是對(duì)稱(chēng)圖形的,畫(huà)出它的對(duì)稱(chēng)軸

  [設(shè)計(jì)意圖]通過(guò)這個(gè)練習(xí)題不僅讓學(xué)生鞏固了軸對(duì)稱(chēng)圖形的概念,而且讓學(xué)生認(rèn)識(shí)到我們常見(jiàn)的圖形,有些是軸對(duì)稱(chēng)圖形,有些不是軸對(duì)稱(chēng)圖形。并且還讓學(xué)生認(rèn)識(shí)軸對(duì)稱(chēng)圖形的對(duì)稱(chēng)軸不僅僅只一條,有可能有2條、3條、4條甚至無(wú)數(shù)條,對(duì)稱(chēng)軸的方向不僅僅是垂直的,有可能是水平的或傾斜的。

 。ň毩(xí)2)國(guó)家的一個(gè)象征,觀察下面的國(guó)旗,哪些是軸對(duì)稱(chēng)圖形?試找出它們的對(duì)稱(chēng)軸。次題進(jìn)一步鞏固了軸對(duì)稱(chēng)圖形的概念,培養(yǎng)了學(xué)生的觀察能力、想象能力,同時(shí)通過(guò)展示各國(guó)的國(guó)旗,不僅激發(fā)了學(xué)生的學(xué)習(xí)興趣,而且也拓展了學(xué)生的'知識(shí)面。

  (三)、動(dòng)手操作、再度探索新知。

  將一張紙對(duì)折,用筆尖扎出一個(gè)圖案,然后將紙展開(kāi)后,鋪平,觀察各自得到的圖案與軸對(duì)稱(chēng)圖形的不同。教學(xué)中注重學(xué)生活動(dòng),鼓勵(lì)學(xué)生親自實(shí)踐,積極思考,在樂(lè)學(xué)的氛圍中,培養(yǎng)學(xué)生的動(dòng)手能力,從而引出軸對(duì)稱(chēng)概念。

  再次引導(dǎo)學(xué)生討論、歸納得出軸對(duì)稱(chēng)的概念……之后再結(jié)合動(dòng)畫(huà)演示加深對(duì)軸對(duì)稱(chēng)概念的理解,進(jìn)而引出對(duì)稱(chēng)軸、對(duì)稱(chēng)點(diǎn)的概念、并結(jié)合圖形加以認(rèn)識(shí)。

 。ㄋ模㈧柟叹毩(xí)、升華新知。

  出示幾幅圖形,請(qǐng)同學(xué)們辨別哪幅圖形是軸對(duì)稱(chēng)圖形哪些圖形軸對(duì)稱(chēng),在這組練習(xí)中讓學(xué)生動(dòng)手、動(dòng)口、動(dòng)眼、動(dòng)腦,充分調(diào)動(dòng)了學(xué)生的各種感官參與學(xué)習(xí),既加深了對(duì)兩個(gè)概念的理解,又鍛煉了同學(xué)的各方面能力。完成這組練習(xí)題后讓學(xué)生,歸納軸對(duì)稱(chēng)圖形及軸對(duì)稱(chēng)區(qū)別與聯(lián)系,先讓學(xué)生自己歸納,然后用多媒體展示。

 。ㄕn件演示)軸對(duì)稱(chēng)圖形及兩個(gè)圖形成軸對(duì)稱(chēng)區(qū)別與聯(lián)系

  (五)、綜合練習(xí)、發(fā)展思維。

  1、搶答;觀察周?chē)男┦挛锏男螤钍禽S對(duì)稱(chēng)圖形。

  2、判斷:

  生活中不僅有些物體的形狀是軸對(duì)稱(chēng)圖形,我們所學(xué)的數(shù)字、字母和漢字中也有一些可以看成軸對(duì)稱(chēng)圖形。

 。1)下面的數(shù)字或字母,哪些是軸對(duì)稱(chēng)圖形?它們各有幾條對(duì)稱(chēng)軸?

  3、像這樣寫(xiě)法的漢字哪些是軸對(duì)稱(chēng)圖形?

  口工用中由日直水清甲

 。ㄟ@幾道題的練習(xí)做到了知識(shí)性、技能性、思想性和藝術(shù)性溶為一體。這樣設(shè)計(jì),不但活躍了課堂氣氛,又檢查了學(xué)生掌握新知的情況,而且激發(fā)了學(xué)生的學(xué)習(xí)興趣,又讓學(xué)生感到數(shù)學(xué)就在自己的身邊)

 。w納小結(jié)、布置作業(yè)

  [設(shè)計(jì)意圖]培養(yǎng)學(xué)生歸納和語(yǔ)言表達(dá)能力,鼓勵(lì)學(xué)生從數(shù)學(xué)知識(shí)、數(shù)學(xué)方法和數(shù)學(xué)情感等方面進(jìn)行自我評(píng)價(jià)。作業(yè)布置要有層次,照顧學(xué)生個(gè)體差異使不同的人在數(shù)學(xué)上獲得不同的發(fā)展!

  六、設(shè)計(jì)說(shuō)明

  這節(jié)課,我依據(jù)課程標(biāo)準(zhǔn)、教材特點(diǎn)、遵循學(xué)生的認(rèn)知規(guī)律。通過(guò)六個(gè)環(huán)節(jié)的教學(xué)設(shè)計(jì),通過(guò)觀察生活中的一些圖案以及動(dòng)畫(huà)演示,由感性到理性,讓學(xué)生輕松掌握了軸對(duì)稱(chēng)圖形與關(guān)于直線(xiàn)成軸對(duì)稱(chēng)兩個(gè)概念,指導(dǎo)學(xué)生操作、觀察、引導(dǎo)概括,獲取新知;同時(shí)注重培養(yǎng)學(xué)生的形象思維和抽象思維。在教學(xué)過(guò)程中讓學(xué)生動(dòng)口、動(dòng)手、動(dòng)眼、動(dòng)腦,使學(xué)生學(xué)有興趣、學(xué)有所獲。這就是我對(duì)本節(jié)課的理解和說(shuō)明。

八年級(jí)數(shù)學(xué)教案6

  一、教學(xué)目標(biāo)

  1、認(rèn)識(shí)中位數(shù)和眾數(shù),并會(huì)求出一組數(shù)據(jù)中的眾數(shù)和中位數(shù)。

  2、理解中位數(shù)和眾數(shù)的意義和作用。它們也是數(shù)據(jù)代表,可以反映一定的數(shù)據(jù)信息,幫助人們?cè)趯?shí)際問(wèn)題中分析并做出決策。

  3、會(huì)利用中位數(shù)、眾數(shù)分析數(shù)據(jù)信息做出決策。

  二、重點(diǎn)、難點(diǎn)和難點(diǎn)的突破方法:

  1、重點(diǎn):認(rèn)識(shí)中位數(shù)、眾數(shù)這兩種數(shù)據(jù)代表

  2、難點(diǎn):利用中位數(shù)、眾數(shù)分析數(shù)據(jù)信息做出決策。

  3、難點(diǎn)的突破方法:

  首先應(yīng)交待清楚中位數(shù)和眾數(shù)意義和作用:

  中位數(shù)僅與數(shù)據(jù)的排列位置有關(guān),某些數(shù)據(jù)的變動(dòng)對(duì)中位數(shù)沒(méi)有影響,中位數(shù)可能出現(xiàn)在所給的數(shù)據(jù)中,當(dāng)一組數(shù)據(jù)中的個(gè)別數(shù)據(jù)變動(dòng)較大時(shí),可用中位數(shù)描述其趨勢(shì)。眾數(shù)是當(dāng)一組數(shù)據(jù)中某一重復(fù)出現(xiàn)次數(shù)較多時(shí),人們往往關(guān)心的一個(gè)量,眾數(shù)不受極端值的影響,這是它的一個(gè)優(yōu)勢(shì),中位數(shù)的計(jì)算很少不受極端值的影響。

  教學(xué)過(guò)程中注重雙基,一定要使學(xué)生能夠很好的掌握中位數(shù)和眾數(shù)的求法,求中位數(shù)的步驟:⑴將數(shù)據(jù)由小到大(或由大到。┡帕,⑵數(shù)清數(shù)據(jù)個(gè)數(shù)是奇數(shù)還是偶數(shù),如果數(shù)據(jù)個(gè)數(shù)為奇數(shù)則取中間的數(shù),如果數(shù)據(jù)個(gè)數(shù)為偶數(shù),則取中間位置兩數(shù)的平均值作為中位數(shù)。求眾數(shù)的方法:找出頻數(shù)最多的那個(gè)數(shù)據(jù),若幾個(gè)數(shù)據(jù)頻數(shù)都是最多且相同,此時(shí)眾數(shù)就是這多個(gè)數(shù)據(jù)。

  在利用中位數(shù)、眾數(shù)分析實(shí)際問(wèn)題時(shí),應(yīng)根據(jù)具體情況,課堂上教師應(yīng)多舉實(shí)例,使同學(xué)在分析不同實(shí)例中有所體會(huì)。

  三、例習(xí)題的意圖分析

  1、教材p143的例4的意圖

  (1)、這個(gè)問(wèn)題的研究對(duì)象是一個(gè)樣本,主要是反映了統(tǒng)計(jì)學(xué)中常用到一種解決問(wèn)題的方法:對(duì)于數(shù)據(jù)較多的研究對(duì)象,我們可以考察總體中的一個(gè)樣本,然后由樣本的研究結(jié)論去估計(jì)總體的情況。

 。2)、這個(gè)例題另一個(gè)意圖是交待了當(dāng)數(shù)據(jù)個(gè)數(shù)為偶數(shù)時(shí),中位數(shù)的求法和解題步驟。(因?yàn)樵谇懊嬗薪榻B中位數(shù)求法,這里不再重述)

 。3)、問(wèn)題2顯然反映學(xué)習(xí)中位數(shù)的意義:它可以估計(jì)一個(gè)數(shù)據(jù)占總體的相對(duì)位置,說(shuō)明中位數(shù)是統(tǒng)計(jì)學(xué)中的一個(gè)重要的數(shù)據(jù)代表。

 。4)、這個(gè)例題再一次體現(xiàn)了統(tǒng)計(jì)學(xué)知識(shí)與實(shí)際生活是緊密聯(lián)系的,所以應(yīng)鼓勵(lì)學(xué)生學(xué)好這部分知識(shí)。

  2、教材p145例5的意圖

  (1)、通過(guò)例5應(yīng)使學(xué)生明白通常對(duì)待銷(xiāo)售問(wèn)題我們要研究的是眾數(shù),它代表該型號(hào)的產(chǎn)品銷(xiāo)售,以便給商家合理的建議。

 。2)、例5也交待了眾數(shù)的求法和解題步驟(由于求法在前面已介紹,這里不再重述)

  (3)、例5也反映了眾數(shù)是數(shù)據(jù)代表的一種。

  四、課堂引入

  嚴(yán)格的講教材本節(jié)課沒(méi)有引入的問(wèn)題,而是在復(fù)習(xí)和延伸中位數(shù)的定義過(guò)程中拉開(kāi)序幕的,本人很同意這種處理方式,教師可以一句話(huà)引入新課:前面已經(jīng)和同學(xué)們研究過(guò)了平均數(shù)的這個(gè)數(shù)據(jù)代表。它在分析數(shù)據(jù)過(guò)程中擔(dān)當(dāng)了重要的角色,今天我們來(lái)共同研究和認(rèn)識(shí)數(shù)據(jù)代表中的新成員——中位數(shù)和眾數(shù),看看它們?cè)诜治鰯?shù)據(jù)過(guò)程中又起到怎樣的.作用。

  五、例習(xí)題的分析

  教材p144例4,從所給的數(shù)據(jù)可以看到并沒(méi)有按照從小到大(或從大到。┑捻樞蚺帕。因此,首先應(yīng)將數(shù)據(jù)重新排列,通過(guò)觀察會(huì)發(fā)現(xiàn)共有12個(gè)數(shù)據(jù),偶數(shù)個(gè)可以取中間的兩個(gè)數(shù)據(jù)146、148,求其平均值,便可得這組數(shù)據(jù)的中位數(shù)。

  教材p145例5,由表中第二行可以查到23.5號(hào)鞋的頻數(shù),因此這組數(shù)據(jù)的眾數(shù)可以得到,所提的建議應(yīng)圍繞利于商家獲得較大利潤(rùn)提出。

  六、隨堂練習(xí)

  1某公司銷(xiāo)售部有營(yíng)銷(xiāo)人員15人,銷(xiāo)售部為了制定某種商品的銷(xiāo)售金額,統(tǒng)計(jì)了這15個(gè)人的銷(xiāo)售量如下(單位:件)

  1800.510、250、250、210、250、210、210、150、210、150、120、120、210、150

  求這15個(gè)銷(xiāo)售員該月銷(xiāo)量的中位數(shù)和眾數(shù)。

  假設(shè)銷(xiāo)售部負(fù)責(zé)人把每位營(yíng)銷(xiāo)員的月銷(xiāo)售定額定為320件,你認(rèn)為合理嗎?如果不合理,請(qǐng)你制定一個(gè)合理的銷(xiāo)售定額并說(shuō)明理由。

  2、某商店3、4月份出售某一品牌各種規(guī)格的空調(diào),銷(xiāo)售臺(tái)數(shù)如表所示:

  1匹1、2匹1.5匹2匹

  3月12臺(tái)20臺(tái)8臺(tái)4臺(tái)

  4月16臺(tái)30臺(tái)14臺(tái)8臺(tái)

  根據(jù)表格回答問(wèn)題:

  商店出售的各種規(guī)格空調(diào)中,眾數(shù)是多少?

  假如你是經(jīng)理,現(xiàn)要進(jìn)貨,6月份在有限的資金下進(jìn)貨單位將如何決定?

  答案:1、(1)210件、210件(2)不合理。因?yàn)?5人中有13人的銷(xiāo)售額達(dá)不到320件(320雖是原始數(shù)據(jù)的平均數(shù),卻不能反映營(yíng)銷(xiāo)人員的一般水平),銷(xiāo)售額定為210件合適,因?yàn)樗仁侵形粩?shù)又是眾數(shù),是大部分人能達(dá)到的額定。

  2、(1)1、2匹(2)通過(guò)觀察可知1、2匹的銷(xiāo)售,所以要多進(jìn)1、2匹,由于資金有限就要少進(jìn)2匹空調(diào)。

  七、課后練習(xí)

  1、數(shù)據(jù)8、9、9、8、10、8、99、8、10、7、9、9、8的中位數(shù)是,眾數(shù)是

  2、一組數(shù)據(jù)23、27、20、18、x、12,它的中位數(shù)是21,則x的值是、

  3、數(shù)據(jù)92、96、98、100、x的眾數(shù)是96,則其中位數(shù)和平均數(shù)分別是()

  a、97、96 b、96、96、4 c、96、97 d、98、97

  4、如果在一組數(shù)據(jù)中,23、25、28、22出現(xiàn)的次數(shù)依次為2.5、3、4次,并且沒(méi)有其他的數(shù)據(jù),則這組數(shù)據(jù)的眾數(shù)和中位數(shù)分別是()

  a、24、25 b、23、24 c、25、25 d、23、25

  5、隨機(jī)抽取我市一年(按365天計(jì))中的30天平均氣溫狀況如下表:

  溫度(℃)—8 —1 7 15 21 24 30

  天數(shù)3 5 5 7 6 2 2

  請(qǐng)你根據(jù)上述數(shù)據(jù)回答問(wèn)題:

 。1)、該組數(shù)據(jù)的中位數(shù)是什么?

 。2)、若當(dāng)氣溫在18℃~25℃為市民“滿(mǎn)意溫度”,則我市一年中達(dá)到市民“滿(mǎn)意溫度”的大約有多少天?

  答案:1、 9;2、 22;3、b;4、c;5、(1)15、(2)約97天

八年級(jí)數(shù)學(xué)教案7

  教學(xué)目標(biāo):

  知識(shí)目標(biāo):

  1、初步掌握函數(shù)概念,能判斷兩個(gè)變量間的關(guān)系是否可看作函數(shù)。

  2、根據(jù)兩個(gè)變量間的關(guān)系式,給定其中一個(gè)量,相應(yīng)地會(huì)求出另一個(gè)量的值。

  3、會(huì)對(duì)一個(gè)具體實(shí)例進(jìn)行概括抽象成為數(shù)學(xué)問(wèn)題。

  能力目標(biāo):

  1、通過(guò)函數(shù)概念,初步形成學(xué)生利用函數(shù)的觀點(diǎn)認(rèn)識(shí)現(xiàn)實(shí)世界的意識(shí)和能力。

  2、經(jīng)歷具體實(shí)例的抽象概括過(guò)程,進(jìn)一步發(fā)展學(xué)生的抽象思維能力。

  情感目標(biāo):

  1、經(jīng)歷函數(shù)概念的抽象概括過(guò)程,體會(huì)函數(shù)的模型思想。

  2、讓學(xué)生主動(dòng)地從事觀察、操作、交流、歸納等探索活動(dòng),形成自己對(duì)數(shù)學(xué)知識(shí)的理解和有效的學(xué)習(xí)模式。

  教學(xué)重點(diǎn):

  掌握函數(shù)概念。

  判斷兩個(gè)變量之間的關(guān)系是否可看作函數(shù)。

  能把實(shí)際問(wèn)題抽象概括為函數(shù)問(wèn)題。

  教學(xué)難點(diǎn):

  理解函數(shù)的概念。

  能把實(shí)際問(wèn)題抽象概括為函數(shù)問(wèn)題。

  教學(xué)過(guò)程設(shè)計(jì):

  一、創(chuàng)設(shè)問(wèn)題情境,導(dǎo)入新課

  『師』:同學(xué)們,你們看下圖上面那個(gè)像車(chē)輪狀的物體是什么?

  『生』:摩天輪。

  『師』:你們坐過(guò)嗎?

  ……

  『師』:當(dāng)你坐在摩天輪上時(shí),人的高度隨時(shí)在變化,那么變化是否有規(guī)律呢?

  『生』:應(yīng)該有規(guī)律。因?yàn)槿穗S輪一直做圓周運(yùn)動(dòng)。所以人的高度過(guò)一段時(shí)間就會(huì)重復(fù)依次,即轉(zhuǎn)動(dòng)一圈高度就重復(fù)一次。

  『師』:分析有道理。摩天輪上一點(diǎn)的高度h與旋轉(zhuǎn)時(shí)間t之間有一定的關(guān)系。請(qǐng)看下圖,反映了旋轉(zhuǎn)時(shí)間t(分)與摩天輪上一點(diǎn)的高度h(米)之間的`關(guān)系。

  大家從圖上可以看出,每過(guò)6分鐘摩天輪就轉(zhuǎn)一圈。高度h完整地變化一次。而且從圖中大致可以判斷給定的時(shí)間所對(duì)應(yīng)的高度h。下面根據(jù)圖5-1進(jìn)行填表:

  t/分 0 1 2 3 4 5 …… h/米

  t/分 0 1 2 3 4 5 …… h/米 3 11 37 45 37 11 ……

  『師』:對(duì)于給定的時(shí)間t,相應(yīng)的高度h確定嗎?

  『生』:確定。

  『師』:在這個(gè)問(wèn)題中,我們研究的對(duì)象有幾個(gè)?分別是什么?

  『生』:研究的對(duì)象有兩個(gè),是時(shí)間t和高度h。

  『師』:生活中充滿(mǎn)著許許多多變化的量,你了解這些變量之間的關(guān)系嗎?如:彈簧的長(zhǎng)度與所掛物體的質(zhì)量,路程的距離與所用時(shí)間……了解這些關(guān)系,可以幫助我們更好地認(rèn)識(shí)世界。下面我們就去研究一些有關(guān)變量的問(wèn)題。

  二、新課學(xué)習(xí)

  做一做

 。1)瓶子或罐子盒等圓柱形的物體,常常如下圖那樣堆放,隨著層數(shù)的增加,物體的總數(shù)是如何變化的?

  填寫(xiě)下表:

  層數(shù)n 1 2 3 4 5 … 物體總數(shù)y 1 3 6 10 15 … 『師』:在這個(gè)問(wèn)題中的變量有幾個(gè)?分別師什么?

  『生』:變量有兩個(gè),是層數(shù)與圓圈總數(shù)。

 。2)在平整的路面上,某型號(hào)汽車(chē)緊急剎車(chē)后仍將滑行S米,一般地有經(jīng)驗(yàn)公式,其中V表示剎車(chē)前汽車(chē)的速度(單位:千米/時(shí))

 、儆(jì)算當(dāng)fenbie為50,60,100時(shí),相應(yīng)的滑行距離S是多少?

  ②給定一個(gè)V值,你能求出相應(yīng)的S值嗎?

  解:略

  議一議

  『師』:在上面我們研究了三個(gè)問(wèn)題。下面大家探討一下,在這三個(gè)問(wèn)題中的共同點(diǎn)是什么?不同點(diǎn)又是什么?

  『生』:相同點(diǎn)是:這三個(gè)問(wèn)題中都研究了兩個(gè)變量。

  不同點(diǎn)是:在第一個(gè)問(wèn)題中,是以圖象的形式表示兩個(gè)變量之間的關(guān)系;第二個(gè)問(wèn)題中是以表格的形式表示兩個(gè)變量間的關(guān)系;第三個(gè)問(wèn)題是以關(guān)系式來(lái)表示兩個(gè)變量間的關(guān)系的。

  『師』:通過(guò)對(duì)這三個(gè)問(wèn)題的研究,明確“給定其中某一個(gè)變量的值,相應(yīng)地就確定了另一個(gè)變量的值”這一共性。

  函數(shù)的概念

  在上面各例中,都有兩個(gè)變量,給定其中某一各變量(自變量)的值,相應(yīng)地就確定另一個(gè)變量(因變量)的值。

  一般地,在某個(gè)變化過(guò)程中,有兩個(gè)變量x和y,如果給定一個(gè)x值,相應(yīng)地就確定了一個(gè)y值,那么我們稱(chēng)y是x的函數(shù),其中x是自變量,y是因變量。

  三、隨堂練習(xí)

  書(shū)P152頁(yè) 隨堂練習(xí)1、2、3

  四、本課小結(jié)

  初步掌握函數(shù)的概念,能判斷兩個(gè)變量間的關(guān)系是否可看作函數(shù)。

  在一個(gè)函數(shù)關(guān)系式中,能識(shí)別自變量與因變量,給定自變量的值,相應(yīng)地會(huì)求出函數(shù)的值。

  函數(shù)的三種表達(dá)式:

  圖象;(2)表格;(3)關(guān)系式。

  五、探究活動(dòng)

  為了加強(qiáng)公民的節(jié)水意識(shí),某市制定了如下用水收費(fèi)標(biāo)準(zhǔn):每戶(hù)每月的用水不超過(guò)10噸時(shí),水價(jià)為每噸1.2元;超過(guò)10噸時(shí),超過(guò)的部分按每噸1.8元收費(fèi),該市某戶(hù)居民5月份用水x噸(x>10),應(yīng)交水費(fèi)y元,請(qǐng)用方程的知識(shí)來(lái)求有關(guān)x和y的關(guān)系式,并判斷其中一個(gè)變量是否為另一個(gè)變量的函數(shù)?

 。ù鸢福篩=1.8x-6或)

  六、課后作業(yè)

  習(xí)題6.1

八年級(jí)數(shù)學(xué)教案8

  一、教學(xué)目標(biāo)

 、俳(jīng)歷探索整式除法運(yùn)算法則的過(guò)程,會(huì)進(jìn)行簡(jiǎn)單的整式除法運(yùn)算(只要求單項(xiàng)式除以單項(xiàng)式,并且結(jié)果都是整式),培養(yǎng)學(xué)生獨(dú)立思考、集體協(xié)作的能力。

  ②理解整式除法的算理,發(fā)展有條理的思考及表達(dá)能力。

  二、教學(xué)重點(diǎn)與難點(diǎn)

  重點(diǎn):整式除法的運(yùn)算法則及其運(yùn)用。

  難點(diǎn):整式除法的運(yùn)算法則的推導(dǎo)和理解,尤其是單項(xiàng)式除以單項(xiàng)式的運(yùn)算法則。

  三、教學(xué)準(zhǔn)備

  卡片及多媒體課件。

  四、教學(xué)設(shè)計(jì)

  (一)情境引入

  教科書(shū)第161頁(yè)問(wèn)題:木星的質(zhì)量約為1。90×1024噸,地球的質(zhì)量約為5。98×1021噸,你知道木星的質(zhì)量約為地球質(zhì)量的多少倍嗎?

  重點(diǎn)研究算式(1。90×1024)÷(5。98×1021)怎樣進(jìn)行計(jì)算,目的是給出下面兩個(gè)單項(xiàng)式相除的模型。

  注:教科書(shū)從實(shí)際問(wèn)題引入單項(xiàng)式的除法運(yùn)算,學(xué)生在探索這個(gè)問(wèn)題的過(guò)程中,將自然地體會(huì)到學(xué)習(xí)單項(xiàng)式的除法運(yùn)算的必要性,了解數(shù)學(xué)與現(xiàn)實(shí)世界的聯(lián)系,同時(shí)再次經(jīng)歷感受較大數(shù)據(jù)的過(guò)程。

 。ǘ┨骄啃轮

  (1)計(jì)算(1。90×1024)÷(5。98×1021),說(shuō)說(shuō)你計(jì)算的根據(jù)是什么?

  (2)你能利用(1)中的方法計(jì)算下列各式嗎?

  8a3÷2a;6x3y÷3xy;12a3b2x3÷3ab2。

 。3)你能根據(jù)(2)說(shuō)說(shuō)單項(xiàng)式除以單項(xiàng)式的運(yùn)算法則嗎?

  注:教師可以鼓勵(lì)學(xué)生自己發(fā)現(xiàn)系數(shù)、同底數(shù)冪的底數(shù)和指數(shù)發(fā)生的變化,并運(yùn)用自己的語(yǔ)言進(jìn)行描述。

  單項(xiàng)式的除法法則的推導(dǎo),應(yīng)按從具體到一般的步驟進(jìn)行。探究活動(dòng)的安排,是使學(xué)生通過(guò)對(duì)具體的特例的計(jì)算,歸納出單項(xiàng)式的除法運(yùn)算性質(zhì),并能運(yùn)用乘除互逆的關(guān)系加以說(shuō)明,也可類(lèi)比分?jǐn)?shù)的約分進(jìn)行。在這些活動(dòng)過(guò)程中,學(xué)生的化歸、符號(hào)演算等代數(shù)推理能力和有條理的表達(dá)能力得到進(jìn)一步發(fā)展。重視算理算法的滲透是新課標(biāo)所強(qiáng)調(diào)的。

 。ㄈw納法則

  單項(xiàng)式相除,把系數(shù)與同底數(shù)冪分別相除作為商的因式,對(duì)于只在被除式里含有的字母,則連同它的.指數(shù)作為商的一個(gè)因式。

  注:通過(guò)總結(jié)法則,培養(yǎng)學(xué)生的概括能力,養(yǎng)成用數(shù)學(xué)語(yǔ)言表達(dá)自己想法的數(shù)學(xué)學(xué)習(xí)習(xí)慣。

 。ㄋ模⿷(yīng)用新知

  例2計(jì)算:

 。1)28x4y2÷7x3y;

 。2)—5a5b3c÷15a4b。

  首先指明28x4y2與7x3y分別是被除式與除式,在這兒省去了括號(hào)。對(duì)本例可以采用學(xué)生口述,教師板書(shū)的形式完成?谑龊桶鍟(shū)都應(yīng)注意展示法則的應(yīng)用,計(jì)算過(guò)程要詳盡,使學(xué)生盡快熟悉法則。

  注:?jiǎn)雾?xiàng)式除以單項(xiàng)式,既要對(duì)系數(shù)進(jìn)行運(yùn)算,又要對(duì)相同字母進(jìn)行指數(shù)運(yùn)算,同時(shí)對(duì)只在一個(gè)單項(xiàng)式里含有的冪要加以注意,這些對(duì)剛剛接觸整式除法的學(xué)生來(lái)講,難免會(huì)出現(xiàn)照看不全的情況,所以更應(yīng)督促學(xué)生細(xì)心解答問(wèn)題。

  鞏固新知教科書(shū)第162頁(yè)練習(xí)1及練習(xí)2。

  學(xué)生自己嘗試完成計(jì)算題,同桌交流。

  注:在獨(dú)立解題和同伴的相互交流過(guò)程中讓學(xué)生自己去體會(huì)法則、掌握法則,印象更為深刻,也有助于培養(yǎng)學(xué)生良好的思維習(xí)慣和主動(dòng)參與學(xué)習(xí)的習(xí)慣。

 。ㄎ澹┳鳂I(yè)

  1、必做題:教科書(shū)第164頁(yè)習(xí)題15。3第1題;第2題。

  2、選做題:教科書(shū)第164頁(yè)習(xí)題15。3第8題

八年級(jí)數(shù)學(xué)教案9

  課題:一元二次方程實(shí)數(shù)根錯(cuò)例剖析課

  【教學(xué)目的】 精選學(xué)生在解一元二次方程有關(guān)問(wèn)題時(shí)出現(xiàn)的典型錯(cuò)例加以剖析,幫助學(xué)生找出產(chǎn)生錯(cuò)誤的原因和糾正錯(cuò)誤的方法,使學(xué)生在解題時(shí)少犯錯(cuò)誤,從而培養(yǎng)學(xué)生思維的批判性和深刻性。

  【課前練習(xí)】

  1、關(guān)于x的方程ax2+bx+c=0,當(dāng)a_____時(shí),方程為一元一次方程;當(dāng) a_____時(shí),方程為一元二次方程。

  2、一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=_______,當(dāng)△_______時(shí),方程有兩個(gè)相等的實(shí)數(shù)根,當(dāng)△_______時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根,當(dāng)△________時(shí),方程沒(méi)有實(shí)數(shù)根。

  【典型例題】

  例1 下列方程中兩實(shí)數(shù)根之和為2的方程是()

  (A) x2+2x+3=0 (B) x2-2x+3=0 (c) x2-2x-3=0 (D) x2+2x+3=0

  錯(cuò)答: B

  正解: C

  錯(cuò)因剖析:由根與系數(shù)的關(guān)系得x1+x2=2,極易誤選B,又考慮到方程有實(shí)數(shù)根,故由△可知,方程B無(wú)實(shí)數(shù)根,方程C合適。

  例2 若關(guān)于x的方程x2+2(k+2)x+k2=0 兩個(gè)實(shí)數(shù)根之和大于-4,則k的取值范圍是( )

  (A) k>-1 (B) k<0 (c) -1< k<0 (D) -1≤k<0

  錯(cuò)解 :B

  正解:D

  錯(cuò)因剖析:漏掉了方程有實(shí)數(shù)根的前提是△≥0

  例3(2000廣西中考題) 已知關(guān)于x的一元二次方程(1-2k)x2-2 x-1=0有兩個(gè)不相等的實(shí)根,求k的取值范圍。

  錯(cuò)解: 由△=(-2 )2-4(1-2k)(-1) =-4k+8>0得 k<2又∵k+1≥0∴k≥ -1。即 k的取值范圍是 -1≤k<2

  錯(cuò)因剖析:漏掉了二次項(xiàng)系數(shù)1-2k≠0這個(gè)前提。事實(shí)上,當(dāng)1-2k=0即k= 時(shí),原方程變?yōu)橐淮畏匠,不可能有兩個(gè)實(shí)根。

  正解: -1≤k<2且k≠

  例4 (2002山東太原中考題) 已知x1,x2是關(guān)于x的一元二次方程x2+(2m+1)x+m2+1=0的兩個(gè)實(shí)數(shù)根,當(dāng)x12+x22=15時(shí),求m的值。

  錯(cuò)解:由根與系數(shù)的關(guān)系得

  x1+x2= -(2m+1), x1x2=m2+1,

  ∵x12+x22=(x1+x2)2-2 x1x2

 。絒-(2m+1)]2-2(m2+1)

 。2 m2+4 m-1

  又∵ x12+x22=15

  ∴ 2 m2+4 m-1=15

  ∴ m1 = -4 m2 = 2

  錯(cuò)因剖析:漏掉了一元二次方程有兩個(gè)實(shí)根的'前提條件是判別式△≥0。因?yàn)楫?dāng)m = -4時(shí),方程為x2-7x+17=0,此時(shí)△=(-7)2-4×17×1= -19<0,方程無(wú)實(shí)數(shù)根,不符合題意。

  正解:m = 2

  例5 若關(guān)于 x的方程(m2-1)x2-2 (m+2)x+1=0有實(shí)數(shù)根,求m的取值范圍。

  錯(cuò)解:△=[-2(m+2)]2-4(m2-1) =16 m+20

  ∵ △≥0

  ∴ 16 m+20≥0,

  ∴ m≥ -5/4

  又 ∵ m2-1≠0,

  ∴ m≠±1

  ∴ m的取值范圍是m≠±1且m≥ -

  錯(cuò)因剖析:此題只說(shuō)(m2-1)x2-2 (m+2)x+1=0是關(guān)于未知數(shù)x的方程,而未限定方程的次數(shù),所以在解題時(shí)就必須考慮m2-1=0和m2-1≠0兩種情況。當(dāng)m2-1=0時(shí),即m=±1時(shí),方程變?yōu)橐辉淮畏匠,仍有?shí)數(shù)根。

  正解:m的取值范圍是m≥-

  例6 已知二次方程x2+3 x+a=0有整數(shù)根,a是非負(fù)數(shù),求方程的整數(shù)根。

  錯(cuò)解:∵方程有整數(shù)根,

  ∴△=9-4a>0,則a<2.25

  又∵a是非負(fù)數(shù),∴a=1或a=2

  令a=1,則x= -3± ,舍去;令a=2,則x1= -1、 x2= -2

  ∴方程的整數(shù)根是x1= -1, x2= -2

  錯(cuò)因剖析:概念模糊。非負(fù)整數(shù)應(yīng)包括零和正整數(shù)。上面答案僅是一部分,當(dāng)a=0時(shí),還可以求出方程的另兩個(gè)整數(shù)根,x3=0, x4= -3

  正解:方程的整數(shù)根是x1= -1, x2= -2 , x3=0, x4= -3

  【練習(xí)】

  練習(xí)1、(01濟(jì)南中考題)已知關(guān)于x的方程k2x2+(2k-1)x+1=0有兩個(gè)不相等的實(shí)數(shù)根x1、x2。

  (1)求k的取值范圍;

 。2)是否存在實(shí)數(shù)k,使方程的兩實(shí)數(shù)根互為相反數(shù)?如果存在,求出k的值;如果不存在,請(qǐng)說(shuō)明理由。

  解:(1)根據(jù)題意,得△=(2k-1)2-4 k2>0 解得k<

  ∴當(dāng)k< 時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根。

 。2)存在。

  如果方程的兩實(shí)數(shù)根x1、x2互為相反數(shù),則x1+ x2=- =0,得k= 。經(jīng)檢驗(yàn)k= 是方程- 的解。

  ∴當(dāng)k= 時(shí),方程的兩實(shí)數(shù)根x1、x2互為相反數(shù)。

  讀了上面的解題過(guò)程,請(qǐng)判斷是否有錯(cuò)誤?如果有,請(qǐng)指出錯(cuò)誤之處,并直接寫(xiě)出正確答案。

  解:上面解法錯(cuò)在如下兩個(gè)方面:

 。1)漏掉k≠0,正確答案為:當(dāng)k< 時(shí)且k≠0時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根。

 。2)k= 。不滿(mǎn)足△>0,正確答案為:不存在實(shí)數(shù)k,使方程的兩實(shí)數(shù)根互為相反數(shù)

  練習(xí)2(02廣州市)當(dāng)a取什么值時(shí),關(guān)于未知數(shù)x的方程ax2+4x-1=0只有正實(shí)數(shù)根 ?

  解:(1)當(dāng)a=0時(shí),方程為4x-1=0,∴x=

 。2)當(dāng)a≠0時(shí),∵△=16+4a≥0 ∴a≥ -4

  ∴當(dāng)a≥ -4且a≠0時(shí),方程有實(shí)數(shù)根。

  又因?yàn)榉匠讨挥姓龑?shí)數(shù)根,設(shè)為x1,x2,則:

  x1+x2=- >0 ;

  x1. x2=- >0 解得 :a<0

  綜上所述,當(dāng)a=0、a≥ -4、a<0時(shí),即當(dāng)-4≤a≤0時(shí),原方程只有正實(shí)數(shù)根。

  【小結(jié)】

  以上數(shù)例,說(shuō)明我們?cè)谇蠼庥嘘P(guān)二次方程的問(wèn)題時(shí),往往急于尋求結(jié)論而忽視了實(shí)數(shù)根的存在與“△”之間的關(guān)系。

  1、運(yùn)用根的判別式時(shí),若二次項(xiàng)系數(shù)為字母,要注意字母不為零的條件。

  2、運(yùn)用根與系數(shù)關(guān)系時(shí),△≥0是前提條件。

  3、條件多面時(shí)(如例5、例6)考慮要周全。

  【布置作業(yè)】

  1、當(dāng)m為何值時(shí),關(guān)于x的方程x2+2(m-1)x+ m2-9=0有兩個(gè)正根?

  2、已知,關(guān)于x的方程mx2-2(m+2)x+ m+5=0(m≠0)沒(méi)有實(shí)數(shù)根。

  求證:關(guān)于x的方程

  (m-5)x2-2(m+2)x + m=0一定有一個(gè)或兩個(gè)實(shí)數(shù)根。

  考題匯編

  1、(2000年廣東省中考題)設(shè)x1、 x2是方程x2-5x+3=0的兩個(gè)根,不解方程,利用根與系數(shù)的關(guān)系,求(x1-x2)2的值。

  2、(2001年廣東省中考題)已知關(guān)于x的方程x2-2x+m-1=0

 。1)若方程的一個(gè)根為1,求m的值。

 。2)m=5時(shí),原方程是否有實(shí)數(shù)根,如果有,求出它的實(shí)數(shù)根;如果沒(méi)有,請(qǐng)說(shuō)明理由。

  3、(2002年廣東省中考題)已知關(guān)于x的方程x2+2(m-2)x+ m2=0有兩個(gè)實(shí)數(shù)根,且兩根的平方和比兩根的積大33,求m的值。

  4、(2003年廣東省中考題)已知x1、x2為方程x2+px+q=0的兩個(gè)根,且x1+x2=6,x12+x22=20,求p和q的值。

八年級(jí)數(shù)學(xué)教案10

  教學(xué)目標(biāo):

  1.在探索平行四邊形的判別條件中,理解并掌握用邊、對(duì)角線(xiàn)來(lái)判定平行四邊形的方法.

  2.會(huì)綜合運(yùn)用平行四邊形的判定方法和性質(zhì)來(lái)解決問(wèn)題.

  3.培養(yǎng)用類(lèi)比、逆向聯(lián)想及運(yùn)動(dòng)的思維方法來(lái)研究問(wèn)題.

  重點(diǎn)、難點(diǎn)

  1.重點(diǎn):平行四邊形的判定方法及應(yīng)用.

  2.難點(diǎn):平行四邊形的判定定理與性質(zhì)定理的靈活應(yīng)用.

  3.難點(diǎn)的突破方法:

  平行四邊形的判別方法是本節(jié)課的核心內(nèi)容.同時(shí)它又是后面進(jìn)一步研究矩形、菱形、正方形判別的基礎(chǔ),更是發(fā)展學(xué)生合情推理及說(shuō)理的良好素材.本節(jié)課的教學(xué)重點(diǎn)為平行四邊形的判別方法.在本課中,可以探索活動(dòng)為載體,并將論證作為探索活動(dòng)的自然延續(xù)與必要發(fā)展,從而將直觀操作與簡(jiǎn)單推理有機(jī)融合,達(dá)到突出重點(diǎn)、分散難點(diǎn)的目的.

 。1)平行四邊形的判定方法1、2都是平行四邊形性質(zhì)的逆命題,它們的證明都可利用定義或前一個(gè)方法來(lái)證明.

 。2)平行四邊形有四種判定方法,與性質(zhì)類(lèi)似,可從邊、對(duì)角線(xiàn)兩方面進(jìn)行記憶.要注意:

 、俦窘滩臎](méi)有把用角來(lái)作為判定的方法,教學(xué)中可以根據(jù)學(xué)生的情況作為補(bǔ)充;

 、诒竟(jié)課只介紹前兩個(gè)判定方法.

  (3)教學(xué)中,我們可創(chuàng)設(shè)貼近學(xué)生生活、生動(dòng)有趣的問(wèn)題情境,開(kāi)展有效的數(shù)學(xué)活動(dòng),如通過(guò)欣賞圖片及識(shí)別圖片中的平行四邊形,使學(xué)生建立對(duì)平行四邊形的直覺(jué)認(rèn)識(shí).并復(fù)習(xí)平行四邊形的定義,建立新舊知識(shí)間的相互聯(lián)系.接著提出問(wèn)題:小明的父親手中有一些木條,他想通過(guò)適當(dāng)?shù)臏y(cè)量、割剪,釘制一個(gè)平行四邊形框架,你能幫他想出一些辦法來(lái)嗎?從而組織學(xué)生主動(dòng)參與、勤于動(dòng)手、積極思考,使他們?cè)谧灾魈骄颗c合作交流的過(guò)程中,從整體上把握“平行四邊形的判別”的方法.

  然后利用學(xué)生手中的學(xué)具——硬紙板條,通過(guò)觀察、測(cè)量、猜想、驗(yàn)證、探索構(gòu)成平行四邊形的條件.

  在學(xué)生拼圖的活動(dòng)中,教師可以以問(wèn)題串的形式展開(kāi)對(duì)平行四邊形判別方法的探討,讓學(xué)生在問(wèn)題解決中,實(shí)現(xiàn)對(duì)平行四邊形各種判別方法的掌握,并發(fā)展了學(xué)生說(shuō)理及簡(jiǎn)單推理的能力.

 。4)從本節(jié)開(kāi)始,就應(yīng)讓學(xué)生直接運(yùn)用平行四邊形的性質(zhì)和判定去解決問(wèn)題,凡是可以用平行四邊形知識(shí)證明的問(wèn)題,不要再回到用三角形全等證明.應(yīng)該對(duì)學(xué)生提出這個(gè)要求.

 。5)平行四邊形知識(shí)的運(yùn)用包括三個(gè)方面:一是直接運(yùn)用平行四邊形的性質(zhì)去解決某些問(wèn)題.例如,求角的度數(shù),線(xiàn)段的長(zhǎng)度,證明角相等或線(xiàn)段相等;二是判定一個(gè)四邊形是平行四邊形,從而判定直線(xiàn)平行等;三是先判定一個(gè)四邊形是平行四邊形,然后再眼再用平行四邊形的性質(zhì)去解決某些問(wèn)題.

  (6)平行四邊形的概念、性質(zhì)、判定都是非常重要的基礎(chǔ)知識(shí),這些知識(shí)是本章的'重點(diǎn)內(nèi)容,要使學(xué)生熟練地掌握這些知識(shí).

  例題的意圖分析

  本節(jié)課安排了3個(gè)例題,例1是教材P96的例3,它是平行四邊形的性質(zhì)與判定的綜合運(yùn)用,此題最好先讓學(xué)生說(shuō)出證明的思路,然后老師總結(jié)并指出其最佳方法.例2與例3都是補(bǔ)充的題目,其目的就是讓學(xué)生能靈活和綜合地運(yùn)用平行四邊形的判定方法和性質(zhì)來(lái)解決問(wèn)題.例3是一道拼圖題,教學(xué)時(shí),可以讓學(xué)生動(dòng)起來(lái),邊拼圖邊說(shuō)明道理,即可以提高學(xué)生的動(dòng)手能力和學(xué)生的思維能力,又可以提高學(xué)生的學(xué)習(xí)興趣.如讓學(xué)生再用四個(gè)不等邊三角形拼一個(gè)如圖的大三角形,讓學(xué)生指出圖中所有的平行四邊形,并說(shuō)明理由.

  課堂引入

  1.欣賞圖片、提出問(wèn)題.

  展示圖片,提出問(wèn)題,在剛才演示的圖片中,有哪些是平行四邊形?你是怎樣判斷的?

  2.【探究】:小明的父親手中有一些木條,他想通過(guò)適當(dāng)?shù)臏y(cè)量、割剪,釘制一個(gè)平行四邊形框架,你能幫他想出一些辦法來(lái)嗎?

  讓學(xué)生利用手中的學(xué)具——硬紙板條,通過(guò)觀察、測(cè)量、猜想、驗(yàn)證、探索構(gòu)成平行四邊形的條件,思考并探討:

 。1)你能適當(dāng)選擇手中的硬紙板條搭建一個(gè)平行四邊形嗎?

 。2)你怎樣驗(yàn)證你搭建的四邊形一定是平行四邊形?

 。3)你能說(shuō)出你的做法及其道理嗎?

 。4)能否將你的探索結(jié)論作為平行四邊形的一種判別方法?你能用文字語(yǔ)言表述出來(lái)嗎?

 。5)你還能找出其他方法嗎?

  從探究中得到:

  平行四邊形判定方法1 兩組對(duì)邊分別相等的四邊形是平行四邊形。

  平行四邊形判定方法2 對(duì)角線(xiàn)互相平分的四邊形是平行四邊形。

  例習(xí)題分析

  1(教材P96例3)已知:如圖ABCD的對(duì)角線(xiàn)AC、BD交于點(diǎn)O,E、F是AC上的兩點(diǎn),并且AE=CF.

  求證:四邊形BFDE是平行四邊形.

  分析:欲證四邊形BFDE是平行四邊形可以根據(jù)判定方法2來(lái)證明.

 。ㄗC明過(guò)程參看教材)

  問(wèn);你還有其它的證明方法嗎?比較一下,哪種證明方法簡(jiǎn)單.

  2(補(bǔ)充) 已知:如圖,A′B′∥BA,B′C′∥CB, C′A′∥AC.

  求證:(1) ∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;

  (2) △ABC的頂點(diǎn)分別是△B′C′A′各邊的中點(diǎn).

  證明:(1)∵A′B′∥BA,C′B′∥BC,

  ∴四邊形ABCB′是平行四邊形.

  ∴ ∠ABC=∠B′(平行四邊形的對(duì)角相等).

  同理∠CAB=∠A′,∠BCA=∠C′.

  (2) 由(1)證得四邊形ABCB′是平行四邊形.同理,四邊形ABA′C是平行四邊形.

  ∴ AB=B′C, AB=A′C(平行四邊形的對(duì)邊相等).

  ∴ B′C=A′C.

  同理 B′A=C′A, A′B=C′B.

  ∴ △ABC的頂點(diǎn)A、B、C分別是△B′C′A′的邊B′C′、C′A′、A′B′的中點(diǎn).

  3(補(bǔ)充)小明用手中六個(gè)全等的正三角形做拼圖游戲時(shí),拼成一個(gè)六邊形.你能在圖中找出所有的平行四邊形嗎?并說(shuō)說(shuō)你的理由.

  解:有6個(gè)平行四邊形,分別是ABOF,ABCO, BCDO,CDEO,DEFO,EFAO.

  理由是:因?yàn)檎鰽BO≌正△AOF,所以AB=BO,OF=FA.根據(jù) “兩組對(duì)邊分別相等的四邊形是平行四邊形”,可知四邊形ABCD是平行四邊形.其它五個(gè)同理.

  隨堂練習(xí)

  1.如圖,在四邊形ABCD中,AC、BD相交于點(diǎn)O,

 。1)若AD=8cm,AB=4cm,那么當(dāng)BC=____cm,CD=____cm時(shí),四邊形ABCD為平行四邊形;

 。2)若AC=10cm,BD=8cm,那么當(dāng)AO=___cm,DO=___cm時(shí),四邊形ABCD為平行四邊形.

  2.已知:如圖,ABCD中,點(diǎn)E、F分別在CD、AB上,DF∥BE,EF交BD于點(diǎn)O.求證:EO=OF.

  3.靈活運(yùn)用課本P89例題,如圖:由火柴棒拼出的一列圖形,第n個(gè)圖形由(n+1)個(gè)等邊三角形拼成,通過(guò)觀察,分析發(fā)現(xiàn):

 、俚4個(gè)圖形中平行四邊形的個(gè)數(shù)為_(kāi)____.

 。6個(gè))

 、诘8個(gè)圖形中平行四邊形的個(gè)數(shù)為_(kāi)____.

 。20個(gè))

  課后練習(xí)

  1.(選擇)下列條件中能判斷四邊形是平行四邊形的是( ).

 。ˋ)對(duì)角線(xiàn)互相垂直 (B)對(duì)角線(xiàn)相等

  (C)對(duì)角線(xiàn)互相垂直且相等 (D)對(duì)角線(xiàn)互相平分

  2.已知:如圖,△ABC,BD平分∠ABC,DE∥BC,EF∥BC,

  求證:BE=CF

八年級(jí)數(shù)學(xué)教案11

  教學(xué)目標(biāo):

  1、知識(shí)目標(biāo):探索圖形之間的變換關(guān)系(軸對(duì)稱(chēng)、平移、旋轉(zhuǎn)及其組合)。

  2、能力目標(biāo):

  ①經(jīng)歷對(duì)具有旋轉(zhuǎn)特征的圖形進(jìn)行觀察、分析、動(dòng)手操作和畫(huà)圖等過(guò)程,掌握畫(huà)圖技能。

 、谀軌虬匆笞鞒龊(jiǎn)單平面圖形旋轉(zhuǎn)后的圖形,并在此基礎(chǔ)上達(dá)到鞏固旋轉(zhuǎn)的有關(guān)性質(zhì)。

  3、情感體驗(yàn)點(diǎn):培養(yǎng)學(xué)生的觀察能力和審美能力,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

  重點(diǎn)與難點(diǎn):

  重點(diǎn):圖形之間的變換關(guān)系(軸對(duì)稱(chēng)、平移、旋轉(zhuǎn)及其組合);

  難點(diǎn):綜合利用各種變換關(guān)系觀察圖形的形成。

  疑點(diǎn):基本圖案不同,形成方式不同。

  教學(xué)方法:

  新授課在教師引導(dǎo)下,以學(xué)生的分組討論、合作交流為主展開(kāi)教學(xué)。

  教學(xué)過(guò)程設(shè)計(jì):

  1、情境導(dǎo)入

  播放自制圖形形成的影片,如圖351。

  2、充分利用本課時(shí)引入開(kāi)放性的問(wèn)題:圖351由四部分組成,每部分都包括兩個(gè)小十字,其中一部分能經(jīng)過(guò)適當(dāng)?shù)男D(zhuǎn)得到其他三部分嗎?能經(jīng)過(guò)平移嗎?能經(jīng)過(guò)軸對(duì)稱(chēng)嗎?還有其它方式嗎?

  問(wèn)題本身為學(xué)生創(chuàng)設(shè)了一個(gè)探究圖形之間變化關(guān)系的情景,圖形雖十簡(jiǎn)單,但變換方式綜合性強(qiáng),可以讓學(xué)生自由發(fā)揮,各抒已見(jiàn),后由教師進(jìn)行適當(dāng)歸納小結(jié):

  (1)整個(gè)圖形可以看做是由一個(gè)十字組成部分通過(guò)連續(xù)七次平移前后的圖形共同組成;

  (2)整個(gè)圖形也可以看做是由左邊的兩個(gè)十字組成的部分通過(guò)三次放置形成的;

  (3)整個(gè)圖形不定期可以看做把左邊的兩個(gè)十字組成的部分先通過(guò)平移一次形成左右四個(gè)十字組成的圖形,然后繞圖形中心旋轉(zhuǎn)90度前后的圖形共同組成;

  (4)整個(gè)圖形還可以看做把左邊的兩個(gè)十字組成的部分通過(guò)二次軸對(duì)稱(chēng)形成的。

  (學(xué)生可能還有其他不同描述,教師應(yīng)予以肯定)

  3、通過(guò)上述問(wèn)題的.討論,我們看到圖形的平移、旋轉(zhuǎn),軸對(duì)稱(chēng)變換是圖形變換中最基本的三種變換方式,它們是今后設(shè)計(jì)圖案的主要手段。

  4、利用想一想你能將圖352的左圖,通過(guò)平移或旋轉(zhuǎn)得到右圖嗎?

  學(xué)生議論或動(dòng)手操作會(huì)發(fā)現(xiàn)這是不可能的,教材意圖十分明確,要告訴學(xué)生并不是所有圖形都可以通過(guò)一次平移或旋轉(zhuǎn)而得到的,從而要求我們今后分析圖形之間的關(guān)系時(shí),要充分利用它們各自的性質(zhì)、特征正確判斷和識(shí)別。那么上述圖形能通過(guò)軸對(duì)稱(chēng)變換從左圖變成右圖嗎?進(jìn)一步讓學(xué)生思考,從而得到結(jié)論是可能的。

  5、例1、怎樣將圖353中的甲圖變成乙圖案?

  通過(guò)相對(duì)簡(jiǎn)單活潑的問(wèn)題,讓學(xué)生能運(yùn)用圖形變換的幾種不同方式解答問(wèn)題(先旋轉(zhuǎn)再平移后等到或先平移后旋轉(zhuǎn)也可以)

  例2、怎樣將圖354中右邊的圖案變成左邊的圖案?

  留給學(xué)生充足的時(shí)間討論交流。

  (師):哪位同學(xué)有好好方法,請(qǐng)告訴大家!

  (生):以右圖案的中心為旋轉(zhuǎn)中心,將圖案按逆時(shí)針?lè)较蛐D(zhuǎn)900 。

  (生):以右圖案的中心為旋轉(zhuǎn)中心,將圖案順逆時(shí)針?lè)较蛐D(zhuǎn)2700 。

  明確可以通過(guò)不同的辦法達(dá)到同樣的效果,激勵(lì)學(xué)生動(dòng)手動(dòng)腦。

  5、學(xué)習(xí)小結(jié)

  (1)內(nèi)容總結(jié)

  兩個(gè)圖案前后變化彩用了哪些方法?(平移、旋轉(zhuǎn),軸對(duì)稱(chēng))

  (2)方法歸納

  ①了解并知道圖案變化的一般方法。

  ②圖案變化的方法很多,在生活中要養(yǎng)成多途徑觀察,思考問(wèn)題的習(xí)慣。

  6、目標(biāo)檢測(cè)

  圖355是由三個(gè)正三角形拼成的,它可以看做由其中一個(gè)三角形經(jīng)過(guò)怎樣的變換而得到?

  延伸拓展:

  1、鏈接生活

  鏈接一:奧運(yùn)會(huì)的五環(huán)旗圖案是大家熟悉的圖案,請(qǐng)你根據(jù)所學(xué)知識(shí)分析它的形成。(用課本知識(shí)解釋生活中的圖形變換)

  鏈接二:夏季是荷花盛開(kāi)的季節(jié),同學(xué)們都贊美過(guò)它出淤泥而不染的品質(zhì),很多同學(xué)曾畫(huà)過(guò)荷花,請(qǐng)你用所學(xué)知識(shí)再畫(huà)一朵荷花,看與以前有什么不同的感受(讓學(xué)生進(jìn)一步體會(huì)數(shù)學(xué)與生活的密切聯(lián)系)

  實(shí)踐探索:

 、賹(shí)踐活動(dòng)列舉實(shí)例歸納圖形之間的變換關(guān)系(平移、旋轉(zhuǎn),軸對(duì)稱(chēng)及其組合)

 、陟柟叹毩(xí)課本74頁(yè)中的習(xí)題3.6。

  板書(shū)設(shè)計(jì):

  3.5它們是怎樣變過(guò)來(lái)的。

  軸對(duì)稱(chēng)、平移、旋轉(zhuǎn)的性質(zhì)例題;

  圖形之間的變換關(guān)系;

八年級(jí)數(shù)學(xué)教案12

  【教學(xué)目標(biāo)】

  1、了解三角形的中位線(xiàn)的概念

  2、了解三角形的中位線(xiàn)的性質(zhì)

  3、探索三角形的中位線(xiàn)的性質(zhì)的一些簡(jiǎn)單的應(yīng)用

  【教學(xué)重點(diǎn)、難點(diǎn)】

  重點(diǎn):三角形的中位線(xiàn)定理。

  難點(diǎn):三角形的中位線(xiàn)定理的證明中添加輔助線(xiàn)的思想方法。

  【教學(xué)過(guò)程】

 。ㄒ唬﹦(chuàng)設(shè)情景,引入新課

  1、如圖,為了測(cè)量一個(gè)池塘的寬BC,在池塘一側(cè)的平地上選一點(diǎn)A,再分別找出線(xiàn)段AB、AC的中點(diǎn)D、E,若測(cè)出DE的長(zhǎng),就可以求出池塘的寬BC,你知道這是為什么嗎?

  2、動(dòng)手操作:剪一刀,將一張三角形紙片剪成一張三角形紙片和一張?zhí)菪渭埰?/p>

 。1)如果要求剪得的兩張紙片能拼成平行的四邊形,剪痕的位置有什么要求?

  (2)要把所剪得的兩個(gè)圖形拼成一個(gè)平行四邊形,可將其中的三角形做怎樣的圖形變換?

  3、引導(dǎo)學(xué)生概括出中位線(xiàn)的概念。

  問(wèn)題:(1)三角形有幾條中位線(xiàn)?(2)三角形的中位線(xiàn)與中線(xiàn)有什么區(qū)別?

  啟發(fā)學(xué)生得出:三角形的中位線(xiàn)的兩端點(diǎn)都是三角形邊的中點(diǎn),而三角形中線(xiàn)只有一個(gè)端點(diǎn)是邊中點(diǎn),另一端點(diǎn)上三角形的一個(gè)頂點(diǎn)。

  4、猜想:DE與BC的關(guān)系?(位置關(guān)系與數(shù)量關(guān)系)

 。ǘ、師生互動(dòng),探究新知

  1、證明你的.猜想

  引導(dǎo)學(xué)生寫(xiě)出已知,求證,并啟發(fā)分析。

 。ㄒ阎酣SABC中,D、E分別是AB、AC的中點(diǎn),求證:DE∥BC,DE=1/2BC)

  啟發(fā)1:證明直線(xiàn)平行的方法有哪些?(由角的相等或互補(bǔ)得出平行,由平行四邊形得出平行等)

  啟發(fā)2:證明線(xiàn)段的倍分的方法有哪些?(截長(zhǎng)或補(bǔ)短)

  學(xué)生分小組討論,教師巡回指導(dǎo),經(jīng)過(guò)分析后,師生共同完成推理過(guò)程,板書(shū)證明過(guò)程,強(qiáng)調(diào)有其他證法。

  證明:如圖,以點(diǎn)E為旋轉(zhuǎn)中心,把⊿ADE繞點(diǎn)E,按順時(shí)針?lè)较蛐D(zhuǎn)180゜,得到⊿CFE,則D,E,F(xiàn)同在一直線(xiàn)上,DE=EF,且⊿ADE≌⊿CFE。

  ∴∠ADE=∠F,AD=CF,

  ∴AB∥CF。

  又∵BD=AD=CF,

  ∴四邊形BCFD是平行四邊形(一組對(duì)邊平行且相等的四邊形是平行四邊形),

  ∴DF∥BC(根據(jù)什么?),

  ∴DE 1/2BC

  2、啟發(fā)學(xué)生歸納定理,并用文字語(yǔ)言表達(dá):三角形中位線(xiàn)平行于第三邊且等于第三邊的一半。

 。ㄈ⿲W(xué)以致用、落實(shí)新知

  1、練一練:已知三角形邊長(zhǎng)分別為6、8、10,順次連結(jié)各邊中點(diǎn)所得的三角形周長(zhǎng)是多少?

  2、想一想:如果⊿ABC的三邊長(zhǎng)分別為a、b、c,AB、BC、AC各邊中點(diǎn)分別為D、E、F,則⊿DEF的周長(zhǎng)是多少?

  3、例題:已知:如圖,在四邊形ABCD中,E,F(xiàn),G,H分別是AB,BC,CD,DA的中點(diǎn)。

  求證:四邊形EFGH是平行四邊形。

  啟發(fā)1:由E,F(xiàn)分別是AB,BC的中點(diǎn),你會(huì)聯(lián)想到什么圖形?

  啟發(fā)2:要使EF成為三角的中位線(xiàn),應(yīng)如何添加輔助線(xiàn)?應(yīng)用三角形的中位線(xiàn)定理,能得到什么?你能得出EF∥GH嗎?為什么?

  證明:如圖,連接AC。

  ∵EF是⊿ABC的中位線(xiàn),

  ∴EF 1/2AC(三角形的中位線(xiàn)平行于第三邊,并且等于第三邊的一半)。

  同理,HG 1/2AC。

  ∴EF HG。

  ∴四邊形EFGH是平行四邊形(一組對(duì)邊平行并且相等的四邊形是平行四邊形)

  挑戰(zhàn):順次連結(jié)上題中,所得到的四邊形EFGH四邊中點(diǎn)得到一個(gè)四邊形,繼續(xù)作下去。。。你能得出什么結(jié)論?

 。ㄋ模⿲W(xué)生練習(xí),鞏固新知

  1、請(qǐng)回答引例中的問(wèn)題(1)

  2、如圖,在四邊形ABCD中,AB=CD,M,N,P分別是AD,BC, BD的中點(diǎn)。求證:∠PNM=∠PMN

  (五)小結(jié)回顧,反思提高

  今天你學(xué)到了什么?還有什么困惑?

八年級(jí)數(shù)學(xué)教案13

  一、目標(biāo)要求

  1.理解掌握分式乘除法運(yùn)算法則。

  2.能熟練地運(yùn)用分式乘除法運(yùn)算法則進(jìn)行分式的乘除運(yùn)算。

  二、重點(diǎn)難點(diǎn)

  重點(diǎn)是分式乘除法法則。

  難點(diǎn)是分子或分母為多項(xiàng)式的分式的乘除法。

  1.分式的乘除法法則:

 。1)分式乘以分式,用分子的積做積的分子,分母的積做積的.分母,用式子表示為=;

 。2)分式除以分式,把除式的分子、分母顛倒位置后與被除式相乘,用式子表示為÷ = = 。

  2.遇到分式的乘方、乘、除法的混合運(yùn)算,首先要注意運(yùn)算順序,即先乘方、后乘除,而除法運(yùn)算又應(yīng)根據(jù)其法則轉(zhuǎn)化為乘法運(yùn)算;其次要注意運(yùn)算符號(hào)法則與分式的符號(hào)法則,最后在約分時(shí)要注意分子與分母是為積的形式,若不是則應(yīng)進(jìn)行因式分解。

  3.分式的運(yùn)算中不能去分母,因?yàn)槿シ帜甘堑仁降男再|(zhì),而分式不是等式,分式的運(yùn)算只是對(duì)分式進(jìn)行恒等變形。

  三、解題方法指導(dǎo)

  【例1】計(jì)算:

 。1)3x2y (-);

 。2)6x3y2÷(-) ÷x2;

 。3)( )÷(-)(-)

  分析:分式的分子與分母是單項(xiàng)式的乘除,先將除法轉(zhuǎn)化為乘法,根據(jù)分式的乘法法則,先確定結(jié)果的符號(hào),然后將系數(shù)相乘除,其余的因式按指數(shù)法則運(yùn)算。

  解:

 。1)原式=-3x2y =-1。

 。2)原式=6x3y2(-)

  =-6x3y2 =-。

  (3)原式=(-)(-)(-)

  =-=-。

  【例2】計(jì)算:

 。1)÷ 。

 。2)÷(x+3)

  分析:分式的乘除混合運(yùn)算,首先將除法轉(zhuǎn)化為乘法,將分子、分母因式分解后進(jìn)行約分。

  解:

 。1)原式=

 。2)原式= ÷(x+3)

  注意:

  (1)分式的分子、分母是多項(xiàng)式時(shí),一般先按某一字母的降冪排列,再分解因式,并在運(yùn)算過(guò)程中約分,使運(yùn)算簡(jiǎn)化。

 。2)分式除法中,除式是整式時(shí),可以看作分母是1的式子。要注意乘除法是屬于同一級(jí)運(yùn)算,必須嚴(yán)格按從左到右的順序。

  四、激活思維訓(xùn)練

  ▲知識(shí)點(diǎn):分式的乘除法運(yùn)算

  【例】已知m=,求代數(shù)式÷的值。

  分析:首先應(yīng)將代數(shù)式化簡(jiǎn),然后把已知條件變形后代入,即可求出其值。

  解:÷ =

  =(m+2)(m-2)=m2-4。

  ∵ m=,∴ m2=1。

  ∴原式=m2-4=1-4=-3。

  五、基礎(chǔ)知識(shí)檢測(cè)

  六、創(chuàng)新能力運(yùn)用

  參考答案

  【基礎(chǔ)知識(shí)檢測(cè)】

  1.(1)分子的積做分子、分母的積做分母、分子、分母,相乘

  2.(1)D(2)D

八年級(jí)數(shù)學(xué)教案14

 一、教學(xué)目標(biāo)

  知識(shí)與技能

  1、了解立方根的概念,初步學(xué)會(huì)用根號(hào)表示一個(gè)數(shù)的立方根、

  2、了解開(kāi)立方與立方互為逆運(yùn)算,會(huì)用立方運(yùn)算求某些數(shù)的立方根、

  過(guò)程與方法

  1、讓學(xué)生體會(huì)一個(gè)數(shù)的立方根的惟一性、

  2、培養(yǎng)學(xué)生用類(lèi)比的思想求立方根的能力,體會(huì)立方與開(kāi)立方運(yùn)算的互逆性,滲透數(shù)學(xué)的轉(zhuǎn)化思想。

  情感態(tài)度與價(jià)值觀

  通過(guò)立方根符號(hào)的引入體會(huì)數(shù)學(xué)的簡(jiǎn)潔美。

  二、重點(diǎn)難點(diǎn)

  重點(diǎn)

  立方根的概念和求法。

  難點(diǎn)

  立方根與平方根的區(qū)別,立方根的求法

  三、學(xué)情分析

  前面已經(jīng)學(xué)過(guò)了平方根的知識(shí),由于平方根與立方根的學(xué)習(xí)有很多相似之處,所以在教學(xué)設(shè)計(jì)上,主要還是采取類(lèi)比的思想,在全面回顧平方根的基礎(chǔ)上,再來(lái)引導(dǎo)學(xué)生進(jìn)行立方根知識(shí)的學(xué)習(xí),讓學(xué)生感覺(jué)到其實(shí)立方根知識(shí)并不難,可以與平方根知識(shí)對(duì)比著學(xué),這樣可以克服學(xué)生學(xué)習(xí)新知識(shí)的陌生心理。在學(xué)習(xí)方法上,提倡讓學(xué)生在反思中學(xué)習(xí),在概念的得出,歸納性質(zhì),解題之后都要進(jìn)行適當(dāng)?shù)姆此迹诜此贾锌创c理解新知識(shí)和新問(wèn)題,會(huì)更理性和全面,會(huì)有更大的進(jìn)步。

  四、教學(xué)過(guò)程設(shè)計(jì)

  教學(xué)環(huán)節(jié)問(wèn)題設(shè)計(jì)師生活動(dòng)備注

  情境創(chuàng)設(shè)問(wèn)題:要制作一種容積為27m3的正方體形狀的包裝箱,這種包裝箱的邊長(zhǎng)應(yīng)該是多少?

  設(shè)這種包裝箱的邊長(zhǎng)為xm,則=27這就是求一個(gè)數(shù),使它的立方等于27、

  因?yàn)?27,所以x=3、即這種包裝箱的.邊長(zhǎng)應(yīng)為3m

  歸納:

  立方根的概念:

  創(chuàng)設(shè)問(wèn)題情境,引起學(xué)生學(xué)習(xí)的興趣,經(jīng)小組討論后引出概念。

  通過(guò)具體問(wèn)題得出立方根的概念

  探究一:

  根據(jù)立方根的意義填空,看看正數(shù)、0、負(fù)數(shù)的立方根各有什么特點(diǎn)?

  因?yàn)椋ǎ?、125的立方根是()

  因?yàn)椋ǎ,所以?的立方根是()

  因?yàn)椋ǎ浴?、125的立方根是()

  因?yàn)椋ǎ,所?的立方根是()

  一個(gè)正數(shù)有一個(gè)正的立方根

  0有一個(gè)立方根,是它本身

  一個(gè)負(fù)數(shù)有一個(gè)負(fù)的立方根

  任何數(shù)都有唯一的立方根

  總結(jié)歸納

  一個(gè)數(shù)的立方根,記作,讀作:“三次根號(hào)”,其中叫被開(kāi)方數(shù),3叫根指數(shù),不能省略,若省略表示平方。、

  探究二:

  因?yàn)樗?

  因?yàn)椋?總結(jié):

  利用開(kāi)立方和立方互為逆運(yùn)算關(guān)系,求一個(gè)數(shù)的立方根,就可以利用這種互逆關(guān)系,檢驗(yàn)其正確性,求負(fù)數(shù)的立方根,可以先求出這個(gè)負(fù)數(shù)的絕對(duì)值的立方根,再取其相反數(shù),即。

八年級(jí)數(shù)學(xué)教案15

  一、教學(xué)目標(biāo)

  1、理解分式的基本性質(zhì)。

  2、會(huì)用分式的基本性質(zhì)將分式變形。

  二、重點(diǎn)、難點(diǎn)

  1、重點(diǎn):理解分式的基本性質(zhì)。

  2、難點(diǎn):靈活應(yīng)用分式的基本性質(zhì)將分式變形。

  3、認(rèn)知難點(diǎn)與突破方法

  教學(xué)難點(diǎn)是靈活應(yīng)用分式的基本性質(zhì)將分式變形。突破的方法是通過(guò)復(fù)習(xí)分?jǐn)?shù)的通分、約分總結(jié)出分?jǐn)?shù)的基本性質(zhì),再用類(lèi)比的方法得出分式的基本性質(zhì)。應(yīng)用分式的基本性質(zhì)導(dǎo)出通分、約分的概念,使學(xué)生在理解的.基礎(chǔ)上靈活地將分式變形。

  三、練習(xí)題的意圖分析

  1、P7的例2是使學(xué)生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應(yīng)用分式的基本性質(zhì),相應(yīng)地把分子(或分母)乘以或除以了這個(gè)整式,填到括號(hào)里作為答案,使分式的值不變。

  2、P9的例3、例4地目的是進(jìn)一步運(yùn)用分式的基本性質(zhì)進(jìn)行約分、通分。值得注意的是:約分是要找準(zhǔn)分子和分母的公因式,最后的結(jié)果要是最簡(jiǎn)分式;通分是要正確地確定各個(gè)分母的最簡(jiǎn)公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡(jiǎn)公分母。

  教師要講清方法,還要及時(shí)地糾正學(xué)生做題時(shí)出現(xiàn)的錯(cuò)誤,使學(xué)生在做提示加深對(duì)相應(yīng)概念及方法的理解。

  3。P11習(xí)題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“—”號(hào)。這一類(lèi)題教材里沒(méi)有例題,但它也是由分式的基本性質(zhì)得出分子、分母和分式本身的符號(hào),改變其中任何兩個(gè),分式的值不變。

  “不改變分式的值,使分式的分子和分母都不含‘—’號(hào)”是分式的基本性質(zhì)的應(yīng)用之一,所以補(bǔ)充例5。

  四、課堂引入

  1、請(qǐng)同學(xué)們考慮:與相等嗎?與相等嗎?為什么?

  2、說(shuō)出與之間變形的過(guò)程,與之間變形的過(guò)程,并說(shuō)出變形依據(jù)?

  3、提問(wèn)分?jǐn)?shù)的基本性質(zhì),讓學(xué)生類(lèi)比猜想出分式的基本性質(zhì)。

  五、例題講解

  P7例2。填空:

  [分析]應(yīng)用分式的基本性質(zhì)把已知的分子、分母同乘以或除以同一個(gè)整式,使分式的值不變。

  P11例3。約分:

  [分析]約分是應(yīng)用分式的基本性質(zhì)把分式的分子、分母同除以同一個(gè)整式,使分式的值不變。所以要找準(zhǔn)分子和分母的公因式,約分的結(jié)果要是最簡(jiǎn)分式。

  P11例4。通分:

  [分析]通分要想確定各分式的公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡(jiǎn)公分母。

【八年級(jí)數(shù)學(xué)教案】相關(guān)文章:

八年級(jí)的數(shù)學(xué)教案12-14

八年級(jí)《函數(shù)》數(shù)學(xué)教案04-03

(經(jīng)典)八年級(jí)數(shù)學(xué)教案06-25

八年級(jí)數(shù)學(xué)教案12-09

【薦】八年級(jí)數(shù)學(xué)教案12-03

八年級(jí)數(shù)學(xué)教案【熱門(mén)】12-03

八年級(jí)數(shù)學(xué)教案【推薦】12-04

八年級(jí)數(shù)學(xué)教案【精】12-04

八年級(jí)下冊(cè)數(shù)學(xué)教案01-01

八年級(jí)數(shù)學(xué)教案人教版01-03