丁香婷婷网,黄色av网站裸体无码www,亚洲午夜无码精品一级毛片,国产一区二区免费播放

高三數(shù)學(xué)教案

時(shí)間:2024-10-31 12:14:13 高三數(shù)學(xué)教案 我要投稿

高三數(shù)學(xué)教案

  作為一名教學(xué)工作者,時(shí)常會(huì)需要準(zhǔn)備好教案,教案是教學(xué)活動(dòng)的總的組織綱領(lǐng)和行動(dòng)方案。那要怎么寫(xiě)好教案呢?下面是小編精心整理的高三數(shù)學(xué)教案,歡迎閱讀與收藏。

高三數(shù)學(xué)教案

高三數(shù)學(xué)教案1

  1.如圖,已知直線L: 的右焦點(diǎn)F,且交橢圓C于A、B兩點(diǎn),點(diǎn)A、B在直線 上的射影依次為點(diǎn)D、E。

  (1)若拋物線 的焦點(diǎn)為橢圓C的上頂點(diǎn),求橢圓C的方程;

  (2)(理)連接AE、BD,試探索當(dāng)m變化時(shí),直線AE、BD是否相交于一定點(diǎn)N?若交于定點(diǎn)N,請(qǐng)求出N點(diǎn)的坐標(biāo),并給予證明;否則說(shuō)明理由。

  (文)若 為x軸上一點(diǎn),求證:

  2.如圖所示,已知圓 定點(diǎn)A(1,0),M為圓上一動(dòng)點(diǎn),點(diǎn)P在AM上,點(diǎn)N在CM上,且滿足 ,點(diǎn)N的軌跡為曲線E。

  (1)求曲線E的方程;

  (2)若過(guò)定點(diǎn)F(0,2)的直線交曲線E于不同的兩點(diǎn)G、H(點(diǎn)G在點(diǎn)F、H之間),且滿足 的取值范圍。

  3.設(shè)橢圓C: 的左焦點(diǎn)為F,上頂點(diǎn)為A,過(guò)點(diǎn)A作垂直于AF的直線交橢圓C于另外一點(diǎn)P,交x軸正半軸于點(diǎn)Q, 且

 、徘髾E圓C的離心率;

  ⑵若過(guò)A、Q、F三點(diǎn)的圓恰好與直線

  l: 相切,求橢圓C的方程.

  4.設(shè)橢圓 的離心率為e=

  (1)橢圓的左、右焦點(diǎn)分別為F1、F2、A是橢圓上的一點(diǎn),且點(diǎn)A到此兩焦點(diǎn)的距離之和為4,求橢圓的方程.

  (2)求b為何值時(shí),過(guò)圓x2+y2=t2上一點(diǎn)M(2, )處的切線交橢圓于Q1、Q2兩點(diǎn),而且OQ1OQ2.

  5.已知曲線 上任意一點(diǎn)P到兩個(gè)定點(diǎn)F1(- ,0)和F2( ,0)的距離之和為4.

  (1)求曲線 的方程;

  (2)設(shè)過(guò)(0,-2)的直線 與曲線 交于C、D兩點(diǎn),且 為坐標(biāo)原點(diǎn)),求直線 的方程.

  6.已知橢圓 的左焦點(diǎn)為F,左、右頂點(diǎn)分別為A、C,上頂點(diǎn)為B.過(guò)F、B、C作⊙P,其中圓心P的坐標(biāo)為(m,n).

  (Ⅰ)當(dāng)m+n0時(shí),求橢圓離心率的范圍;

  (Ⅱ)直線AB與⊙P能否相切?證明你的結(jié)論.

  7.有如下結(jié)論:圓 上一點(diǎn) 處的切線方程為 ,類(lèi)比也有結(jié)論:橢圓 處的切線方程為 ,過(guò)橢圓C: 的右準(zhǔn)線l上任意一點(diǎn)M引橢圓C的兩條切線,切點(diǎn)為 A、B.

  (1)求證:直線AB恒過(guò)一定點(diǎn);(2)當(dāng)點(diǎn)M在的縱坐標(biāo)為1時(shí),求△ABM的面積

  8.已知點(diǎn)P(4,4),圓C: 與橢圓E: 有一個(gè)公共點(diǎn)A(3,1),F(xiàn)1、F2分別是橢圓的左、右焦點(diǎn),直線PF1與圓C相切.

  (Ⅰ)求m的值與橢圓E的方程;

  (Ⅱ)設(shè)Q為橢圓E上的一個(gè)動(dòng)點(diǎn),求 的取值范圍.

  9.橢圓的對(duì)稱(chēng)中心在坐標(biāo)原點(diǎn),一個(gè)頂點(diǎn)為 ,右焦點(diǎn) 與點(diǎn) 的距離為 。

  (1)求橢圓的方程;

  (2)是否存在斜率 的直線 : ,使直線 與橢圓相交于不同的兩點(diǎn) 滿足 ,若存在,求直線 的傾斜角 ;若不存在,說(shuō)明理由。

  10.橢圓方程為 的一個(gè)頂點(diǎn)為 ,離心率 。

  (1)求橢圓的方程;

  (2)直線 : 與橢圓相交于不同的兩點(diǎn) 滿足 ,求 。

  11.已知橢圓 的左焦點(diǎn)為F,左右頂點(diǎn)分別為A,C上頂點(diǎn)為B,過(guò)F,B,C三點(diǎn)作 ,其中圓心P的坐標(biāo)為 .

  (1) 若橢圓的離心率 ,求 的方程;

  (2)若 的圓心在直線 上,求橢圓的方程.

  12.已知直線 與曲線 交于不同的兩點(diǎn) , 為坐標(biāo)原點(diǎn).

  (Ⅰ)若 ,求證:曲線 是一個(gè)圓;

  (Ⅱ)若 ,當(dāng) 且 時(shí),求曲線 的離心率 的取值范圍.

  13.設(shè)橢圓 的左、右焦點(diǎn)分別為 、 ,A是橢圓C上的一點(diǎn),且 ,坐標(biāo)原點(diǎn)O到直線 的距離為 .

  (1)求橢圓C的方程;

  (2)設(shè)Q是橢圓C上的一點(diǎn),過(guò)Q的直線l交x軸于點(diǎn) ,較y軸于點(diǎn)M,若 ,求直線l的方程.

  14.已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在y軸的負(fù)半軸上,過(guò)其上一點(diǎn) 的切線方程為 為常數(shù)).

  (I)求拋物線方程;

  (II)斜率為 的直線PA與拋物線的另一交點(diǎn)為A,斜率為 的直線PB與拋物線的另一交點(diǎn)為B(A、B兩點(diǎn)不同),且滿足 ,求證線段PM的中點(diǎn)在y軸上;

  (III)在(II)的條件下,當(dāng) 時(shí),若P的坐標(biāo)為(1,-1),求PAB為鈍角時(shí)點(diǎn)A的縱坐標(biāo)的取值范圍.

  15.已知?jiǎng)狱c(diǎn)A、B分別在x軸、y軸上,且滿足|AB|=2,點(diǎn)P在線段AB上,且

  設(shè)點(diǎn)P的軌跡方程為c。

  (1)求點(diǎn)P的軌跡方程C;

  (2)若t=2,點(diǎn)M、N是C上關(guān)于原點(diǎn)對(duì)稱(chēng)的兩個(gè)動(dòng)點(diǎn)(M、N不在坐標(biāo)軸上),點(diǎn)Q

  坐標(biāo)為 求△QMN的面積S的最大值。

  16.設(shè) 上的兩點(diǎn),

  已知 , ,若 且橢圓的離心率 短軸長(zhǎng)為2, 為坐標(biāo)原點(diǎn).

  (Ⅰ)求橢圓的方程;

  (Ⅱ)若直線AB過(guò)橢圓的焦點(diǎn)F(0,c),(c為半焦距),求直線AB的斜率k的值;

  (Ⅲ)試問(wèn):△AOB的面積是否為定值?如果是,請(qǐng)給予證明;如果不是,請(qǐng)說(shuō)明理由

  17.如圖,F(xiàn)是橢圓 (a0)的一個(gè)焦點(diǎn),A,B是橢圓的兩個(gè)頂點(diǎn),橢圓的離心率為 .點(diǎn)C在x軸上,BCBF,B,C,F(xiàn)三點(diǎn)確定的圓M恰好與直線l1: 相切.

  (Ⅰ)求橢圓的方程:

  (Ⅱ)過(guò)點(diǎn)A的直線l2與圓M交于PQ兩點(diǎn),且 ,求直線l2的方程.

  18.如圖,橢圓長(zhǎng)軸端點(diǎn)為 , 為橢圓中心, 為橢圓的右焦點(diǎn),且 .

  (1)求橢圓的標(biāo)準(zhǔn)方程;

  (2)記橢圓的`上頂點(diǎn)為 ,直線 交橢圓于 兩點(diǎn),問(wèn):是否存在直線 ,使點(diǎn) 恰為 的垂心?若存在,求出直線 的方程;若不存在,請(qǐng)說(shuō)明理由.

  19.如圖,已知橢圓的中心在原點(diǎn),焦點(diǎn)在 軸上,離心率為 ,且經(jīng)過(guò)點(diǎn) . 直線 交橢圓于 兩不同的點(diǎn).

  20.設(shè) ,點(diǎn) 在 軸上,點(diǎn) 在 軸上,且

  (1)當(dāng)點(diǎn) 在 軸上運(yùn)動(dòng)時(shí),求點(diǎn) 的軌跡 的方程;

  (2)設(shè) 是曲線 上的點(diǎn),且 成等差數(shù)列,當(dāng) 的垂直平分線與 軸交于點(diǎn) 時(shí),求 點(diǎn)坐標(biāo).

  21.已知點(diǎn) 是平面上一動(dòng)點(diǎn),且滿足

  (1)求點(diǎn) 的軌跡 對(duì)應(yīng)的方程;

  (2)已知點(diǎn) 在曲線 上,過(guò)點(diǎn) 作曲線 的兩條弦 和 ,且 ,判斷:直線 是否過(guò)定點(diǎn)?試證明你的結(jié)論.

  22.已知橢圓 的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,且經(jīng)過(guò) 、 、 三點(diǎn).

  (1)求橢圓 的方程:

  (2)若點(diǎn)D為橢圓 上不同于 、 的任意一點(diǎn), ,當(dāng) 內(nèi)切圓的面積最大時(shí)。求內(nèi)切圓圓心的坐標(biāo);

  (3)若直線 與橢圓 交于 、 兩點(diǎn),證明直線 與直線 的交點(diǎn)在直線 上.

  23.過(guò)直角坐標(biāo)平面 中的拋物線 的焦點(diǎn) 作一條傾斜角為 的直線與拋物線相交于A,B兩點(diǎn)。

  (1)用 表示A,B之間的距離;

  (2)證明: 的大小是與 無(wú)關(guān)的定值,

  并求出這個(gè)值。

  24.設(shè) 分別是橢圓C: 的左右焦點(diǎn)

  (1)設(shè)橢圓C上的點(diǎn) 到 兩點(diǎn)距離之和等于4,寫(xiě)出橢圓C的方程和焦點(diǎn)坐標(biāo)

  (2)設(shè)K是(1)中所得橢圓上的動(dòng)點(diǎn),求線段 的中點(diǎn)B的軌跡方程

  (3)設(shè)點(diǎn)P是橢圓C 上的任意一點(diǎn),過(guò)原點(diǎn)的直線L與橢圓相交于M,N兩點(diǎn),當(dāng)直線PM ,PN的斜率都存在,并記為 試探究 的值是否與點(diǎn)P及直線L有關(guān),并證明你的結(jié)論。

  25.已知橢圓 的離心率為 ,直線 : 與以原點(diǎn)為圓心、以橢圓 的短半軸長(zhǎng)為半徑的圓相切.

  (I)求橢圓 的方程;

  (II)設(shè)橢圓 的左焦點(diǎn)為 ,右焦點(diǎn) ,直線 過(guò)點(diǎn) 且垂直于橢圓的長(zhǎng)軸,動(dòng)直線 垂直 于點(diǎn) ,線段 垂直平分線交 于點(diǎn) ,求點(diǎn) 的軌跡 的方程;

  (III)設(shè) 與 軸交于點(diǎn) ,不同的兩點(diǎn) 在 上,且滿足 求 的取值范圍.

  26.如圖所示,已知橢圓 : , 、 為

  其左、右焦點(diǎn), 為右頂點(diǎn), 為左準(zhǔn)線,過(guò) 的直線 : 與橢圓相交于 、

  兩點(diǎn),且有: ( 為橢圓的半焦距)

  (1)求橢圓 的離心率 的最小值;

  (2)若 ,求實(shí)數(shù) 的取值范圍;

  (3)若 , ,

  求證: 、 兩點(diǎn)的縱坐標(biāo)之積為定值;

  27.已知橢圓 的左焦點(diǎn)為 ,左右頂點(diǎn)分別為 ,上頂點(diǎn)為 ,過(guò) 三點(diǎn)作圓 ,其中圓心 的坐標(biāo)為

  (1)當(dāng) 時(shí),橢圓的離心率的取值范圍

  (2)直線 能否和圓 相切?證明你的結(jié)論

  28.已知點(diǎn)A(-1,0),B(1,-1)和拋物線. ,O為坐標(biāo)原點(diǎn),過(guò)點(diǎn)A的動(dòng)直線l交拋物線C于M、P,直線MB交拋物線C于另一點(diǎn)Q,如圖.

  (I)證明: 為定值;

  (II)若△POM的面積為 ,求向量 與 的夾角;

  (Ⅲ) 證明直線PQ恒過(guò)一個(gè)定點(diǎn).

  29.已知橢圓C: 上動(dòng)點(diǎn) 到定點(diǎn) ,其中 的距離 的最小值為1.

  (1)請(qǐng)確定M點(diǎn)的坐標(biāo)

  (2)試問(wèn)是否存在經(jīng)過(guò)M點(diǎn)的直線 ,使 與橢圓C的兩個(gè)交點(diǎn)A、B滿足條件 (O為原點(diǎn)),若存在,求出 的方程,若不存在請(qǐng)說(shuō)是理由。

  30.已知橢圓 ,直線 與橢圓相交于 兩點(diǎn).

  (Ⅰ)若線段 中點(diǎn)的橫坐標(biāo)是 ,求直線 的方程;

  (Ⅱ)在 軸上是否存在點(diǎn) ,使 的值與 無(wú)關(guān)?若存在,求出 的值;若不存在,請(qǐng)說(shuō)明理由.

  31.直線AB過(guò)拋物線 的焦點(diǎn)F,并與其相交于A、B兩點(diǎn)。Q是線段AB的中點(diǎn),M是拋物線的準(zhǔn)線與y軸的交點(diǎn).O是坐標(biāo)原點(diǎn).

  (I)求 的取值范圍;

  (Ⅱ)過(guò) A、B兩點(diǎn)分剮作此撒物線的切線,兩切線相交于N點(diǎn).求證: ∥ ;

  (Ⅲ) 若P是不為1的正整數(shù),當(dāng) ,△ABN的面積的取值范圍為 時(shí),求該拋物線的方程.

  32.如圖,設(shè)拋物線 ( )的準(zhǔn)線與 軸交于 ,焦點(diǎn)為 ;以 、 為焦點(diǎn),離心率 的橢圓 與拋物線 在 軸上方的一個(gè)交點(diǎn)為 .

  (Ⅰ)當(dāng) 時(shí),求橢圓的方程及其右準(zhǔn)線的方程;

  (Ⅱ)在(Ⅰ)的條件下,直線 經(jīng)過(guò)橢圓 的右焦點(diǎn) ,與拋物線 交于 、 ,如果以線段 為直徑作圓,試判斷點(diǎn) 與圓的位置關(guān)系,并說(shuō)明理由;

  (Ⅲ)是否存在實(shí)數(shù) ,使得 的邊長(zhǎng)是連續(xù)的自然數(shù),若存在,求出這樣的實(shí)數(shù) ;若不存在,請(qǐng)說(shuō)明理由.

  33.已知點(diǎn) 和動(dòng)點(diǎn) 滿足: ,且存在正常數(shù) ,使得 。

  (1)求動(dòng)點(diǎn)P的軌跡C的方程。

  (2)設(shè)直線 與曲線C相交于兩點(diǎn)E,F(xiàn),且與y軸的交點(diǎn)為D。若 求 的值。

  34.已知橢圓 的右準(zhǔn)線 與 軸相交于點(diǎn) ,右焦點(diǎn) 到上頂點(diǎn)的距離為 ,點(diǎn) 是線段 上的一個(gè)動(dòng)點(diǎn).

  (I)求橢圓的方程;

  (Ⅱ)是否存在過(guò)點(diǎn) 且與 軸不垂直的直線 與橢圓交于 、 兩點(diǎn),使得 ,并說(shuō)明理由.

  35.已知橢圓C: ( .

  (1)若橢圓的長(zhǎng)軸長(zhǎng)為4,離心率為 ,求橢圓的標(biāo)準(zhǔn)方程;

  (2)在(1)的條件下,設(shè)過(guò)定點(diǎn) 的直線 與橢圓C交于不同的兩點(diǎn) ,且 為銳角(其中 為坐標(biāo)原點(diǎn)),求直線 的斜率k的取值范圍;

  (3)如圖,過(guò)原點(diǎn) 任意作兩條互相垂直的直線與橢圓 ( )相交于 四點(diǎn),設(shè)原點(diǎn) 到四邊形 一邊的距離為 ,試求 時(shí) 滿足的條件.

  36.已知 若過(guò)定點(diǎn) 、以 ( )為法向量的直線 與過(guò)點(diǎn) 以 為法向量的直線 相交于動(dòng)點(diǎn) .

  (1)求直線 和 的方程;

  (2)求直線 和 的斜率之積 的值,并證明必存在兩個(gè)定點(diǎn) 使得 恒為定值;

  (3)在(2)的條件下,若 是 上的兩個(gè)動(dòng)點(diǎn),且 ,試問(wèn)當(dāng) 取最小值時(shí),向量 與 是否平行,并說(shuō)明理由。

  37.已知點(diǎn) ,點(diǎn) (其中 ),直線 、 都是圓 的切線.

  (Ⅰ)若 面積等于6,求過(guò)點(diǎn) 的拋物線 的方程;

  (Ⅱ)若點(diǎn) 在 軸右邊,求 面積的最小值.

  38.我們知道,判斷直線與圓的位置關(guān)系可以用圓心到直線的距離進(jìn)行判別,那么直線與橢圓的位置關(guān)系有類(lèi)似的判別方法嗎?請(qǐng)同學(xué)們進(jìn)行研究并完成下面問(wèn)題。

  (1)設(shè)F1、F2是橢圓 的兩個(gè)焦點(diǎn),點(diǎn)F1、F2到直線 的距離分別為d1、d2,試求d1d2的值,并判斷直線L與橢圓M的位置關(guān)系。

  (2)設(shè)F1、F2是橢圓 的兩個(gè)焦點(diǎn),點(diǎn)F1、F2到直線

  (m、n不同時(shí)為0)的距離分別為d1、d2,且直線L與橢圓M相切,試求d1d2的值。

  (3)試寫(xiě)出一個(gè)能判斷直線與橢圓的位置關(guān)系的充要條件,并證明。

  (4)將(3)中得出的結(jié)論類(lèi)比到其它曲線,請(qǐng)同學(xué)們給出自己研究的有關(guān)結(jié)論(不必證明)。

  39.已知點(diǎn) 為拋物線 的焦點(diǎn),點(diǎn) 是準(zhǔn)線 上的動(dòng)點(diǎn),直線 交拋物線 于 兩點(diǎn),若點(diǎn) 的縱坐標(biāo)為 ,點(diǎn) 為準(zhǔn)線 與 軸的交點(diǎn).

  (Ⅰ)求直線 的方程;(Ⅱ)求 的面積 范圍;

  (Ⅲ)設(shè) , ,求證 為定值.

  40.已知橢圓 的離心率為 ,直線 : 與以原點(diǎn)為圓心、以橢圓 的短半軸長(zhǎng)為半徑的圓相切.

  (I)求橢圓 的方程;

  (II)設(shè)橢圓 的左焦點(diǎn)為 ,右焦點(diǎn) ,直線 過(guò)點(diǎn) 且垂直于橢圓的長(zhǎng)軸,動(dòng)直線 垂直 于點(diǎn) ,線段 垂直平分線交 于點(diǎn) ,求點(diǎn) 的軌跡 的方程;

  (III)設(shè) 與 軸交于點(diǎn) ,不同的兩點(diǎn) 在 上,且滿足 求 的取值范圍.

  41.已知以向量 為方向向量的直線 過(guò)點(diǎn) ,拋物線 : 的頂點(diǎn)關(guān)于直線 的對(duì)稱(chēng)點(diǎn)在該拋物線的準(zhǔn)線上.

  (1)求拋物線 的方程;

  (2)設(shè) 、 是拋物線 上的兩個(gè)動(dòng)點(diǎn),過(guò) 作平行于 軸的直線 ,直線 與直線 交于點(diǎn) ,若 ( 為坐標(biāo)原點(diǎn), 、 異于點(diǎn) ),試求點(diǎn) 的軌跡方程。

  42.如圖,設(shè)拋物線 ( )的準(zhǔn)線與 軸交于 ,焦點(diǎn)為 ;以 、 為焦點(diǎn),離心率 的橢圓 與拋物線 在 軸上方的一個(gè)交點(diǎn)為 .

  (Ⅰ)當(dāng) 時(shí),求橢圓的方程及其右準(zhǔn)線的方程;

  (Ⅱ)在(Ⅰ)的條件下,直線 經(jīng)過(guò)橢圓 的右焦點(diǎn) ,

  與拋物線 交于 、 ,如果以線段 為直徑作圓,

  試判斷點(diǎn) 與圓的位置關(guān)系,并說(shuō)明理由;

  (Ⅲ)是否存在實(shí)數(shù) ,使得 的邊長(zhǎng)是連續(xù)的自然數(shù),若存在,求出這樣的實(shí)數(shù) ;若不存在,請(qǐng)說(shuō)明理由.

  43.設(shè)橢圓 的一個(gè)頂點(diǎn)與拋物線 的焦點(diǎn)重合, 分別是橢圓的左、右焦點(diǎn),且離心率 且過(guò)橢圓右焦點(diǎn) 的直線 與橢圓C交于 兩點(diǎn).

  (Ⅰ)求橢圓C的方程;

  (Ⅱ)是否存在直線 ,使得 .若存在,求出直線 的方程;若不存在,說(shuō)明理由.

  (Ⅲ)若AB是橢圓C經(jīng)過(guò)原點(diǎn)O的弦, MN AB,求證: 為定值.

  44.設(shè) 是拋物線 的焦點(diǎn),過(guò)點(diǎn)M(-1,0)且以 為方向向量的直線順次交拋物線于 兩點(diǎn)。

  (Ⅰ)當(dāng) 時(shí),若 與 的夾角為 ,求拋物線的方程;

  (Ⅱ)若點(diǎn) 滿足 ,證明 為定值,并求此時(shí)△ 的面積

  45.已知點(diǎn) ,點(diǎn) 在 軸上,點(diǎn) 在 軸的正半軸上,點(diǎn) 在直線 上,且滿足 .

  (Ⅰ)當(dāng)點(diǎn) 在 軸上移動(dòng)時(shí),求點(diǎn) 的軌跡 的方程;

  (Ⅱ)設(shè) 、 為軌跡 上兩點(diǎn),且 0, ,求實(shí)數(shù) ,

  使 ,且 .

  46.已知橢圓 的右焦點(diǎn)為F,上頂點(diǎn)為A,P為C 上任一點(diǎn),MN是圓 的一條直徑,若與AF平行且在y軸上的截距為 的直線 恰好與圓 相切。

  (1)已知橢圓 的離心率;

  (2)若 的最大值為49,求橢圓C 的方程.

高三數(shù)學(xué)教案2

  一、教學(xué)內(nèi)容分析

  本小節(jié)是普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)數(shù)學(xué)5(必修)第三章第3小節(jié),主要內(nèi)容是利用平面區(qū)域體現(xiàn)二元一次不等式(組)的解集;借助圖解法解決在線性約束條件下的二元線性目標(biāo)函數(shù)的最值與解問(wèn)題;運(yùn)用線性規(guī)劃知識(shí)解決一些簡(jiǎn)單的實(shí)際問(wèn)題(如資源利用,人力調(diào)配,生產(chǎn)安排等)。突出體現(xiàn)了優(yōu)化思想,與數(shù)形結(jié)合的思想。本小節(jié)是利用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題的典例,它體現(xiàn)了數(shù)學(xué)源于生活而用于生活的特性。

  二、學(xué)生學(xué)習(xí)情況分析

  本小節(jié)內(nèi)容建立在學(xué)生學(xué)習(xí)了一元不等式(組)及其應(yīng)用、直線與方程的基礎(chǔ)之上,學(xué)生對(duì)于將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,數(shù)形結(jié)合思想有所了解。但從數(shù)學(xué)知識(shí)上看學(xué)生對(duì)于涉及多個(gè)已知數(shù)據(jù)、多個(gè)字母變量,多個(gè)不等關(guān)系的知識(shí)接觸尚少,從數(shù)學(xué)方法上看,學(xué)生對(duì)于圖解法還缺少認(rèn)識(shí),對(duì)數(shù)形結(jié)合的思想方法的掌握還需時(shí)日,而這些都將成為學(xué)生學(xué)習(xí)中的難點(diǎn)。

  三、設(shè)計(jì)思想

  以問(wèn)題為載體,以學(xué)生為主體,以探究歸納為主要手段,以問(wèn)題解決為目的,以多媒體為重要工具,激發(fā)學(xué)生的動(dòng)手、觀察、思考、猜想探究的興趣。注重引導(dǎo)學(xué)生充分體驗(yàn)“從實(shí)際問(wèn)題到數(shù)學(xué)問(wèn)題”的數(shù)學(xué)建模過(guò)程,體會(huì)“從具體到一般”的抽象思維過(guò)程,從“特殊到一般”的探究新知的過(guò)程;提高學(xué)生應(yīng)用“數(shù)形結(jié)合”的思想方法解題的能力;培養(yǎng)學(xué)生的分析問(wèn)題、解決問(wèn)題的能力。

  四、教學(xué)目標(biāo)

  1、知識(shí)與技能:了解二元一次不等式(組)的概念,掌握用平面區(qū)域刻畫(huà)二元一次不等式(組)的方法;了解線性規(guī)劃的意義,了解線性約束條件、線性目標(biāo)函數(shù)、可行解、可行域和解等概念;理解線性規(guī)劃問(wèn)題的圖解法;會(huì)利用圖解法求線性目標(biāo)函數(shù)的最值與相應(yīng)解;

  2、過(guò)程與方法:從實(shí)際問(wèn)題中抽象出簡(jiǎn)單的線性規(guī)劃問(wèn)題,提高學(xué)生的數(shù)學(xué)建模能力;在探究的過(guò)程中讓學(xué)生體驗(yàn)到數(shù)學(xué)活動(dòng)中充滿著探索與創(chuàng)造,培養(yǎng)學(xué)生的數(shù)據(jù)分析能力、化歸能力、探索能力、合情推理能力;

  3、情態(tài)與價(jià)值:在應(yīng)用圖解法解題的過(guò)程中,培養(yǎng)學(xué)生的化歸能力與運(yùn)用數(shù)形結(jié)合思想的能力;體會(huì)線性規(guī)劃的基本思想,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識(shí);體驗(yàn)數(shù)學(xué)來(lái)源于生活而服務(wù)于生活的特性。

  五、教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):從實(shí)際問(wèn)題中抽象出二元一次不等式(組),用平面區(qū)域刻畫(huà)二元一次不等式組的解集及用圖解法解簡(jiǎn)單的二元線性規(guī)劃問(wèn)題;

  難點(diǎn):二元一次不等式所表示的'平面區(qū)域的探究,從實(shí)際情境中抽象出數(shù)學(xué)問(wèn)題的過(guò)程探究,簡(jiǎn)單的二元線性規(guī)劃問(wèn)題的圖解法的探究。

  六、教學(xué)基本流程

  第一課時(shí),利用生動(dòng)的情景激起學(xué)生求知的__,從中抽象出數(shù)學(xué)問(wèn)題,引出二元一次不等式(組)的基本概念,并為線性規(guī)劃問(wèn)題的引出埋下伏筆。通過(guò)學(xué)生的自主探究,分類(lèi)討論,大膽猜想,細(xì)心求證,得出二元一次不等式所表示的平面區(qū)域,從而突破本小節(jié)的第一個(gè)難點(diǎn);通過(guò)例1、例2的討論與求解引導(dǎo)學(xué)生歸納出畫(huà)二元一次不等式(組)所表示的平面區(qū)域的具體解答步驟(直線定界,特殊點(diǎn)定域);最后通過(guò)練習(xí)加以鞏固。

  第二課時(shí),重現(xiàn)引例,在學(xué)生的回顧、探討中解決引例中的可用方案問(wèn)題,并由此歸納總結(jié)出從實(shí)際問(wèn)題中抽象出數(shù)學(xué)問(wèn)題的基本過(guò)程:理清數(shù)據(jù)關(guān)系(列表)→設(shè)立決策變量→建立數(shù)學(xué)關(guān)系式→畫(huà)出平面區(qū)域。讓學(xué)生對(duì)例3、例4進(jìn)行分析與討論進(jìn)一步完善這一過(guò)程,突破本小節(jié)的第二個(gè)難點(diǎn)。

  第三課時(shí),設(shè)計(jì)情景,借助前兩個(gè)課時(shí)所學(xué),設(shè)立決策變量,畫(huà)出平面區(qū)域并引出新的問(wèn)題,從中引出線性規(guī)劃的相關(guān)概念,并讓學(xué)生思考探究,利用特殊值進(jìn)行猜測(cè),找到方案;再引導(dǎo)學(xué)生對(duì)目標(biāo)函數(shù)進(jìn)行變形轉(zhuǎn)化,利用直線的圖象對(duì)上述問(wèn)題進(jìn)行幾何探究,把最值問(wèn)題轉(zhuǎn)化為截距問(wèn)題,通過(guò)幾何方法對(duì)引例做出完美的解答;回顧整個(gè)探究過(guò)程,讓學(xué)生在討論中達(dá)成共識(shí),總結(jié)出簡(jiǎn)單線性規(guī)劃問(wèn)題的圖解法的基本步驟。通過(guò)例5的展示讓學(xué)生從動(dòng)態(tài)的角度感受圖解法。最后再現(xiàn)情景1,并對(duì)之作出完美的解答。

  第四課時(shí),給出新的引例,讓學(xué)生體會(huì)到線性規(guī)劃問(wèn)題的普遍性。讓學(xué)生討論分析,對(duì)引例給出解答,并綜合前三個(gè)課時(shí)的教學(xué)內(nèi)容,連綴成線,總結(jié)出簡(jiǎn)單線性規(guī)劃的應(yīng)用性問(wèn)題的一般解答步驟,通過(guò)例6,例7的分析與展示進(jìn)一步完善這一過(guò)程?偨Y(jié)線性規(guī)劃的應(yīng)用性問(wèn)題的幾種類(lèi)型,讓學(xué)生更深入的體會(huì)到優(yōu)化理論,更好的認(rèn)識(shí)到數(shù)學(xué)來(lái)源于生活而運(yùn)用于生活的特點(diǎn)。

高三數(shù)學(xué)教案3

 本文題目:高三數(shù)學(xué)教案:三角函數(shù)的周期性

  一、學(xué)習(xí)目標(biāo)與自我評(píng)估

  1 掌握利用單位圓的幾何方法作函數(shù) 的圖象

  2 結(jié)合 的圖象及函數(shù)周期性的定義了解三角函數(shù)的周期性,及最小正周期

  3 會(huì)用代數(shù)方法求 等函數(shù)的周期

  4 理解周期性的幾何意義

  二、學(xué)習(xí)重點(diǎn)與難點(diǎn)

  周期函數(shù)的概念, 周期的求解。

  三、學(xué)法指導(dǎo)

  1、 是周期函數(shù)是指對(duì)定義域中所有 都有

  ,即 應(yīng)是恒等式。

  2、周期函數(shù)一定會(huì)有周期,但不一定存在最小正周期。

  四、學(xué)習(xí)活動(dòng)與意義建構(gòu)

  五、重點(diǎn)與難點(diǎn)探究

  例1、若鐘擺的高度 與時(shí)間 之間的函數(shù)關(guān)系如圖所示

  (1)求該函數(shù)的周期;

  (2)求 時(shí)鐘擺的高度。

  例2、求下列函數(shù)的周期。

  (1) (2)

  總結(jié):(1)函數(shù) (其中 均為常數(shù),且

  的周期T= 。

  (2)函數(shù) (其中 均為常數(shù),且

  的周期T= 。

  例3、求證: 的周期為 。

  例4、(1)研究 和 函數(shù)的圖象,分析其周期性。

  (2)求證: 的周期為 (其中 均為常數(shù),

  且

  總結(jié):函數(shù) (其中 均為常數(shù),且

  的周期T= 。

  例5、(1)求 的周期。

  (2)已知 滿足 ,求證: 是周期函數(shù)

  課后思考:能否利用單位圓作函數(shù) 的圖象。

  六、作業(yè):

  七、自主體驗(yàn)與運(yùn)用

  1、函數(shù) 的周期為 ( )

  A、 B、 C、 D、

  2、函數(shù) 的最小正周期是 ( )

  A、 B、 C、 D、

  3、函數(shù) 的最小正周期是 ( )

  A、 B、 C、 D、

  4、函數(shù) 的周期是 ( )

  A、 B、 C、 D、

  5、設(shè) 是定義域?yàn)镽,最小正周期為 的`函數(shù),

  若 ,則 的值等于 ()

  A、1 B、 C、0 D、

  6、函數(shù) 的最小正周期是 ,則

  7、已知函數(shù) 的最小正周期不大于2,則正整數(shù)

  的最小值是

  8、求函數(shù) 的最小正周期為T(mén),且 ,則正整數(shù)

  的最大值是

  9、已知函數(shù) 是周期為6的奇函數(shù),且 則

  10、若函數(shù) ,則

  11、用周期的定義分析 的周期。

  12、已知函數(shù) ,如果使 的周期在 內(nèi),求

  正整數(shù) 的值

  13、一機(jī)械振動(dòng)中,某質(zhì)子離開(kāi)平衡位置的位移 與時(shí)間 之間的

  函數(shù)關(guān)系如圖所示:

  (1) 求該函數(shù)的周期;

  (2) 求 時(shí),該質(zhì)點(diǎn)離開(kāi)平衡位置的位移。

  14、已知 是定義在R上的函數(shù),且對(duì)任意 有

  成立,

  (1) 證明: 是周期函數(shù);

  (2) 若 求 的值。

高三數(shù)學(xué)教案4

  內(nèi)容提要:本文把常見(jiàn)的排列問(wèn)題歸納成三種典型問(wèn)題,并在排列的一般規(guī)定性下,對(duì)每一種類(lèi)型的問(wèn)題通過(guò)典型例題歸納出相應(yīng)的解決方案,并附以近年的高考原題及解析,使我們對(duì)排列問(wèn)題的認(rèn)識(shí)更深入本質(zhì),對(duì)排列問(wèn)題的解決更有章法可尋。

  關(guān)鍵詞: 特殊優(yōu)先,大元素,捆綁法,插空法,等機(jī)率法

  排列問(wèn)題的應(yīng)用題是學(xué)生學(xué)習(xí)的難點(diǎn),也是高考的必考內(nèi)容,筆者在教學(xué)中嘗試將排列

  問(wèn)題歸納為三種類(lèi)型來(lái)解決:

  下面就每一種題型結(jié)合例題總結(jié)其特點(diǎn)和解法,并附以近年的高考原題供讀者參研。

  一、能排不能排排列問(wèn)題(即特殊元素在特殊位置上有特別要求的排列問(wèn)題)

  解決此類(lèi)問(wèn)題的關(guān)鍵是特殊元素或特殊位置優(yōu)先;蚴褂瞄g接法。

  例1:(1)7位同學(xué)站成一排,其中甲站在中間的位置,共有多少種不同的排法?

  (2)7位同學(xué)站成一排,甲、乙只能站在兩端的排法共有多少種?

  (3)7位同學(xué)站成一排,甲、乙不能站在排頭和排尾的排法共有多少種?

 。4)7位同學(xué)站成一排,其中甲不能在排頭、乙不能站排尾的排法共有多少種?

  解析:

  (1)先考慮甲站在中間有1種方法,再在余下的6個(gè)位置排另外6位同學(xué),共 種方法;

  (2)先考慮甲、乙站在兩端的排法有 種,再在余下的5個(gè)位置排另外5位同學(xué)的排法有 種,共 種方法;

 。3) 先考慮在除兩端外的5個(gè)位置選2個(gè)安排甲、乙有 種,再在余下的5個(gè)位置排另外5位同學(xué)排法有 種,共 種方法;本題也可考慮特殊位置優(yōu)先,即兩端的排法有 ,中間5個(gè)位置有 種,共 種方法;

  (4)分兩類(lèi)乙站在排頭和乙不站在排頭,乙站在排頭的排法共有 種,乙不站在排頭的排法總數(shù)為:先在除甲、乙外的5人中選1人安排在排頭的方法有 種,中間5個(gè)位置選1個(gè)安排乙的方法有 ,再在余下的5個(gè)位置排另外5位同學(xué)的排法有 ,故共有 種方法;本題也可考慮間接法,總排法為 ,不符合條件的甲在排頭和乙站排尾的排法均為 ,但這兩種情況均包含了甲在排頭和乙站排尾的情況,故共有 種。

  例2。某天課表共六節(jié)課,要排政治、語(yǔ)文、數(shù)學(xué)、物理、化學(xué)、體育共六門(mén)課程,如果第一節(jié)不排體育,最后一節(jié)不排數(shù)學(xué),共有多少種不同的排課方法?

  解法1:對(duì)特殊元素?cái)?shù)學(xué)和體育進(jìn)行分類(lèi)解決

  (1)數(shù)學(xué)、體育均不排在第一節(jié)和第六節(jié),有 種,其他有 種,共有 種;

 。2)數(shù)學(xué)排在第一節(jié)、體育排在第六節(jié)有一種,其他有 種,共有 種;

  (3)數(shù)學(xué)排在第一節(jié)、體育不在第六節(jié)有 種,其他有 種,共有 種;

 。4)數(shù)學(xué)不排在第一節(jié)、體育排在第六節(jié)有 種,其他有 種,共有 種;

  所以符合條件的排法共有 種

  解法2:對(duì)特殊位置第一節(jié)和第六節(jié)進(jìn)行分類(lèi)解決

  (1)第一節(jié)和第六節(jié)均不排數(shù)學(xué)、體育有 種,其他有 種,共有 種;

 。2)第一節(jié)排數(shù)學(xué)、第六節(jié)排體育有一種,其他有 種,共有 種;

  (3)第一節(jié)排數(shù)學(xué)、第六節(jié)不排體育有 種,其他有 種,共有 種;

  (4)第一節(jié)不排數(shù)學(xué)、第六節(jié)排體育有 種,其他有 種,共有 種;

  所以符合條件的排法共有 種。

  解法3:本題也可采用間接排除法解決

  不考慮任何限制條件共有 種排法,不符合題目要求的排法有:(1)數(shù)學(xué)排在第六節(jié)有 種;(2)體育排在第一節(jié)有 種;考慮到這兩種情況均包含了數(shù)學(xué)排在第六節(jié)和體育排在第一節(jié)的'情況 種所以符合條件的排法共有 種

  附:

  1、(2005北京卷)五個(gè)工程隊(duì)承建某項(xiàng)工程的五個(gè)不同的子項(xiàng)目,每個(gè)工程隊(duì)承建1項(xiàng),其中甲工程隊(duì)不能承建1號(hào)子項(xiàng)目,則不同的承建方案共有( )

  (A) 種 (B) 種 (C) 種 (D) 種

  解析:本題在解答時(shí)將五個(gè)不同的子項(xiàng)目理解為5個(gè)位置,五個(gè)工程隊(duì)相當(dāng)于5個(gè)不同的元素,這時(shí)問(wèn)題可歸結(jié)為能排不能排排列問(wèn)題(即特殊元素在特殊位置上有特別要求的排列問(wèn)題),先排甲工程隊(duì)有 ,其它4個(gè)元素在4個(gè)位置上的排法為 種,總方案為 種。故選(B)。

  2、(2005全國(guó)卷Ⅱ)在由數(shù)字0,1,2,3,4,5所組成的沒(méi)有重復(fù)數(shù)字的四位數(shù)中,不能被5整除的數(shù)共有 個(gè)。

  解析:本題在解答時(shí)只須考慮個(gè)位和千位這兩個(gè)特殊位置的限制,個(gè)位為1、2、3、4中的某一個(gè)有4種方法,千位在余下的4個(gè)非0數(shù)中選擇也有4種方法,十位和百位方法數(shù)為 種,故方法總數(shù)為 種。

  3、(2005福建卷)從6人中選出4人分別到巴黎、倫敦、悉尼、莫斯科四個(gè)城市游覽,要求每個(gè)城市有一人游覽,每人只游覽一個(gè)城市,且這6人中甲、乙兩人不去巴黎游覽,則不同的選擇方案共有 ( )

  A、300種 B、240種 C、144種 D、96種

  解析:本題在解答時(shí)只須考慮巴黎這個(gè)特殊位置的要求有4種方法,其他3個(gè)城市的排法看作標(biāo)有這3個(gè)城市的3個(gè)簽在5個(gè)位置(5個(gè)人)中的排列有 種,故方法總數(shù)為 種。故選(B)。

  上述問(wèn)題歸結(jié)為能排不能排排列問(wèn)題,從特殊元素和特殊位置入手解決,抓住了問(wèn)題的本質(zhì),使問(wèn)題清晰明了,解決起來(lái)順暢自然。

  二、相鄰不相鄰排列問(wèn)題(即某兩或某些元素不能相鄰的排列問(wèn)題)

  相鄰排列問(wèn)題一般采用大元素法,即將相鄰的元素捆綁作為一個(gè)元素,再與其他元素進(jìn)行排列,解答時(shí)注意釋放大元素,也叫捆綁法。不相鄰排列問(wèn)題(即某兩或某些元素不能相鄰的排列問(wèn)題)一般采用插空法。

  例3:7位同學(xué)站成一排,

  (1)甲、乙和丙三同學(xué)必須相鄰的排法共有多少種?

 。2)甲、乙和丙三名同學(xué)都不能相鄰的排法共有多少種?

 。3)甲、乙兩同學(xué)間恰好間隔2人的排法共有多少種?

  解析:

 。1)第一步、將甲、乙和丙三人捆綁成一個(gè)大元素與另外4人的排列為 種,

  第二步、釋放大元素,即甲、乙和丙在捆綁成的大元素內(nèi)的排法有 種,所以共 種;

  (2)第一步、先排除甲、乙和丙之外4人共 種方法,第二步、甲、乙和丙三人排在4人排好后產(chǎn)生的5個(gè)空擋中的任何3個(gè)都符合要求,排法有 種,所以共有 種;(3)先排甲、乙,有 種排法,甲、乙兩人中間插入的2人是從其余5人中選,有 種排法,將已經(jīng)排好的4人當(dāng)作一個(gè)大元素作為新人參加下一輪4人組的排列,有 種排法,所以總的排法共有 種。

  附:1、(2005遼寧卷)用1、2、3、4、5、6、7、8組成沒(méi)有重復(fù)數(shù)字的八位數(shù),要求1和2相鄰,3與4相鄰,5與6相鄰,而7與8不相鄰,這樣的八位數(shù)共有 個(gè)。(用數(shù)字作答)

  解析:第一步、將1和2捆綁成一個(gè)大元素,3和4捆綁成一個(gè)大元素,5和6捆綁成一個(gè)大元素,第二步、排列這三個(gè)大元素,第三步、在這三個(gè)大元素排好后產(chǎn)生的4個(gè)空擋中的任何2個(gè)排列7和8,第四步、釋放每個(gè)大元素(即大元素內(nèi)的每個(gè)小元素在捆綁成的大元素內(nèi)部排列),所以共有 個(gè)數(shù)。

  2、 (2004。 重慶理)某校高三年級(jí)舉行一次演講賽共有10位同學(xué)參賽,其中一班有3位,

  二班有2位,其它班有5位,若采用抽簽的方式確定他們的演講順序,則一班有3位同學(xué)恰

  好被排在一起(指演講序號(hào)相連),而二班的2位同學(xué)沒(méi)有被排在一起的概率為 ( )

  A、B、C、D。

  解析:符合要求的基本事件(排法)共有:第一步、將一班的3位同學(xué)捆綁成一個(gè)大元素,第二步、這個(gè)大元素與其它班的5位同學(xué)共6個(gè)元素的全排列,第三步、在這個(gè)大元素與其它班的5位同學(xué)共6個(gè)元素的全排列排好后產(chǎn)生的7個(gè)空擋中排列二班的2位同學(xué),第四步、釋放一班的3位同學(xué)捆綁成的大元素,所以共有 個(gè);而基本事件總數(shù)為 個(gè),所以符合條件的概率為 。故選( B )。

  3、(2003京春理)某班新年聯(lián)歡會(huì)原定的5個(gè)節(jié)目已排成節(jié)目單,開(kāi)演前又增加了兩個(gè)新節(jié)目。如果將這兩個(gè)節(jié)目插入原節(jié)目單中,那么不同插法的種數(shù)為( )

  A、42 B、30 C、20 D、12

  解析:分兩類(lèi):增加的兩個(gè)新節(jié)目不相鄰和相鄰,兩個(gè)新節(jié)目不相鄰采用插空法,在5個(gè)節(jié)目產(chǎn)生的6個(gè)空擋排列共有 種,將兩個(gè)新節(jié)目捆綁作為一個(gè)元素叉入5個(gè)節(jié)目產(chǎn)生的6個(gè)空擋中的一個(gè)位置,再釋放兩個(gè)新節(jié)目 捆綁成的大元素,共有 種,再將兩類(lèi)方法數(shù)相加得42種方法。故選( A )。

  三、機(jī)會(huì)均等排列問(wèn)題(即某兩或某些元素按特定的方式或順序排列的排列問(wèn)題)

  解決機(jī)會(huì)均等排列問(wèn)題通常是先對(duì)所有元素進(jìn)行全排列,再借助等可能轉(zhuǎn)化,即乘以符合要求的某兩(或某些)元素按特定的方式或順序排列的排法占它們(某兩(或某些)元素)全排列的比例,稱(chēng)為等機(jī)率法或?qū)⑻囟樞虻呐帕袉?wèn)題理解為組合問(wèn)題加以解決。

  例4、 7位同學(xué)站成一排。

 。1)甲必須站在乙的左邊?

  (2)甲、乙和丙三個(gè)同學(xué)由左到右排列?

  解析:

 。1)7位同學(xué)站成一排總的排法共 種,包括甲、乙在內(nèi)的7位同學(xué)排隊(duì)只有甲站在乙的左邊和甲站在乙的右邊兩類(lèi),它們的機(jī)會(huì)是均等的,故滿足要求的排法為 ,本題也可將特定順序的排列問(wèn)題理解為組合問(wèn)題加以解決,即先在7個(gè)位置中選出2個(gè)位置安排甲、乙, 由于甲在乙的左邊共有 種,再將其余5人在余下的5個(gè)位置排列有 種,得排法數(shù)為 種;

 。2)參見(jiàn)(1)的分析得 (或 )。

  本文通過(guò)較為清晰的脈絡(luò)把排列問(wèn)題分為三種類(lèi)型,使我們對(duì)排列問(wèn)題有了比較系統(tǒng)的認(rèn)識(shí)。但由于排列問(wèn)題種類(lèi)繁多,總會(huì)有些問(wèn)題不能囊括其中,也一定存在許多不足,希望讀者能和我一起研究完善。

高三數(shù)學(xué)教案5

  一、教學(xué)內(nèi)容分析

  二面角是我們?nèi)粘I钪薪?jīng)常見(jiàn)到的一個(gè)圖形,它是在學(xué)生學(xué)過(guò)空間異面直線所成的角、直線和平面所成角之后,研究的一種空間的角,二面角進(jìn)一步完善了空間角的概念.掌握好本節(jié)課的知識(shí),對(duì)學(xué)生系統(tǒng)地理解直線和平面的知識(shí)、空間想象能力的培養(yǎng),乃至創(chuàng)新能力的培養(yǎng)都具有十分重要的意義.

  二、教學(xué)目標(biāo)設(shè)計(jì)

  理解二面角及其平面角的概念;能確認(rèn)圖形中的已知角是否為二面角的平面角;能作出二面角的平面角,并能初步運(yùn)用它們解決相關(guān)問(wèn)題.

  三、教學(xué)重點(diǎn)及難點(diǎn)

  二面角的平面角的概念的形成以及二面角的平面角的作法.

  四、教學(xué)流程設(shè)計(jì)

  五、教學(xué)過(guò)程設(shè)計(jì)

  一、 新課引入

  1.復(fù)習(xí)和回顧平面角的有關(guān)知識(shí).

  平面中的角

  定義 從一個(gè)頂點(diǎn)出發(fā)的兩條射線所組成的圖形,叫做角

  圖形

  結(jié)構(gòu) 射線—點(diǎn)—射線

  表示法 ∠AOB,∠O等

  2.復(fù)習(xí)和回顧異面直線所成的角、直線和平面所成的角的定義,及其共同特征.(空間角轉(zhuǎn)化為平面角)

  3.觀察:陡峭與否,跟山坡面與水平面所成的角大小有關(guān),而山坡面與水平面所成的角就是兩個(gè)平面所成的角.在實(shí)際生活當(dāng)中,能夠轉(zhuǎn)化為兩個(gè)平面所成角例子非常多,比如在這間教室里,誰(shuí)能舉出能夠體現(xiàn)兩個(gè)平面所成角的實(shí)例?(如圖1,課本的開(kāi)合、門(mén)或窗的.開(kāi)關(guān).)從而,引出“二面角”的定義及相關(guān)內(nèi)容.

  二、學(xué)習(xí)新課

  (一)二面角的定義

  平面中的角 二面角

  定義 從一個(gè)頂點(diǎn)出發(fā)的兩條射線所組成的圖形,叫做角 課本P17

  圖形

  結(jié)構(gòu) 射線—點(diǎn)—射線 半平面—直線—半平面

  表示法 ∠AOB,∠O等 二面角α—a—β或α-AB-β

  (二)二面角的圖示

  1.畫(huà)出直立式、平臥式二面角各一個(gè),并分別給予表示.

  2.在正方體中認(rèn)識(shí)二面角.

  (三)二面角的平面角

  平面幾何中的“角”可以看作是一條射線繞其端點(diǎn)旋轉(zhuǎn)而成,它有一個(gè)旋轉(zhuǎn)量,它的大小可以度量,類(lèi)似地,"二面角"也可以看作是一個(gè)半平面以其棱為軸旋轉(zhuǎn)而成,它也有一個(gè)旋轉(zhuǎn)量,那么,二面角的大小應(yīng)該怎樣度量?

  1.二面角的平面角的定義(課本P17).

  2.∠AOB的大小與點(diǎn)O在棱上的位置無(wú)關(guān).

  [說(shuō)明]①平面與平面的位置關(guān)系,只有相交或平行兩種情況,為了對(duì)相交平面的相互位置作進(jìn)一步的探討,有必要來(lái)研究二面角的度量問(wèn)題.

  ②與兩條異面直線所成的角、直線和平面所成的角做類(lèi)比,用“平面角”去度量.

 、鄱娼堑钠矫娼堑娜齻(gè)主要特征:角的頂點(diǎn)在棱上;角的兩邊分別在兩個(gè)半平面內(nèi);角的兩邊分別與棱垂直.

  3.二面角的平面角的范圍:

  (四)例題分析

  例1 一張邊長(zhǎng)為a的正三角形紙片ABC,以它的高AD為折痕,將其折成一個(gè) 的二面角,求此時(shí)B、C兩點(diǎn)間的距離.

  [說(shuō)明] ①檢查學(xué)生對(duì)二面角的平面角的定義的掌握情況.

  ②翻折前后應(yīng)注意哪些量的位置和數(shù)量發(fā)生了變化, 哪些沒(méi)變?

  例2 如圖,已知邊長(zhǎng)為a的等邊三角形 所在平面外有一點(diǎn)P,使PA=PB=PC=a,求二面角 的大小.

  [說(shuō)明] ①求二面角的步驟:作—證—算—答.

  ②引導(dǎo)學(xué)生掌握解題可操作性的通法(定義法和線面垂直法).

  例3 已知正方體 ,求二面角 的大小.(課本P18例1)

  [說(shuō)明] 使學(xué)生進(jìn)一步熟悉作二面角的平面角的方法.

  (五)問(wèn)題拓展

  例4 如圖,山坡的傾斜度(坡面與水平面所成二面角的度數(shù))是 ,山坡上有一條直道CD,它和坡腳的水平線AB的夾角是 ,沿這條路上山,行走100米后升高多少米?

  [說(shuō)明]使學(xué)生明白數(shù)學(xué)既來(lái)源于實(shí)際又服務(wù)于實(shí)際.

  三、鞏固練習(xí)

  1.在棱長(zhǎng)為1的正方體 中,求二面角 的大小.

  2. 若二面角 的大小為 ,P在平面 上,點(diǎn)P到 的距離為h,求點(diǎn)P到棱l的距離.

  四、課堂小結(jié)

  1.二面角的定義

  2.二面角的平面角的定義及其范圍

  3.二面角的平面角的常用作圖方法

  4.求二面角的大小(作—證—算—答)

高三數(shù)學(xué)教案6

  教學(xué)目標(biāo):

  結(jié)合已學(xué)過(guò)的數(shù)學(xué)實(shí)例和生活中的實(shí)例,體會(huì)演繹推理的重要性,掌握演繹推理的基本模式,并能運(yùn)用它們進(jìn)行一些簡(jiǎn)單推理。

  教學(xué)重點(diǎn):

  掌握演繹推理的基本模式,并能運(yùn)用它們進(jìn)行一些簡(jiǎn)單推理。

  教學(xué)過(guò)程

  一、復(fù)習(xí)

  二、引入新課

  1.假言推理

  假言推理是以假言判斷為前提的演繹推理。假言推理分為充分條件假言推理和必要條件假言推理兩種。

  (1)充分條件假言推理的基本原則是:小前提肯定大前提的前件,結(jié)論就肯定大前提的后件;小前提否定大前提的后件,結(jié)論就否定大前提的前件。

  (2)必要條件假言推理的基本原則是:小前提肯定大前提的后件,結(jié)論就要肯定大前提的前件;小前提否定大前提的前件,結(jié)論就要否定大前提的后件。

  2.三段論

  三段論是指由兩個(gè)簡(jiǎn)單判斷作前提和一個(gè)簡(jiǎn)單判斷作結(jié)論組成的演繹推理。三段論中三個(gè)簡(jiǎn)單判斷只包含三個(gè)不同的概念,每個(gè)概念都重復(fù)出現(xiàn)一次。這三個(gè)概念都有專(zhuān)門(mén)名稱(chēng):結(jié)論中的賓詞叫“大詞”,結(jié)論中的主詞叫“小詞”,結(jié)論不出現(xiàn)的那個(gè)概念叫“中詞”,在兩個(gè)前提中,包含大詞的叫“大前提”,包含小詞的叫“小前提”。

  3.關(guān)系推理指前提中至少有一個(gè)是關(guān)系判斷的.推理,它是根據(jù)關(guān)系的邏輯性質(zhì)進(jìn)行推演的。可分為純關(guān)系推理和混合關(guān)系推理。純關(guān)系推理就是前提和結(jié)論都是關(guān)系判斷的推理,包括對(duì)稱(chēng)性關(guān)系推理、反對(duì)稱(chēng)性關(guān)系推理、傳遞性關(guān)系推理和反傳遞性關(guān)系推理。

  (1)對(duì)稱(chēng)性關(guān)系推理是根據(jù)關(guān)系的對(duì)稱(chēng)性進(jìn)行的推理。

  (2)反對(duì)稱(chēng)性關(guān)系推理是根據(jù)關(guān)系的反對(duì)稱(chēng)性進(jìn)行的推理。

  (3)傳遞性關(guān)系推理是根據(jù)關(guān)系的傳遞性進(jìn)行的推理。

  (4)反傳遞性關(guān)系推理是根據(jù)關(guān)系的反傳遞性進(jìn)行的推理。

  4.完全歸納推理是這樣一種歸納推理:根據(jù)對(duì)某類(lèi)事物的全部個(gè)別對(duì)象的考察,已知它們都具有某種性質(zhì),由此得出結(jié)論說(shuō):該類(lèi)事物都具有某種性質(zhì)。

  オネ耆歸納推理可用公式表示如下:

  オS1具有(或不具有)性質(zhì)P

  オS2具有(或不具有)性質(zhì)P……

  オSn具有(或不具有)性質(zhì)P

  オ(S1S2……Sn是S類(lèi)的所有個(gè)別對(duì)象)

  オニ以,所有S都具有(或不具有)性質(zhì)P

  オタ杉,完全歸納推理的基本特點(diǎn)在于:前提中所考察的個(gè)別對(duì)象,必須是該類(lèi)事物的全部個(gè)別對(duì)象。否則,只要其中有一個(gè)個(gè)別對(duì)象沒(méi)有考察,這樣的歸納推理就不能稱(chēng)做完全歸納推理。完全歸納推理的結(jié)論所斷定的范圍,并未超出前提所斷定的范圍。所以,結(jié)論是由前提必然得出的。應(yīng)用完全歸納推理,只要遵循以下兩點(diǎn),那末結(jié)論就必然是真實(shí)的:(1)對(duì)于個(gè)別對(duì)象的斷定都是真實(shí)的;(2)被斷定的個(gè)別對(duì)象是該類(lèi)的全部個(gè)別對(duì)象。

  小結(jié):本節(jié)課學(xué)習(xí)了演繹推理的基本模式.

高三數(shù)學(xué)教案7

  【教學(xué)目的】

  (1)使學(xué)生初步理解集合的概念,知道常用數(shù)集的概念及記法

  (2)使學(xué)生初步了解“屬于”關(guān)系的意義

  (3)使學(xué)生初步了解有限集、無(wú)限集、空集的意義

  【重點(diǎn)難點(diǎn)】

  教學(xué)重點(diǎn):集合的基本概念及表示方法

  教學(xué)難點(diǎn):運(yùn)用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡(jiǎn)單的集合

  授課類(lèi)型:新授課

  課時(shí)安排:1課時(shí)

  教具:多媒體、實(shí)物投影儀

  【內(nèi)容分析】

  集合是中學(xué)數(shù)學(xué)的.一個(gè)重要的基本概念在小學(xué)數(shù)學(xué)中,就滲透了集合的初步概念,到了初中,更進(jìn)一步應(yīng)用集合的語(yǔ)言表述一些問(wèn)題例如,在代數(shù)中用到的有數(shù)集、解集等;在幾何中用到的有點(diǎn)集至于邏輯,可以說(shuō),從開(kāi)始學(xué)習(xí)數(shù)學(xué)就離不開(kāi)對(duì)邏輯知識(shí)的掌握和運(yùn)用,基本的邏輯知識(shí)在日常生活、學(xué)習(xí)、工作中,也是認(rèn)識(shí)問(wèn)題、研究問(wèn)題不可缺少的工具這些可以幫助學(xué)生認(rèn)識(shí)學(xué)習(xí)本章的意義,也是本章學(xué)習(xí)的基礎(chǔ)

  把集合的初步知識(shí)與簡(jiǎn)易邏輯知識(shí)安排在高中數(shù)學(xué)的最開(kāi)始,是因?yàn)樵诟咧袛?shù)學(xué)中,這些知識(shí)與其他內(nèi)容有著密切聯(lián)系,它們是學(xué)習(xí)、掌握和使用數(shù)學(xué)語(yǔ)言的基礎(chǔ)例如,下一章講函數(shù)的概念與性質(zhì),就離不開(kāi)集合與邏輯

  本節(jié)首先從初中代數(shù)與幾何涉及的集合實(shí)例入手,引出集合與集合的元素的概念,并且結(jié)合實(shí)例對(duì)集合的概念作了說(shuō)明然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫(huà)圖表示集合的例子

  這節(jié)課主要學(xué)習(xí)全章的引言和集合的基本概念學(xué)習(xí)引言是引發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生認(rèn)識(shí)學(xué)習(xí)本章的意義本節(jié)課的教學(xué)重點(diǎn)是集合的基本概念

  集合是集合論中的原始的、不定義的概念在開(kāi)始接觸集合的概念時(shí),主要還是通過(guò)實(shí)例,對(duì)概念有一個(gè)初步認(rèn)識(shí)教科書(shū)給出的“一般地,某些指定的對(duì)象集在一起就成為一個(gè)集合,也簡(jiǎn)稱(chēng)集”這句話,只是對(duì)集合概念的描述性說(shuō)明。

高三數(shù)學(xué)教案8

  典例精析

  題型一 求函數(shù)f(x)的單調(diào)區(qū)間

  【例1】已知函數(shù)f(x)=x2-ax-aln(x-1)(a∈R),求函數(shù)f(x)的單調(diào)區(qū)間.

  【解析】函數(shù)f(x)=x2-ax-aln(x-1)的定義域是(1,+∞).

  f′(x)=2x-a-ax-1=2x(x-a+22)x-1,

 、偃鬭≤0,則a+22≤1,f′(x)=2x(x-a+22)x-1>0在(1,+∞)上恒成立,所以a≤0時(shí),f(x)的增區(qū)間為(1,+∞).

  ②若a>0,則a+22>1,

  故當(dāng)x∈(1,a+22]時(shí),f′(x)=2x(x-a+22)x-1≤0;

  當(dāng)x∈[a+22,+∞)時(shí),f′(x)=2x(x-a+22)x-1≥0,

  所以a>0時(shí),f(x)的減區(qū)間為(1,a+22],f(x)的增區(qū)間為[a+22,+∞).

  【點(diǎn)撥】在定義域x>1下,為了判定f′(x)符號(hào),必須討論實(shí)數(shù)a+22與0及1的大小,分類(lèi)討論是解本題的關(guān)鍵.

  【變式訓(xùn)練1】已知函數(shù)f(x)=x2+ln x-ax在(0,1)上是增函數(shù),求a的取值范圍.

  【解析】因?yàn)閒′(x)=2x+1x-a,f(x)在(0,1)上是增函數(shù),

  所以2x+1x-a≥0在(0,1)上恒成立,

  即a≤2x+1x恒成立.

  又2x+1x≥22(當(dāng)且僅當(dāng)x=22時(shí),取等號(hào)).

  所以a≤22,

  故a的取值范圍為(-∞,22].

  【點(diǎn)撥】當(dāng)f(x)在區(qū)間(a,b)上是增函數(shù)時(shí)f′(x)≥0在(a,b)上恒成立;同樣,當(dāng)函數(shù)f(x)在區(qū)間(a,b)上為減函數(shù)時(shí)f′(x)≤0在(a,b)上恒成立.然后就要根據(jù)不等式恒成立的'條件來(lái)求參數(shù)的取值范圍了.

  題型二 求函數(shù)的極值

  【例2】已知f(x)=ax3+bx2+cx(a≠0)在x=±1時(shí)取得極值,且f(1)=-1.

  (1)試求常數(shù)a,b,c的值;

  (2)試判斷x=±1是函數(shù)的極小值點(diǎn)還是極大值點(diǎn),并說(shuō)明理由.

  【解析】(1)f′(x)=3ax2+2bx+c.

  因?yàn)閤=±1是函數(shù)f(x)的極值點(diǎn),

  所以x=±1是方程f′(x)=0,即3ax2+2bx+c=0的兩根.

  由根與系數(shù)的關(guān)系,得

  又f(1)=-1,所以a+b+c=-1. ③

  由①②③解得a=12,b=0,c=-32.

  (2)由(1)得f(x)=12x3-32x,

  所以當(dāng)f′(x)=32x2-32>0時(shí),有x<-1或x>1;

  當(dāng)f′(x)=32x2-32<0時(shí),有-1

  所以函數(shù)f(x)=12x3-32x在(-∞,-1)和(1,+∞)上是增函數(shù),在(-1,1)上是減函數(shù).

  所以當(dāng)x=-1時(shí),函數(shù)取得極大值f(-1)=1;當(dāng)x=1時(shí),函數(shù)取得極小值f(1)=-1.

  【點(diǎn)撥】求函數(shù)的極值應(yīng)先求導(dǎo)數(shù).對(duì)于多項(xiàng)式函數(shù)f(x)來(lái)講, f(x)在點(diǎn)x=x0處取極值的必要條件是f′(x)=0.但是, 當(dāng)x0滿足f′(x0)=0時(shí), f(x)在點(diǎn)x=x0處卻未必取得極 值,只有在x0的兩側(cè)f(x)的導(dǎo)數(shù)異號(hào)時(shí),x0才是f(x)的極值點(diǎn).并且如果f′(x)在x0兩側(cè)滿足“左正右負(fù)”,則x0是f(x)的極大值點(diǎn),f(x0)是極大值;如果f′(x)在x0兩側(cè)滿足“左負(fù)右正”,則x0是f(x)的極小值點(diǎn),f(x0)是極小值.

  【變式訓(xùn)練2】定義在R上的函數(shù)y=f(x),滿足f(3-x)=f(x),(x-32)f′(x)<0,若x13,則有( )

  A. f(x1)f(x2)

  C. f(x1)=f(x2) D.不確定

  【解析】由f(3-x)=f(x)可得f[3-(x+32)]=f(x+32),即f(32-x)=f(x+32),所以函數(shù)f(x)的圖象關(guān)于x=32對(duì)稱(chēng).又因?yàn)?x-32)f′(x)<0,所以當(dāng)x>32時(shí),函數(shù)f(x)單調(diào)遞減,當(dāng)x<32時(shí),函數(shù)f(x)單調(diào)遞增.當(dāng)x1+x22=32時(shí),f(x1)=f(x2),因?yàn)閤1+x2>3,所以x1+x22>32,相當(dāng)于x1,x2的中點(diǎn)向右偏離對(duì)稱(chēng)軸,所以f(x1)>f(x2).故選B.

  題型三 求函數(shù)的最值

  【例3】 求函數(shù)f(x)=ln(1+x)-14x2在區(qū)間[0,2]上的最大值和最小值.

  【解析】f′(x)=11+x-12x,令11+x-12x=0,化簡(jiǎn)為x2+x-2=0,解得x1=-2或x2=1,其中x1=-2舍去.

  又由f′(x)=11+x-12x>0,且x∈[0,2],得知函數(shù)f(x)的單調(diào)遞增區(qū)間是(0,1),同理, 得知函數(shù)f(x)的單調(diào)遞減區(qū)間是(1,2),所以f(1)=ln 2-14為函數(shù)f(x)的極大值.又因?yàn)閒(0)=0,f(2)=ln 3-1>0,f(1)>f(2),所以,f(0)=0為函數(shù)f(x)在[0,2]上的最小值,f(1)=ln 2-14為函數(shù)f(x)在[0,2]上的最大值.

  【點(diǎn)撥】求函數(shù)f(x)在某閉區(qū)間[a,b]上的最值,首先需求函數(shù)f(x)在開(kāi)區(qū)間(a,b)內(nèi)的極值,然后,將f(x)的各個(gè)極值與f(x)在閉區(qū)間上的端點(diǎn)的函數(shù)值f(a)、f(b)比較,才能得出函數(shù)f(x)在[a,b]上的最值.

  【變式訓(xùn)練3】(20xx江蘇)f(x)=ax3-3x+1對(duì)x∈[-1,1]總有f(x)≥0成立,則a= .

  【解析】若x=0,則無(wú)論a為 何值,f(x)≥0恒成立.

  當(dāng)x∈(0,1]時(shí),f(x)≥0可以化為a≥3x2-1x3,

  設(shè)g(x)=3x2-1x3,則g′(x)=3(1-2x)x4,

  x∈(0,12)時(shí),g′(x)>0,x∈(12,1]時(shí),g′(x)<0.

  因此g(x)max=g(12)=4,所以a≥4.

  當(dāng)x∈[-1,0)時(shí),f(x)≥0可以化為

  a≤3x2-1x3,此時(shí)g′(x)=3(1-2x)x4>0,

  g(x)min=g(-1)=4,所以a≤4.

  綜上可知,a=4.

  總結(jié)提高

  1.求函數(shù)單調(diào)區(qū)間的步驟是:

  (1)確定函數(shù)f(x)的定義域D;

  (2)求導(dǎo)數(shù)f′(x);

  (3)根據(jù)f′(x)>0,且x∈D,求得函數(shù)f(x)的單調(diào)遞增區(qū)間;根據(jù)f′(x)<0,且x∈D,求得函數(shù)f(x)的單調(diào)遞減區(qū)間.

  2.求函數(shù)極值的步驟是:

  (1)求導(dǎo)數(shù)f′(x);

  (2)求方程f′(x)=0的根;

  (3)判斷f′(x)在方程根左右的值的符號(hào),確定f(x)在這個(gè)根處取極大值還是取極小值.

  3.求函數(shù)最值的步驟是:

  先求f(x)在(a,b)內(nèi)的極值;再將f(x)的各極值與端點(diǎn)處的函數(shù)值f(a)、f(b)比較,其中最大的一個(gè)是最大值,最小的一個(gè)是最小值.

高三數(shù)學(xué)教案9

  教學(xué)目標(biāo)

  進(jìn)一步熟悉正、余弦定理內(nèi)容,能熟練運(yùn)用余弦定理、正弦定理解答有關(guān)問(wèn)題,如判斷三角形的形狀,證明三角形中的三角恒等式.

  教學(xué)重難點(diǎn)

  教學(xué)重點(diǎn):熟練運(yùn)用定理.

  教學(xué)難點(diǎn):應(yīng)用正、余弦定理進(jìn)行邊角關(guān)系的相互轉(zhuǎn)化.

  教學(xué)過(guò)程

  一、復(fù)習(xí)準(zhǔn)備:

  1.寫(xiě)出正弦定理、余弦定理及推論等公式.

  2.討論各公式所求解的三角形類(lèi)型.

  二、講授新課:

  1.教學(xué)三角形的解的討論:

 、俪鍪纠1:在△ABC中,已知下列條件,解三角形.

  分兩組練習(xí)→討論:解的個(gè)數(shù)情況為何會(huì)發(fā)生變化?

  ②用如下圖示分析解的情況.(A為銳角時(shí))

 、诰毩(xí):在△ABC中,已知下列條件,判斷三角形的解的情況.

  2.教學(xué)正弦定理與余弦定理的活用:

  ①出示例2:在△ABC中,已知sinA∶sinB∶sinC=6∶5∶4,求角的余弦.

  分析:已知條件可以如何轉(zhuǎn)化?→引入?yún)?shù)k,設(shè)三邊后利用余弦定理求角.

  ②出示例3:在ΔABC中,已知a=7,b=10,c=6,判斷三角形的類(lèi)型.

  分析:由三角形的什么知識(shí)可以判別?→求角余弦,由符號(hào)進(jìn)行判斷

  ③出示例4:已知△ABC中,試判斷△ABC的'形狀.

  分析:如何將邊角關(guān)系中的邊化為角?→再思考:又如何將角化為邊?

  3.小結(jié):三角形解的情況的討論;判斷三角形類(lèi)型;邊角關(guān)系如何互化.

高三數(shù)學(xué)教案10

  【教學(xué)目標(biāo)】:

  (1)知識(shí)目標(biāo):

  通過(guò)實(shí)例,了解簡(jiǎn)單的邏輯聯(lián)結(jié)詞“且”、“或”的含義;

  (2)過(guò)程與方法目標(biāo):

  了解含有邏輯聯(lián)結(jié)詞“且”、“或”復(fù)合命題的構(gòu)成形式,以及會(huì)對(duì)新命題作出真假的.判斷;

  (3)情感與能力目標(biāo):

  在知識(shí)學(xué)習(xí)的基礎(chǔ)上,培養(yǎng)學(xué)生簡(jiǎn)單推理的技能。

  【教學(xué)重點(diǎn)】:

  通過(guò)數(shù)學(xué)實(shí)例,了解邏輯聯(lián)結(jié)詞“或”、“且”的含義,使學(xué)生能正確地表述相關(guān)數(shù)學(xué)內(nèi)容。

  【教學(xué)難點(diǎn)】:

  簡(jiǎn)潔、準(zhǔn)確地表述“或”命題、“且”等命題,以及對(duì)新命題真假的判斷。

  【教學(xué)過(guò)程設(shè)計(jì)】:

  教學(xué)環(huán)節(jié)教學(xué)活動(dòng)設(shè)計(jì)意圖

  情境引入問(wèn)題:

  下列三個(gè)命題間有什么關(guān)系?

 。1)12能被3整除;

  (2)12能被4整除;

  (3)12能被3整除且能被4整除;通過(guò)數(shù)學(xué)實(shí)例,認(rèn)識(shí)用用邏輯聯(lián)結(jié)詞“且”聯(lián)結(jié)兩個(gè)命題可以得到一個(gè)新命題;

  知識(shí)建構(gòu)歸納總結(jié):

  一般地,用邏輯聯(lián)結(jié)詞“且”把命題p和命題q聯(lián)結(jié)起來(lái),就得到一個(gè)新命題,

  記作,讀作“p且q”。

  引導(dǎo)學(xué)生通過(guò)通過(guò)一些數(shù)學(xué)實(shí)例分析,概括出一般特征。

  1、引導(dǎo)學(xué)生閱讀教科書(shū)上的例1中每組命題p,q,讓學(xué)生嘗試寫(xiě)出命題,判斷真假,糾正可能出現(xiàn)的邏輯錯(cuò)誤。學(xué)習(xí)使用邏輯聯(lián)結(jié)詞“且”聯(lián)結(jié)兩個(gè)命題,根據(jù)“且”的含義判斷邏輯聯(lián)結(jié)詞“且”聯(lián)結(jié)成的新命題的真假。

  2、引導(dǎo)學(xué)生閱讀教科書(shū)上的例2中每個(gè)命題,讓學(xué)生嘗試改寫(xiě)命題,判斷真假,糾正可能出現(xiàn)的邏輯錯(cuò)誤。

  歸納總結(jié):

  當(dāng)p,q都是真命題時(shí),是真命題,當(dāng)p,q兩個(gè)命題中有一個(gè)是假命題時(shí),是假命題,

  學(xué)習(xí)使用邏輯聯(lián)結(jié)詞“且”改寫(xiě)一些命題,根據(jù)“且”的含義判斷原先命題的真假。

  引導(dǎo)學(xué)生通過(guò)通過(guò)一些數(shù)學(xué)實(shí)例分析命題p和命題q以及命題的真假性,概括出這三個(gè)命題的真假性之間的一般規(guī)律。

高三數(shù)學(xué)教案11

  【教學(xué)目標(biāo)】

  1.會(huì)用語(yǔ)言概述棱柱、棱錐、圓柱、圓錐、棱臺(tái)、圓臺(tái)、球的結(jié)構(gòu)特征。

  2.能根據(jù)幾何結(jié)構(gòu)特征對(duì)空間物體進(jìn)行分類(lèi)。

  3.提高學(xué)生的觀察能力;培養(yǎng)學(xué)生的空間想象能力和抽象括能力。

  【教學(xué)重難點(diǎn)】

  教學(xué)重點(diǎn):讓學(xué)生感受大量空間實(shí)物及模型、概括出柱、錐、臺(tái)、球的結(jié)構(gòu)特征。

  教學(xué)難點(diǎn):柱、錐、臺(tái)、球的結(jié)構(gòu)特征的概括。

  【教學(xué)過(guò)程】

  1.情景導(dǎo)入

  教師提出問(wèn)題,引導(dǎo)學(xué)生觀察、舉例和相互交流,提出本節(jié)課所學(xué)內(nèi)容,出示課題。

  2.展示目標(biāo)、檢查預(yù)習(xí)

  3.合作探究、交流展示

 。1)引導(dǎo)學(xué)生觀察棱柱的幾何物體以及棱柱的圖片,說(shuō)出它們各自的特點(diǎn)是什么?它們的共同特點(diǎn)是什么?

 。2)組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。有兩個(gè)面互相平行;其余各面都是平行四邊形;每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。

  (3)提出問(wèn)題:請(qǐng)列舉身邊的棱柱并對(duì)它們進(jìn)行分類(lèi)

 。4)以類(lèi)似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺(tái)的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類(lèi)以及表示。

 。5)讓學(xué)生觀察圓柱,并實(shí)物模型演示,概括出圓柱的概念以及相關(guān)的.概念及圓柱的表示。

  (6)引導(dǎo)學(xué)生以類(lèi)似的方法思考圓錐、圓臺(tái)、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實(shí)物模型演示引導(dǎo)學(xué)生思考、討論、概括。

  (7)教師指出圓柱和棱柱統(tǒng)稱(chēng)為柱體,棱臺(tái)與圓臺(tái)統(tǒng)稱(chēng)為臺(tái)體,圓錐與棱錐統(tǒng)稱(chēng)為錐體。

  4.質(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問(wèn)題,讓學(xué)生思考。

 。1)有兩個(gè)面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說(shuō)明)

 。2)棱柱的任何兩個(gè)平面都可以作為棱柱的底面嗎?

 。3)圓柱可以由矩形旋轉(zhuǎn)得到,圓錐可以由直角三角形旋轉(zhuǎn)得到,圓臺(tái)可以由什么圖形旋轉(zhuǎn)得到?如何旋轉(zhuǎn)?

  (4)棱臺(tái)與棱柱、棱錐有什么關(guān)系?圓臺(tái)與圓柱、圓錐呢?

 。5)繞直角三角形某一邊的幾何體一定是圓錐嗎?

  5.典型例題

  例:判斷下列語(yǔ)句是否正確。

  ⑴有一個(gè)面是多邊形,其余各面都是三角形的幾何體是棱錐。

 、朴袃蓚(gè)面互相平行,其余各面都是梯形,則此幾何體是棱柱。

  答案AB

  6.課堂檢測(cè):

  課本P8,習(xí)題1.1A組第1題。

  7.歸納整理

  由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容

高三數(shù)學(xué)教案12

  【學(xué)習(xí)目標(biāo)】

  一、過(guò)程目標(biāo)

  1通過(guò)師生之間、學(xué)生與學(xué)生之間的互相交流,培養(yǎng)學(xué)生的數(shù)學(xué)交流能力和與人合作的精神。

  2通過(guò)對(duì)對(duì)數(shù)函數(shù)的學(xué)習(xí),樹(shù)立相互聯(lián)系、相互轉(zhuǎn)化的觀點(diǎn),滲透數(shù)形結(jié)合的數(shù)學(xué)思想。

  3通過(guò)對(duì)對(duì)數(shù)函數(shù)有關(guān)性質(zhì)的研究,培養(yǎng)學(xué)生觀察、分析、歸納的思維能力。

  二、識(shí)技能目標(biāo)

  1理解對(duì)數(shù)函數(shù)的概念,能正確描繪對(duì)數(shù)函數(shù)的圖象,感受研究對(duì)數(shù)函數(shù)的意義。

  2掌握對(duì)數(shù)函數(shù)的性質(zhì),并能初步應(yīng)用對(duì)數(shù)的`性質(zhì)解決簡(jiǎn)單問(wèn)題。

  三、情感目標(biāo)

  1通過(guò)學(xué)習(xí)對(duì)數(shù)函數(shù)的概念、圖象和性質(zhì),使學(xué)生體會(huì)知識(shí)之間的有機(jī)聯(lián)系,激發(fā)學(xué)生的學(xué)習(xí)興趣。

  2在教學(xué)過(guò)程中,通過(guò)對(duì)數(shù)函數(shù)有關(guān)性質(zhì)的研究,培養(yǎng)觀察、分析、歸納的思維能力以及數(shù)學(xué)交流能力,增強(qiáng)學(xué)習(xí)的積極性,同時(shí)培養(yǎng)學(xué)生傾聽(tīng)、接受別人意見(jiàn)的優(yōu)良品質(zhì)。

  教學(xué)重點(diǎn)難點(diǎn):

  1對(duì)數(shù)函數(shù)的定義、圖象和性質(zhì)。

  2對(duì)數(shù)函數(shù)性質(zhì)的初步應(yīng)用。

  教學(xué)工具:多媒體

  【學(xué)前準(zhǔn)備】對(duì)照指數(shù)函數(shù)試研究對(duì)數(shù)函數(shù)的定義、圖象和性質(zhì)。

高三數(shù)學(xué)教案13

  教學(xué)目標(biāo)

  (1)掌握復(fù)數(shù)的有關(guān)概念,如虛數(shù)、純虛數(shù)、復(fù)數(shù)的實(shí)部與虛部、兩復(fù)數(shù)相等、復(fù)平面、實(shí)軸、虛軸、共軛復(fù)數(shù)、共軛虛數(shù)的概念。

 。2)正確對(duì)復(fù)數(shù)進(jìn)行分類(lèi),掌握數(shù)集之間的從屬關(guān)系;

  (3)理解復(fù)數(shù)的幾何意義,初步掌握復(fù)數(shù)集C和復(fù)平面內(nèi)所有的點(diǎn)所成的集合之間的一一對(duì)應(yīng)關(guān)系。

 。4)培養(yǎng)學(xué)生數(shù)形結(jié)合的數(shù)學(xué) 思想,訓(xùn)練學(xué)生條理的邏輯思維能力.

  教學(xué)建議

 。ㄒ唬┙滩姆治

  1 、知識(shí)結(jié)構(gòu)

  本節(jié)首先介紹了復(fù)數(shù)的有關(guān)概念,然后指出復(fù)數(shù)相等的充要條件,接著介紹了有關(guān)復(fù)數(shù)的幾何表示,最后指出了有關(guān)共軛復(fù)數(shù)的概念.

  2 、重點(diǎn)、難點(diǎn)分析

  (1)正確復(fù)數(shù)的實(shí)部與虛部

  對(duì)于復(fù)數(shù),實(shí)部是,虛部是.注意在說(shuō)復(fù)數(shù)時(shí),一定有,否則,不能說(shuō)實(shí)部是,虛部是,復(fù)數(shù)的實(shí)部和虛部都是實(shí)數(shù)。

  說(shuō)明:對(duì)于復(fù)數(shù)的定義,特別要抓住這一標(biāo)準(zhǔn)形式以及是實(shí)數(shù)這一概念,這對(duì)于解有關(guān)復(fù)數(shù)的問(wèn)題將有很大的幫助。

 。2)正確地對(duì)復(fù)數(shù)進(jìn)行分類(lèi),弄清數(shù)集之間的關(guān)系

  分類(lèi)要求不重復(fù)、不遺漏,同一級(jí)分類(lèi)標(biāo)準(zhǔn)要統(tǒng)一。根據(jù)上述原則,復(fù)數(shù)集的分類(lèi)如下:

  注意分清復(fù)數(shù)分類(lèi)中的界限:

  ①設(shè),則為實(shí)數(shù)

  ②為虛數(shù)

 、矍摇

 、転榧兲摂(shù)且

  (3)不能亂用復(fù)數(shù)相等的條件解題.用復(fù)數(shù)相等的條件要注意:

 、倩癁閺(fù)數(shù)的標(biāo)準(zhǔn)形式

  ②實(shí)部、虛部中的字母為實(shí)數(shù),即

 。4)在講復(fù)數(shù)集與復(fù)平面內(nèi)所有點(diǎn)所成的集合一一對(duì)應(yīng)時(shí),要注意:

 、偃魏我粋(gè)復(fù)數(shù)都可以由一個(gè)有序?qū)崝?shù)對(duì)( )唯一確定.這就是說(shuō),復(fù)數(shù)的實(shí)質(zhì)是有序?qū)崝?shù)對(duì).一些書(shū)上就是把實(shí)數(shù)對(duì)( )叫做復(fù)數(shù)的.

 、趶(fù)數(shù)用復(fù)平面內(nèi)的點(diǎn)Z( )表示.復(fù)平面內(nèi)的`點(diǎn)Z的坐標(biāo)是( ),而不是( ),也就是說(shuō),復(fù)平面內(nèi)的縱坐標(biāo)軸上的單位長(zhǎng)度是1,而不是.由于=0+1 ?,所以用復(fù)平面內(nèi)的點(diǎn)(0,1)表示時(shí),這點(diǎn)與原點(diǎn)的距離是1,等于縱軸上的單位長(zhǎng)度.這就是說(shuō),當(dāng)我們把縱軸上的點(diǎn)(0,1)標(biāo)上虛數(shù)時(shí),不能以為這一點(diǎn)到原點(diǎn)的距離就是虛數(shù)單位,或者就是縱軸的單位長(zhǎng)度.

  ③當(dāng)時(shí),對(duì)任何,是純虛數(shù),所以縱軸上的點(diǎn)( )( )都是表示純虛數(shù).但當(dāng)時(shí),是實(shí)數(shù).所以,縱軸去掉原點(diǎn)后稱(chēng)為虛軸.

  由此可見(jiàn),復(fù)平面(也叫高斯平面)與一般的坐標(biāo)平面(也叫笛卡兒平面)的區(qū)別就是復(fù)平面的虛軸不包括原點(diǎn),而一般坐標(biāo)平面的原點(diǎn)是橫、縱坐標(biāo)軸的公共點(diǎn).

 、軓(fù)數(shù)z=a+bi中的z,書(shū)寫(xiě)時(shí)小寫(xiě),復(fù)平面內(nèi)點(diǎn)Z(a,b)中的Z,書(shū)寫(xiě)時(shí)大寫(xiě).要學(xué)生注意.

 。5)關(guān)于共軛復(fù)數(shù)的概念

  設(shè),則,即與的實(shí)部相等,虛部互為相反數(shù)(不能認(rèn)為與或是共軛復(fù)數(shù)).

  教師可以提一下當(dāng)時(shí)的特殊情況,即實(shí)軸上的點(diǎn)關(guān)于實(shí)軸本身對(duì)稱(chēng),例如:5和-5也是互為共軛復(fù)數(shù).當(dāng)時(shí),與互為共軛虛數(shù).可見(jiàn),共軛虛數(shù)是共軛復(fù)數(shù)的特殊情行.

 。6)復(fù)數(shù)能否比較大小

  教材最后指出:“兩個(gè)復(fù)數(shù),如果不全是實(shí)數(shù),就不能比較它們的大小”,要注意:

 、俑鶕(jù)兩個(gè)復(fù)數(shù)相等地定義,可知在兩式中,只要有一個(gè)不成立,那么.兩個(gè)復(fù)數(shù),如果不全是實(shí)數(shù),只有相等與不等關(guān)系,而不能比較它們的大小.

 、诿}中的“不能比較它們的大小”的確切含義是指:“不論怎樣定義兩個(gè)復(fù)數(shù)間的一個(gè)關(guān)系‘ < ’,都不能使這關(guān)系同時(shí)滿足實(shí)數(shù)集中大小關(guān)系地四條性質(zhì)”:

  (i)對(duì)于任意兩個(gè)實(shí)數(shù)a,b來(lái)說(shuō),a<b,a=b,b<a這三種情形有且僅有一種成立;

  (ii)如果a<b,b<c,那么a<c;

  (iii)如果a<b,那么a+c<b+c;

  (iv)如果a<b,c>0,那么ac<bc.(不必向?qū)W生講解)

 。ǘ┙谭ńㄗh

  1.要注意知識(shí)的連續(xù)性:復(fù)數(shù)是二維數(shù),其幾何意義是一個(gè)點(diǎn),因而注意與平面解析幾何的聯(lián)系.

  2.注意數(shù)形結(jié)合的數(shù)形思想:由于復(fù)數(shù)集與復(fù)平面上的點(diǎn)的集合建立了一一對(duì)應(yīng)關(guān)系,所以用“形”來(lái)解決“數(shù)”就成為可能,在本節(jié)要注意復(fù)數(shù)的幾何意義的講解,培養(yǎng)學(xué)生數(shù)形結(jié)合的數(shù)學(xué) 思想.

  3.注意分層次的教學(xué):教材中最后對(duì)于“兩個(gè)復(fù)數(shù),如果不全是實(shí)數(shù)就不能本節(jié)它們的大小”沒(méi)有證明,如果有學(xué)生提出來(lái)了,在課堂上不要給全體學(xué)生證明,可以在課下給學(xué)有余力的學(xué)生進(jìn)行解答.

  復(fù)數(shù)的有關(guān)概念

  教學(xué)目標(biāo)

  1.了解復(fù)數(shù)的實(shí)部,虛部;

  2.掌握復(fù)數(shù)相等的意義;

  3.了解并掌握共軛復(fù)數(shù),及在復(fù)平面內(nèi)表示復(fù)數(shù).

  教學(xué)重點(diǎn)

  復(fù)數(shù)的概念,復(fù)數(shù)相等的充要條件.

  教學(xué)難點(diǎn)

  用復(fù)平面內(nèi)的點(diǎn)表示復(fù)數(shù)M.

  教學(xué)用具:直尺

  課時(shí)安排:1課時(shí)

  教學(xué)過(guò)程

  一、復(fù)習(xí)提問(wèn):

  1.復(fù)數(shù)的定義。

  2.虛數(shù)單位。

  二、講授新課

  1.復(fù)數(shù)的實(shí)部和虛部:

  復(fù)數(shù)中的a與b分別叫做復(fù)數(shù)的實(shí)部和虛部。

  2.復(fù)數(shù)相等

  如果兩個(gè)復(fù)數(shù)與的實(shí)部與虛部分別相等,就說(shuō)這兩個(gè)復(fù)數(shù)相等。

  即:的充要條件是且。

  例如:的充要條件是且。

  例1:已知其中,求 x y .

  解:根據(jù)復(fù)數(shù)相等的意義,得方程組:

  ∴

  例2: m 是什么實(shí)數(shù)時(shí),復(fù)數(shù),

  (1)是實(shí)數(shù),(2)是虛數(shù),(3)是純虛數(shù).

  解:

  (1) ∵時(shí), z 是實(shí)數(shù),

  ∴ ,或.

  (2) ∵時(shí), z 是虛數(shù),

  ∴,且

  (3) ∵且時(shí),

  z 是純虛數(shù). ∴

  3.用復(fù)平面(高斯平面)內(nèi)的點(diǎn)表示復(fù)數(shù)

  復(fù)平面的定義

  建立了直角坐標(biāo)系表示復(fù)數(shù)的平面,叫做復(fù)平面.

  復(fù)數(shù)可用點(diǎn)來(lái)表示.(如圖)其中 x 軸叫實(shí)軸, y 軸除去原點(diǎn)的部分叫虛軸,表示實(shí)數(shù)的點(diǎn)都在實(shí)軸上,表示純虛數(shù)的點(diǎn)都在虛軸上。原點(diǎn)只在實(shí)軸 x 上,不在虛軸上.

  4.復(fù)數(shù)的幾何意義:

  復(fù)數(shù)集 c 和復(fù)平面所有的點(diǎn)的集合是一一對(duì)應(yīng)的.

  5.共軛復(fù)數(shù)

  (1)當(dāng)兩個(gè)復(fù)數(shù)實(shí)部相等,虛部互為相反數(shù)時(shí),這兩個(gè)復(fù)數(shù)叫做互為共軛復(fù)數(shù)。(虛部不為零也叫做互為共軛復(fù)數(shù))

  (2)復(fù)數(shù) z 的共軛復(fù)數(shù)用表示.若,則:;

  (3)實(shí)數(shù) a 的共軛復(fù)數(shù)仍是 a 本身,純虛數(shù)的共軛復(fù)數(shù)是它的相反數(shù).

  (4)復(fù)平面內(nèi)表示兩個(gè)共軛復(fù)數(shù)的點(diǎn)z與關(guān)于實(shí)軸對(duì)稱(chēng).

  三、練習(xí)1,2,3,4.

  四、小結(jié):

  1.在理解復(fù)數(shù)的有關(guān)概念時(shí)應(yīng)注意:

 。1)明確什么是復(fù)數(shù)的實(shí)部與虛部;

 。2)弄清實(shí)數(shù)、虛數(shù)、純虛數(shù)分別對(duì)實(shí)部與虛部的要求;

 。3)弄清復(fù)平面與復(fù)數(shù)的幾何意義;

 。4)兩個(gè)復(fù)數(shù)不全是實(shí)數(shù)就不能比較大小。

  2.復(fù)數(shù)集與復(fù)平面上的點(diǎn)注意事項(xiàng):

 。1)復(fù)數(shù)中的 z ,書(shū)寫(xiě)時(shí)小寫(xiě),復(fù)平面內(nèi)點(diǎn)Z( a b )中的Z,書(shū)寫(xiě)時(shí)大寫(xiě)。

 。2)復(fù)平面內(nèi)的點(diǎn)Z的坐標(biāo)是( a b ),而不是( a bi ),也就是說(shuō),復(fù)平面內(nèi)的縱坐標(biāo)軸上的單位長(zhǎng)度是1,而不是 i 。

  (3)表示實(shí)數(shù)的點(diǎn)都在實(shí)軸上,表示純虛數(shù)的點(diǎn)都在虛軸上。

 。4)復(fù)數(shù)集C和復(fù)平面內(nèi)所有的點(diǎn)組成的集合一一對(duì)應(yīng):

  五、作業(yè)1,2,3,4,

高三數(shù)學(xué)教案14

  一、教學(xué)目標(biāo)

  1、理解一次函數(shù)和正比例函數(shù)的概念,以及它們之間的關(guān)系。

  2、能根據(jù)所給條件寫(xiě)出簡(jiǎn)單的一次函數(shù)表達(dá)式。

  二、能力目標(biāo)

  1、經(jīng)歷一般規(guī)律的探索過(guò)程、發(fā)展學(xué)生的抽象思維能力。

  2、通過(guò)由已知信息寫(xiě)一次函數(shù)表達(dá)式的過(guò)程,發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用能力。

  三、情感目標(biāo)1、通過(guò)函數(shù)與變量之間的關(guān)系的聯(lián)系,一次函數(shù)與一次方程的聯(lián)系,發(fā)展學(xué)生的數(shù)學(xué)思維。

  2、經(jīng)歷利用一次函數(shù)解決實(shí)際問(wèn)題的過(guò)程,發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用能力。

  四、教學(xué)重難點(diǎn)1、一次函數(shù)、正比例函數(shù)的概念及關(guān)系。   2、會(huì)根據(jù)已知信息寫(xiě)出一次函數(shù)的表達(dá)式。

  五、教學(xué)過(guò)程

  1、新課導(dǎo)入有關(guān)函數(shù)問(wèn)題在我們?nèi)粘I钪须S處可見(jiàn),如彈簧秤有自然長(zhǎng)度,在彈性限度內(nèi),隨著所掛物體的重量的'增加,彈簧的長(zhǎng)度相應(yīng)的會(huì)拉長(zhǎng),那么所掛物體的重量與彈簧的.長(zhǎng)度之間就存在某種關(guān)系,究竟是什么樣的關(guān)系,請(qǐng)看:某彈簧的自然長(zhǎng)度為3厘米,在彈性限度內(nèi),所掛物體的質(zhì)量x每增加1千克、彈簧長(zhǎng)度y增加0.5厘米。

  (1)計(jì)算所掛物體的質(zhì)量分別為1千克、 2千克、 3千克、 4千克、 5千克時(shí)彈簧的長(zhǎng)度,

  (2)你能寫(xiě)出x與y之間的關(guān)系式嗎?

  分析:當(dāng)不掛物體時(shí),彈簧長(zhǎng)度為3厘米,當(dāng)掛1千克物體時(shí),增加0.5厘米,總長(zhǎng)度為3.5厘米,當(dāng)增加1千克物體,即所掛物體為2千克時(shí),彈簧又增加0.5厘米,總共增加1厘米,由此可見(jiàn),所掛物體每增加1千克,彈簧就伸長(zhǎng)0.5厘米,所掛物體為x千克,彈簧就伸長(zhǎng)0.5x厘米,則彈簧總長(zhǎng)為原長(zhǎng)加伸長(zhǎng)的長(zhǎng)度,即y=3+0.5x。

  2、做一做某輛汽車(chē)油箱中原有汽油100升,汽車(chē)每行駛50千克耗油9升。你能寫(xiě)出x與y之間的關(guān)系嗎?(y=1000.18x或y=100 x)接著看下面這些函數(shù),你能說(shuō)出這些函數(shù)有什么共同的特點(diǎn)嗎?上面的幾個(gè)函數(shù)關(guān)系式,都是左邊是因變量,右邊是含自變量的代數(shù)式,并且自變量和因變量的指數(shù)都是一次。

  3、一次函數(shù),正比例函數(shù)的概念若兩個(gè)變量x,y間的關(guān)系式可以表示成y=kx+b(k,b為常數(shù)k≠0)的形式,則稱(chēng)y是x的一次函數(shù)(x為自變量,y為因變量)。特別地,當(dāng)b=0時(shí),稱(chēng)y是x的正比例函數(shù)。

  4、例題講解例1:下列函數(shù)中,y是x的一次函數(shù)的是( )  、賧=x6;②y= ;③y= ;④y=7x   A、①②③ B、①③④ C、①②③④ D、②③④分析:這道題考查的是一次函數(shù)的概念,特別要強(qiáng)調(diào)一次函數(shù)自變量與因變量的指數(shù)都是1,因而②不是一次函數(shù),答案為B

高三數(shù)學(xué)教案15

  1.數(shù)列的概念和簡(jiǎn)單表示法?

  (1)了解數(shù)列的概念和幾種簡(jiǎn)單的表示方法(列表、圖象、通項(xiàng)公式);? (2)了解數(shù)列是自變量為正整數(shù)的一類(lèi)函數(shù).?

  2.等差數(shù)列、等比數(shù)列?

  (1)理解等差數(shù)列、等比數(shù)列的概念;?

  (2)掌握等差數(shù)列、等比數(shù)列的通項(xiàng)公式與前n項(xiàng)和公式;?

  (3)能在具體問(wèn)題情境中識(shí)別數(shù)列的等差關(guān)系或等比關(guān)系,并能用有關(guān)知識(shí)解決相應(yīng)的問(wèn)題;?

  (4)了解等差數(shù)列與一次函數(shù)、等比數(shù)列與指數(shù)函數(shù)的關(guān)系. 本章重點(diǎn):1.等差數(shù)列、等比數(shù)列的定義、通項(xiàng)公式和前n項(xiàng)和公式及有關(guān)性質(zhì);

  2.注重提煉一些重要的思想和方法,如:觀察法、累加法、累乘法、待定系數(shù)法、倒序相加求和法、錯(cuò)位相減求和法、裂項(xiàng)相消求和法、分組求和法、函數(shù)與方程思想、數(shù)學(xué)模型思想以及離散與連續(xù)的關(guān)系.?

  本章難點(diǎn):1.數(shù)列概念的理解;2.等差等比數(shù)列性質(zhì)的運(yùn)用;3.數(shù)列通項(xiàng)與求和方法的運(yùn)用. 仍然會(huì)以客觀題考查等差數(shù)列與等比數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式及性質(zhì),在解答題中,會(huì)保持以前的風(fēng)格,注重?cái)?shù)列與其他分支的綜合能力的考查,在高考中,數(shù)列常考常新,其主要原因是它作為一 個(gè)特殊函數(shù),使它可以與函數(shù)、不等式、解析幾何、三角函數(shù)等綜合起來(lái),命出開(kāi)放性、探索性強(qiáng)的問(wèn)題,更體現(xiàn)了知識(shí)交叉命題原則得以貫徹;又因?yàn)閿?shù)列與生產(chǎn)、生活的聯(lián)系,使數(shù)列應(yīng)用題也倍受歡迎.

  知識(shí)網(wǎng)絡(luò)

  6.1 數(shù)列的概念與簡(jiǎn)單表示法

  典例精析

  題型一 歸納、猜想法求數(shù)列通項(xiàng)

  【例1】根據(jù)下列數(shù)列的前幾項(xiàng),分別寫(xiě)出它們的一個(gè)通項(xiàng)公式:

  (1)7,77,777,7 777,

  (2)23,-415,635,-863,

  (3)1,3,3,5,5,7,7,9,9,

  【解析】(1)將數(shù)列變形為79(10-1),79(102-1),79(103-1),,79(10n-1),

  故an=79(10n-1).

  (2)分開(kāi)觀察,正負(fù)號(hào)由(-1)n+1確定,分子是偶數(shù)2n,分母是13,35,57, ,(2n-1)(2n+1),故數(shù)列的通項(xiàng)公式可寫(xiě)成an =(-1)n+1 .

  (3)將已知數(shù)列變?yōu)?+0,2+1,3+0,4+1,5+0,6+1,7+0,8+1,9+0,.

  故數(shù)列的通項(xiàng)公式為an=n+ .

  【點(diǎn)撥】聯(lián)想與轉(zhuǎn)換是由已知認(rèn)識(shí)未知的兩種有效的思維方法,觀察歸納是由特殊到一般的有效手段,本例的求解關(guān)鍵是通過(guò)分析、比較、聯(lián)想、歸納、轉(zhuǎn)換獲得項(xiàng)與項(xiàng)序數(shù)的一般規(guī)律,從而求得通項(xiàng).

  【變式訓(xùn)練1】如下表定義函數(shù)f(x):

  x 1 2 3 4 5

  f(x) 5 4 3 1 2

  對(duì)于數(shù)列{an},a1=4,an=f(an-1),n=2,3,4,,則a2 008的值是()

  A.1 B.2 C.3 D.4

  【解析】a1=4,a2=1,a3=5,a4=2,a5=4,,可得an+4=an.

  所以a2 008=a4=2,故選B.

  題型二 應(yīng)用an= 求數(shù)列通項(xiàng)

  【例2】已知數(shù)列{an}的前n項(xiàng)和Sn,分別求其通項(xiàng)公式:

  (1)Sn=3n-2;

  (2)Sn=18(an+2)2 (an0).

  【解析】(1)當(dāng)n=1時(shí),a1=S1=31-2=1,

  當(dāng)n2時(shí),an=Sn-Sn-1=(3n-2)-(3n-1-2)=23n-1,

  又a1=1不適合上式,

  故an=

  (2)當(dāng)n=1時(shí),a1=S1=18(a1+2)2,解得a1=2,

  當(dāng)n2時(shí),an=Sn-Sn-1=18(an+2)2-18(an-1+2)2,

  所以(an-2)2-(an-1+2)2=0,所以(an+an-1)(an-an-1-4)=0,

  又an0,所以an-an-1=4,

  可知{an}為等差數(shù)列,公差為4,

  所以an=a1+(n-1)d=2+(n-1)4=4n-2,

  a1=2也適合上式,故an=4n-2.

  【點(diǎn)撥】本例的關(guān)鍵是應(yīng)用an= 求數(shù)列的通項(xiàng),特別要注意驗(yàn)證a1的值是否滿足2的一般性通項(xiàng)公式.

  【變式訓(xùn)練2】已知a1=1,an=n(an+1-an)(nN*),則數(shù)列{an}的通項(xiàng)公式是()

  A.2n-1 B.(n+1n)n-1 C.n2 D.n

  【解析】由an=n(an+1-an)an+1an=n+1n.

  所以an=anan-1an-1an-2a2a1=nn-1n-1n-23221=n,故選D.

  題型三 利用遞推關(guān)系求數(shù)列的通項(xiàng)

  【例3】已知在數(shù)列{an}中a1=1,求滿足下列條件的數(shù)列的通項(xiàng)公式:

  (1)an+1=an1+2an;(2)an+1=2an+2n+1.

  【解析】(1)因?yàn)閷?duì)于一切nN*,an0,

  因此由an+1=an1+2an得1an+1=1an+2,即1an+1-1an=2.

  所以{1an}是等差數(shù)列,1an=1a1+(n-1)2=2n-1,即an=12n-1.

  (2)根據(jù)已知條件得an+12n+1=an2n+1,即an+12n+1-an2n=1.

  所以數(shù)列{an2n}是等差數(shù)列,an2n=12+(n-1)=2n-12,即an=(2n-1)2n-1.

  【點(diǎn)撥】通項(xiàng)公式及遞推關(guān)系是給出數(shù)列的常用方法,尤其是后者,可以通過(guò)進(jìn)一步的計(jì)算,將其進(jìn)行轉(zhuǎn)化,構(gòu)造新數(shù)列求通項(xiàng),進(jìn)而可以求得所求數(shù)列的通項(xiàng)公式.

  【變式訓(xùn)練3】設(shè){an}是首項(xiàng)為1的.正項(xiàng)數(shù)列,且(n+1)a2n+1-na2n+an+1an=0(n=1,2,3,),求an.

  【解析】因?yàn)閿?shù)列{an}是首項(xiàng)為1的正項(xiàng)數(shù)列,

  所以anan+10,所以(n+1)an+1an-nanan+1+1=0,

  令an+1an=t,所以(n+1)t2+t-n=0,

  所以[(n+1)t-n](t+1)=0,

  得t=nn+1或t=-1(舍去),即an+1an=nn+1.

  所以a2a1a3a2a4a3a5a4anan-1=12233445n-1n,所以an=1n.

  總結(jié)提高

  1.給出數(shù)列的前幾項(xiàng)求通項(xiàng)時(shí),常用特征分析法與化歸法,所求通項(xiàng)不唯一.

  2.由Sn求an時(shí),要分n=1和n2兩種情況.

  3.給出Sn與an的遞推關(guān)系,要求an,常用思路是:一是利用Sn-Sn-1=an(n2)轉(zhuǎn)化為an的遞推關(guān)系,再求其通項(xiàng)公式;二是轉(zhuǎn)化為Sn的遞推關(guān)系,先求出Sn與n之間的關(guān)系,再求an.

  6.2 等差數(shù)列

  典例精析

  題型一 等差數(shù)列的判定與基本運(yùn)算

  【例1】已知數(shù)列{an}前n項(xiàng)和Sn=n2-9n.

  (1)求證:{an}為等差數(shù)列;(2)記數(shù)列{|an|}的前n項(xiàng)和為T(mén)n,求 Tn的表達(dá)式.

  【解析】(1)證明:n=1時(shí),a1=S1=-8,

  當(dāng)n2時(shí),an=Sn-Sn-1=n2-9n-[(n-1)2-9(n-1)]=2n-10,

  當(dāng)n=1時(shí),也適合該式,所以an=2n-10 (nN*).

  當(dāng)n2時(shí),an-an-1=2,所以{an}為等差數(shù)列.

  (2)因?yàn)閚5時(shí),an0,n6時(shí),an0.

  所以當(dāng)n5時(shí),Tn=-Sn=9n-n2,

  當(dāng)n6時(shí),Tn=a1+a2++a5+a6++an

  =-a1-a2--a5+a6+a7++an

  =Sn-2S5=n2-9n-2(-20)=n2-9n+40,

  所以,

  【點(diǎn)撥】根據(jù)定義法判斷數(shù)列為等差數(shù)列,靈活運(yùn)用求 和公式.

  【變式訓(xùn)練1】已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且S21=42,若記bn= ,則數(shù)列{bn}()

  A.是等差數(shù)列,但不是等比數(shù)列 B.是等比數(shù)列,但不是等差數(shù)列

  C.既是等差數(shù)列,又是等比數(shù)列 D.既不是等差數(shù)列,又不是等比數(shù)列

  【解析】本題考查了兩類(lèi)常見(jiàn)數(shù)列,特別是等差數(shù)列的性質(zhì).根據(jù)條件找出等差數(shù)列{an}的首項(xiàng)與公差之間的關(guān)系從而確定數(shù)列{bn}的通項(xiàng)是解決問(wèn)題的突破口.{an}是等差數(shù)列,則S21=21a1+21202d=42.

  所以a1+10d=2,即a11=2.所以bn= =22-(2a11)=20=1,即數(shù)列{bn}是非0常數(shù)列,既是等差數(shù)列又是等比數(shù)列.答案為C.

  題型二 公式的應(yīng)用

  【例2】設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,已知a3=12,S120,S130.

  (1)求公差d的取值范圍;

  (2)指出S1,S2,,S12中哪一個(gè)值最大,并說(shuō)明理由.

  【解析】(1)依題意,有

  S12=12a1+12(12-1)d20,S13=13a1+13(13-1)d20,

  即

  由a3=12,得a1=12-2d.③

  將③分別代入①②式,得

  所以-247

  (2)方法一:由d0可知a1a3a13,

  因此,若在112中存在自然數(shù)n,使得an0,an+10,

  則Sn就是S1,S2,,S12中的最大值.

  由于S12=6(a6+a7)0,S13=13a70,

  即a6+a70,a70,因此a60,a70,

  故在S1,S2,,S12中,S6的值最大.

  方法二:由d0可知a1a3a13,

  因此,若在112中存在自然數(shù)n,使得an0,an+10,

  則Sn就是S1,S2,,S12中的最大值.

  故在S1,S2,,S12中,S6的值最大.

  【變式訓(xùn)練2】在等差數(shù)列{an}中,公差d0,a2 008,a2 009是方程x2-3x-5=0的兩個(gè)根,Sn是數(shù)列{an}的前n項(xiàng)的和,那么滿足條件Sn0的最大自然數(shù)n=.

  【解析】由題意知 又因?yàn)楣頳0,所以a2 0080,a2 0090. 當(dāng)

  n=4 015時(shí),S4 015=a1+a4 01524 015=a2 0084 015當(dāng)n=4 016時(shí),S4 016=a1+a4 01624 016=a2 008+a2 00924 0160.所以滿足條件Sn0的最大自然數(shù)n=4 015.

  題型三 性質(zhì)的應(yīng)用

  【例3】某地區(qū)2010年9月份曾發(fā)生流感,據(jù)統(tǒng)計(jì),9月1日該地區(qū)流感病毒的新感染者有40人,此后,每天的新感染者人數(shù)比前一天增加40人;但從9月11日起,該地區(qū)醫(yī)療部門(mén)采取措施,使該種病毒的傳播得到控制,每天的新感染者人數(shù)比前一天減少10人.

  (1)分別求出該地區(qū)在9月10日和9月11日這兩天的流感病毒的新感染者人數(shù);

  (2)該地區(qū)9月份(共30天)該病毒新感染者共有多少人?

  【解析】(1)由題意知,該地區(qū)9月份前10天流感病毒的新感染者的人數(shù)構(gòu)成一個(gè)首項(xiàng)為40,公差為40的等差數(shù)列.

  所以9月10日的新感染者人數(shù)為40+(10-1)40=400(人).

  所以9月11日的新感染者人數(shù)為400-10=390(人).

  (2)9月份前10天的新感染者人數(shù)和為S10=10(40+400)2=2 200(人),

  9月份后20天流感病毒的新感染者的人數(shù),構(gòu)成一個(gè)首項(xiàng)為390,公差為-10的等差數(shù)列.

  所以后20天新感染者的人數(shù)和為T(mén)20=20390+20(20-1)2(-10)=5 900(人).

  所以該地區(qū)9月份流感病毒的新感染者共有2 200+5 900=8 100(人).

  【變式訓(xùn)練3】設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若S410,S515,則a4的最大值為

  .

  【解析】因?yàn)榈炔顢?shù)列{an}的前n項(xiàng)和為Sn,且S410,S515,

  所以5+3d23+d,即5+3d6+2d,所以d1,

  所以a43+1=4,故a4的最大值為4.

  總結(jié)提高

  1.在熟練應(yīng)用基本公式的同時(shí),還要會(huì)用變通的公式,如在等差數(shù)列中,am=an+(m-n)d.

  2.在五個(gè)量a1、d、n、an、Sn中,知其中的三個(gè)量可求出其余兩個(gè)量,要求選用公式要恰當(dāng),即善于減少運(yùn)算量,達(dá)到快速、準(zhǔn)確的目的

  3.已知三個(gè)或四個(gè)數(shù)成等差數(shù)列這類(lèi)問(wèn)題,要善于設(shè)元,目的仍在于減少運(yùn)算量,如三個(gè)數(shù)成等差數(shù)列時(shí),除了設(shè)a,a+d,a+2d外,還可設(shè)a-d,a,a +d;四個(gè)數(shù)成等差數(shù)列時(shí),可設(shè)為a-3m,a-m,a+m,a+3m.

  4.在求解數(shù)列問(wèn)題時(shí),要注意函數(shù)思想、方程思想、消元及整體消元的方法的應(yīng)用.

  6.3 等比數(shù)列

  典例精析

  題型一 等比數(shù)列的基本運(yùn)算與判定

  【例1】數(shù)列{an}的前n項(xiàng)和記為Sn,已知a1=1,an+1=n+2nSn(n=1,2,3,).求證:

  (1)數(shù)列{Snn}是等比數(shù)列;(2)Sn+1=4an.

  【解析】(1)因?yàn)閍n+1=Sn+1-Sn,an+1=n+2nSn,

  所以(n+2)Sn=n(Sn+1-Sn).

  整理得nSn+1=2(n+1)Sn,所以Sn+1n+1=2Snn,

  故{Snn}是以2為公比的等比數(shù)列.

  (2)由(1)知Sn+1n+1=4Sn-1n-1 =4ann+1(n2),

  于是Sn+1=4(n+1)Sn-1n-1=4an(n2).

  又a2=3S1=3,故S2=a1+a2=4.

  因此對(duì)于任意正整數(shù)n1,都有Sn+1=4an.

  【點(diǎn)撥】①運(yùn)用等比數(shù)列的基本公式,將已知條件轉(zhuǎn)化為關(guān)于等比數(shù)列的特征量a1、q的方程是求解等比數(shù)列問(wèn)題的常用方法之一,同時(shí)應(yīng)注意在使 用等比數(shù)列前n項(xiàng)和公式時(shí),應(yīng)充分討論公比q是否等于1;②應(yīng)用定義判斷數(shù)列是否是等比數(shù)列是最直接,最有依據(jù)的方法,也是通法,若判斷一個(gè)數(shù)列是等比數(shù)列可用an+1an=q(常數(shù))恒成立,也可用a2n+1 =anan+2 恒成立,若判定一個(gè)數(shù)列不是等比數(shù)列則只需舉出反例即可,也可以用反證法.

  【變式訓(xùn)練1】等比數(shù)列{an}中,a1=317,q=-12.記f(n)=a1a2an,則當(dāng)f(n)最大時(shí),n的值為()

  A.7 B.8 C.9 D.10

  【解析】an=317(-12)n-1,易知a9=31712561,a100,00,故f(9)=a1a2a9的值最大,此時(shí)n=9.故選C.

  題型二 性質(zhì)運(yùn)用

  【例2】在等比數(shù)列{an}中,a1+a6=33,a3a4=32,anan+1(nN*).

  (1)求an;

  (2)若Tn=lg a1+lg a2++lg an,求Tn.

  【解析】(1)由等比數(shù)列的性質(zhì)可知a1a6=a3a4=32,

  又a1+a6=33,a1a6,解得a1=32,a6=1,

  所以a6a1=132,即q5=132,所以q=12,

  所以an=32(12)n-1=26-n .

  (2)由等比數(shù)列的性質(zhì)可知,{lg an}是等差數(shù)列,

  因?yàn)閘g an=lg 26-n=(6-n)lg 2,lg a1=5lg 2,

  所以Tn=(lg a1+lg an)n2=n(11-n)2lg 2.

  【點(diǎn)撥】歷年高考對(duì)性質(zhì)考查較多,主要是利用等積性,題目小而巧且背景不斷更新,要熟練掌握.

  【變式訓(xùn)練2】在等差數(shù)列{an}中,若a15=0,則有等式a1+a2++an=a1+a2++a29-n(n29,nN*)成立,類(lèi)比上述性質(zhì),相應(yīng)地在等比數(shù)列{bn}中,若b19=1,能得到什么等式?

  【解析】由題設(shè)可知,如果am=0,在等差數(shù)列中有

  a1+a2++an=a1+a2++a2m-1-n(n2m-1,nN*)成立,

  我們知道,如果m+n=p+q,則am+an=ap+aq,

  而對(duì)于等比數(shù)列{bn},則有若m+n=p+q,則aman=apaq,

  所以可以得出結(jié)論:

  若bm=1,則有b1b2bn=b1b2b2m-1-n(n2m-1,nN*)成立.

  在本題中則有b1b2bn=b1b2b37-n(n37,nN*).

  題型三 綜合運(yùn)用

  【例3】設(shè)數(shù)列{an}的前n 項(xiàng)和為Sn,其中an0,a1為常數(shù),且-a1,Sn,an+1成等差數(shù)列.

  (1)求{an}的通項(xiàng)公式;

  (2)設(shè)bn=1-Sn,問(wèn)是否存在a1,使數(shù)列{bn}為等比數(shù)列?若存在,則求出a1的值;若不存在,說(shuō)明理由.

  【解析】(1)由題意可得2Sn=an+1-a1.

  所以當(dāng)n2時(shí),有

  兩式相減得an+1=3an(n2).

  又a2=2S1+a1=3a1,an0,

  所以{an}是以首項(xiàng)為a1,公比為q=3的等比數(shù)列.

  所以an=a13n-1.

  (2)因?yàn)镾n=a1(1-qn)1-q=-12a1+12a13n,所以bn=1-Sn=1+12a1-12a13n.

  要使{bn}為等比數(shù)列,當(dāng)且僅當(dāng)1+12a1=0,即a1=-2,此時(shí)bn=3n.

  所以{bn}是首項(xiàng) 為3,公比為q=3的等比數(shù)列.

  所以{bn}能為等比數(shù)列,此時(shí)a1=-2.

  【變式訓(xùn)練3】已知命題:若{an}為等 差數(shù)列,且am=a,an=b(m0,nN*)為等比數(shù)列,且bm=a,bn=b(m

  【解析】n-mbnam.

  總結(jié)提高

  1.方程思想,即等比數(shù)列{an}中五個(gè)量a1,n,q,an,Sn,一般可知三求二,通過(guò)求和與通項(xiàng)兩公式列方程組求解.

  2.對(duì)于已知數(shù)列{an}遞推公式an與Sn的混合關(guān)系式,利用公式an=Sn-Sn-1(n2),再引入輔助數(shù)列,轉(zhuǎn)化為等比數(shù)列問(wèn)題求解.

  3.分類(lèi)討論思想:當(dāng)a10,q1或a10,00,01時(shí),{an}為遞減數(shù)列;q0時(shí),{an}為擺動(dòng)數(shù)列;q=1時(shí),{an}為常數(shù)列.

  6.4 數(shù)列求和

  典例精析

  題型一 錯(cuò)位相減法求和

  【例1】求和:Sn=1a+2a2+3a3++nan.

  【解 析】(1)a=1時(shí),Sn=1+2+3++n=n(n+1)2.

  (2)a1時(shí),因?yàn)閍0,

  Sn=1a+2a2+3a3++nan,①

  1aSn=1a2+2a3++n-1an+nan+1.②

  由①-②得(1-1a)Sn=1a+1a2++1an-nan+1=1a(1-1an)1-1a-nan+1,

  所以Sn=a(an-1)-n(a-1)an(a-1)2.

  綜上所述,Sn=

  【點(diǎn)撥】(1)若數(shù)列{an}是等差數(shù)列,{bn}是等比數(shù)列,則求數(shù)列{anbn}的前n項(xiàng)和時(shí),可采用錯(cuò)位相減法;

  (2)當(dāng)?shù)缺葦?shù)列公比為字母時(shí),應(yīng)對(duì)字母是否為1進(jìn)行討論;

  (3)當(dāng)將Sn與qSn相減合并同類(lèi)項(xiàng)時(shí),注意錯(cuò)位及未合并項(xiàng)的正負(fù)號(hào).

  【變式訓(xùn)練1】數(shù)列{2n-32n-3}的前n項(xiàng)和為()

  A.4-2n-12n-1 B.4+2n-72n-2 C.8-2n+12n-3 D.6-3n+22n-1

  【解析】取n=1,2n-32n-3=-4.故選C.

  題型二 分組并項(xiàng)求和法

  【例2】求和Sn=1+(1+12)+(1+12+14)++(1+12+14++12n-1).

  【解析】和式中第k項(xiàng)為ak =1+12+14++12k-1=1-(12)k1-12=2(1-12k).

  所以Sn=2[(1-12)+(1-122)++(1-12n)]

  = -(12+122++12n)]

  =2[n-12(1-12n)1-12]=2[n-(1-12n)]=2n-2+12n-1.

  【變式訓(xùn)練2】數(shù)列1, 1+2, 1+2+22,1+2+22+23,,1+2+22++2n-1,的前n項(xiàng)和為()

  A.2n-1 B.n2n-n

  C.2n+1-n D.2n+1-n-2

  【解析】an=1+2+22++2n-1=2n-1,

  Sn=(21-1)+(22-1)++(2n-1)=2n+1-n-2.故選D.

  題型三 裂項(xiàng)相消法求和

  【例3】數(shù)列{an}滿足a1=8,a4=2,且an+2-2an+1+an=0 (nN*).

  (1)求數(shù)列{an}的通項(xiàng)公式;

  (2)設(shè)bn=1n(14-an)(nN*),Tn=b1+b2++bn(nN*),若對(duì)任意非零自然數(shù)n,Tnm32恒成立,求m的最大整數(shù)值.

  【解析】(1)由an+2-2an+1+an=0,得an+2-an+1=an+1-an,

  從而可知數(shù)列{an}為等差數(shù)列,設(shè)其公差為d,則d=a4-a14-1=-2,

  所以an=8+(n-1)(-2)=10-2n.

  (2)bn=1n(14-an)=12n(n+2)=14(1n-1n+2),

  所以Tn=b1+b2++bn=14[(11-13)+(12-14)++(1n-1n+2)]

  =14(1+12-1n+1-1n+2)=38-14(n+1)-14(n+2)m32 ,

  上式對(duì)一切nN*恒成立.

  所以m12-8n+1-8n+2對(duì)一切nN*恒成立.

  對(duì)nN*,(12-8n+1-8n+2)min=12-81+1-81+2=163,

  所以m163,故m的最大整數(shù)值為5.

  【點(diǎn)撥】(1)若數(shù)列{an}的通項(xiàng)能轉(zhuǎn)化為f(n+1)-f(n)的形式,常采用裂項(xiàng)相消法求和.

  (2)使用裂項(xiàng)相消法求和時(shí),要注意正負(fù)項(xiàng)相消時(shí),消去了哪些項(xiàng),保留了哪些項(xiàng).

  【變式訓(xùn)練3】已知數(shù)列{an},{bn}的前n項(xiàng)和為An,Bn,記cn=anBn+bnAn-anbn(nN*),則數(shù)列{cn}的前10項(xiàng)和為()

  A.A10+B10 B.A10+B102 C.A10B10 D.A10B10

  【解析】n=1,c1=A1B1;n2,cn=AnBn-An-1Bn-1,即可推出{cn}的前10項(xiàng)和為A10B10,故選C.

  總結(jié)提高

  1.常用的 基本求和法均對(duì)應(yīng)數(shù)列通項(xiàng)的特殊結(jié)構(gòu)特征,分析數(shù)列通項(xiàng)公式的特征聯(lián)想相應(yīng)的求和方法既是根本,也是關(guān)鍵.

  2.數(shù)列求和實(shí)質(zhì)就是求數(shù)列{Sn}的通項(xiàng)公式,它幾乎涵蓋了數(shù)列中所有的思想策略、方法和技巧,對(duì)學(xué)生的知識(shí)和思維有很高的要求,應(yīng)充分重視并系統(tǒng)訓(xùn)練.

  6.5 數(shù)列的綜合應(yīng)用

  典例精析

  題型一 函數(shù)與數(shù)列的綜合問(wèn)題

  【例1】已知f(x)=logax(a0且a1),設(shè)f(a1),f(a2),,f(an)(nN*)是首項(xiàng)為4,公差為2的等差數(shù)列.

  (1)設(shè)a是常數(shù),求證:{an}成等比數(shù)列;

  (2)若bn=anf(an),{bn}的前n項(xiàng)和是Sn,當(dāng)a=2時(shí),求Sn.

  【解析】(1)f(an)=4+(n-1)2=2n+2,即logaan=2n+2,所以an=a2n+2,

  所以anan-1=a2n+2a2n=a2(n2)為定值,所以{an}為等比數(shù)列.

  (2)bn=anf(an)=a2n+2logaa2n+2=(2n+2)a2n+2,

  當(dāng)a=2時(shí),bn=(2n+2) (2)2n+2=(n+1) 2n+2,

  Sn=223+324+425++(n+1 ) 2n+2,

  2Sn=224+325++n2n+2+(n+1)2n+3,

  兩式相減得

  -Sn=223+24+25++2n+2-(n+1)2n+3=16+24(1-2n-1)1-2-(n+1)2n+3,

  所以Sn=n2n+3.

  【點(diǎn)撥】本例是數(shù)列與函數(shù)綜合的基本題型之一,特征是以函數(shù)為載體構(gòu)建數(shù)列的遞推關(guān)系,通過(guò)由函數(shù)的解析式獲知數(shù)列的通項(xiàng)公式,從而問(wèn)題得到求解.

  【變式訓(xùn)練1】設(shè)函數(shù)f(x)=xm+ax的導(dǎo)函數(shù)f(x)=2x+1,則數(shù)列{1f(n)}(nN*)的前n項(xiàng)和是()

  A.nn+1 B.n+2n+1 C.nn+1 D.n+1n

  【解析】由f(x)=mxm-1+a=2x+1得m=2,a=1.

  所以f(x)=x2+x,則1f(n)=1n(n+1)=1n-1n+1.

  所以Sn=1-12+12-13+13-14++1n-1n+1=1-1n+1=nn+1.故選C.

  題型二 數(shù)列模型實(shí)際應(yīng)用問(wèn)題

  【例2】某縣位于沙漠地帶,人與自然長(zhǎng)期進(jìn)行著頑強(qiáng)的斗爭(zhēng),到2009年底全縣的綠化率已達(dá)30%,從2010年開(kāi)始,每年將出現(xiàn)這樣的局面:原有沙漠面積的16%將被綠化,與此同時(shí),由于各種原因,原有綠化面積的4%又被沙化.

  (1)設(shè)全縣面積為1,2009年底綠化面積為a1=310,經(jīng)過(guò)n年綠化面積為an+1,求證:an+1=45an+425;

  (2)至少需要多少年(取整數(shù))的努力,才能使全縣的綠化率達(dá)到60%?

  【解析】(1)證明:由已知可得an 確定后,an+1可表示為an+1=an(1-4%)+(1-an)16%,

  即an+1=80%an+16%=45an+425.

  (2)由an+1=45an+425有,an+1-45=45(an-45),

  又a1-45=-120,所以an+1-45=-12(45)n,即an+1=45-12(45)n,

  若an+135,則有45-12(45)n35,即(45)n-112,(n-1)lg 45-lg 2,

  (n-1)(2lg 2-lg 5)-lg 2,即(n-1)(3lg 2-1)-lg 2,

  所以n1+lg 21-3lg 24,nN*,

  所以n取最小整數(shù)為5,故至少需要經(jīng)過(guò)5年的努力,才能使全縣的綠化率達(dá)到60%.

  【點(diǎn)撥】解決此類(lèi)問(wèn)題的關(guān)鍵是如何把實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,通過(guò)反復(fù)讀題,列出有關(guān)信息,轉(zhuǎn)化為數(shù)列的有關(guān)問(wèn)題.

  【變式訓(xùn)練2】規(guī)定一機(jī)器狗每秒鐘只能前進(jìn)或后退一步,現(xiàn)程序設(shè)計(jì)師讓機(jī)器狗以前進(jìn)3步,然后再后退2步的規(guī)律進(jìn)行移動(dòng).如果將此機(jī)器狗放在數(shù)軸的原點(diǎn),面向正方向,以1步的距離為1單位長(zhǎng)移動(dòng),令P(n)表示第n秒時(shí)機(jī)器狗所在的位置坐標(biāo),且P(0)=0,則下列結(jié)論中錯(cuò)誤的是()

  A.P(2 006)=402 B.P(2 007)= 403

  C.P(2 008)=404 D.P(2 009)=405

  【解析】考查數(shù)列的應(yīng)用.構(gòu)造數(shù)列{Pn},由題知P(0)=0,P(5)=1,P(10)=2,P(15)=3.所以P(2 005)=401,P(2 006)=401+1=402,P(2 007)=401+1+1=403,P(2 008)=401+

  3=404,P(2 009)=404-1=403.故D錯(cuò).

  題型三 數(shù)列中的探索性問(wèn)題

  【例3】{an},{bn}為兩個(gè)數(shù)列,點(diǎn)M(1,2),An(2,an),Bn(n-1n,2n)為直角坐標(biāo)平面上的點(diǎn).

  (1)對(duì)nN*,若點(diǎn)M,An,Bn在同一直線上,求數(shù)列{an}的通項(xiàng)公式;

  (2)若數(shù)列{bn}滿足log2Cn=a1b1+a2b2++anbna1+a2++an,其中{Cn}是第三項(xiàng)為8,公比為4的等比數(shù)列,求證:點(diǎn)列(1,b1),(2,b2),,(n,bn)在同一直線上,并求此直線方程.

  【解析】(1)由an-22-1=2n-2n-1n-1,得an=2n.

  (2)由已知有Cn=22n-3,由log2Cn的表達(dá)式可知:

  2(b1+2b2++nbn)=n(n+1)(2n-3),①

  所以2[b1+2b2++(n-1)bn-1]=(n-1)n(2n-5).②

 、-②得bn=3n-4,所以{bn}為等差數(shù)列.

  故點(diǎn)列(1,b1),(2,b2),,(n,bn)共線,直線方程為y=3x-4.

  【變式訓(xùn)練3】已知等差數(shù)列{an}的首項(xiàng)a1及公差d都是整數(shù),前n項(xiàng)和為Sn(nN*).若a11,a43,S39,則通項(xiàng)公式an=.

  【解析】本題考查二元一次不等式的整數(shù)解以及等差數(shù)列的通項(xiàng)公式.

  由a11,a43,S39得

  令x=a1,y=d得

  在平面直角坐標(biāo)系中畫(huà)出可行域如圖所示.符合要求的整數(shù)點(diǎn)只有(2,1),即a1=2,d=1.所以an=2+n-1=n+1.故答案填n+1.

  總結(jié)提高

  1.數(shù)列模型應(yīng)用問(wèn)題的求解策略

  (1)認(rèn)真審題,準(zhǔn)確理解題意;

  (2)依據(jù)問(wèn)題情境,構(gòu)造等差、等比數(shù)列,然后應(yīng)用通項(xiàng)公式、前n項(xiàng)和公式以及性質(zhì)求解,或通過(guò)探索、歸納構(gòu)造遞推數(shù)列求解;

  (3)驗(yàn)證、反思結(jié)果與實(shí)際是否相符.

  2.數(shù)列綜合問(wèn)題的求解策略

  (1)數(shù)列與函數(shù)綜合問(wèn)題或應(yīng)用數(shù)學(xué)思想解決數(shù)列問(wèn)題,或以函數(shù)為載體構(gòu)造數(shù)列,應(yīng)用數(shù)列的知識(shí)求解;

  (2)數(shù)列的幾何型綜合問(wèn)題,探究幾何性質(zhì)和規(guī)律特征建立數(shù)列的遞推關(guān)系式,然后求解問(wèn)題.

【高三數(shù)學(xué)教案】相關(guān)文章:

高三數(shù)學(xué)教案11-07

人教版高三數(shù)學(xué)教案12-13

高三數(shù)學(xué)教案15篇11-08

【優(yōu)】人教版高三數(shù)學(xué)教案06-19

高三數(shù)學(xué)教案(15篇)11-09

高三數(shù)學(xué)教案(集錦15篇)02-17

高三數(shù)學(xué)教案(匯編15篇)02-17

人教版高三數(shù)學(xué)教案5篇01-16

高三數(shù)學(xué)教案(通用14篇)06-18