(推薦)高一上冊數(shù)學(xué)教案6篇
作為一名教師,時常要開展教案準備工作,教案是教材及大綱與課堂教學(xué)的紐帶和橋梁。那么優(yōu)秀的教案是什么樣的呢?以下是小編為大家收集的高一上冊數(shù)學(xué)教案,歡迎大家分享。
高一上冊數(shù)學(xué)教案1
1、知識與技能
(1)掌握任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號);
(2)理解任意角的三角函數(shù)不同的定義方法;
(3)了解如何利用與單位圓有關(guān)的有向線段,將任意角α的正弦、余弦、正切函數(shù)值分別用正弦線、余弦線、正切線表示出來;
(4)掌握并能初步運用公式一;
(5)樹立映射觀點,正確理解三角函數(shù)是以實數(shù)為自變量的函數(shù).
2、過程與方法
初中學(xué)過:銳角三角函數(shù)就是以銳角為自變量,以比值為函數(shù)值的函數(shù).引導(dǎo)學(xué)生把這個定義推廣到任意角,通過單位圓和角的終邊,探討任意角的'三角函數(shù)值的求法,最終得到任意角三角函數(shù)的定義.根據(jù)角終邊所在位置不同,分別探討各三角函數(shù)的定義域以及這三種函數(shù)的值在各象限的符號.最后主要是借助有向線段進一步認識三角函數(shù).講解例題,總結(jié)方法,鞏固練習(xí).
3、情態(tài)與價值
任意角的三角函數(shù)可以有不同的定義方法,而且各種定義都有自己的特點.過去習(xí)慣于用角的終邊上點的坐標(biāo)的“比值”來定義,這種定義方法能夠表現(xiàn)出從銳角三角函數(shù)到任意角的三角函數(shù)的推廣,有利于引導(dǎo)學(xué)生從自己已有認知基礎(chǔ)出發(fā)學(xué)習(xí)三角函數(shù),但它對準確把握三角函數(shù)的本質(zhì)有一定的不利影響,“從角的集合到比值的集合”的對應(yīng)關(guān)系與學(xué)生熟悉的一般函數(shù)概念中的“數(shù)集到數(shù)集”的對應(yīng)關(guān)系有沖突,而且“比值”需要通過運算才能得到,這與函數(shù)值是一個確定的實數(shù)也有不同,這些都會影響學(xué)生對三角函數(shù)概念的理解.
本節(jié)利用單位圓上點的坐標(biāo)定義任意角的正弦函數(shù)、余弦函數(shù).這個定義清楚地表明了正弦、余弦函數(shù)中從自變量到函數(shù)值之間的對應(yīng)關(guān)系,也表明了這兩個函數(shù)之間的關(guān)系.
教學(xué)重難點
重點:任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號);終邊相同的角的同一三角函數(shù)值相等(公式一).
難點:任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號);三角函數(shù)線的正確理解.
高一上冊數(shù)學(xué)教案2
1、教材(教學(xué)內(nèi)容)
本課時主要研究任意角三角函數(shù)的定義。三角函數(shù)是一類重要的基本初等函數(shù),是描述周期性現(xiàn)象的重要數(shù)學(xué)模型,本課時的內(nèi)容具有承前啟后的重要作用:承前是因為可以用函數(shù)的定義來抽象和規(guī)范三角函數(shù)的定義,同時也可以類比研究函數(shù)的模式和方法來研究三角函數(shù);啟后是指定義了三角函數(shù)之后,就可以進一步研究三角函數(shù)的性質(zhì)及圖象特征,并體會三角函數(shù)在解決具有周期性變化規(guī)律問題中的作用,從而更深入地領(lǐng)會數(shù)學(xué)在其它領(lǐng)域中的重要應(yīng)用。
2、設(shè)計理念
本堂課采用“問題解決”教學(xué)模式,在課堂上既充分發(fā)揮學(xué)生的主體作用,又體現(xiàn)了教師的引導(dǎo)作用。整堂課先通過問題引導(dǎo)學(xué)生梳理已有的知識結(jié)構(gòu),展開合理的聯(lián)想,提出整堂課要解決的中心問題:圓周運動等具周期性規(guī)律運動可以建立函數(shù)模型來刻畫嗎?從而引導(dǎo)學(xué)生帶著問題閱讀和鉆研教材,引發(fā)認知沖突,再通過問題引導(dǎo)學(xué)生改造或重構(gòu)已有的認知結(jié)構(gòu),并運用類比方法,形成“任意角三角函數(shù)的定義”這一新的概念,最后通過例題與練習(xí),將任意角三角函數(shù)的定義,內(nèi)化為學(xué)生新的認識結(jié)構(gòu),從而達成教學(xué)目標(biāo)。
3、教學(xué)目標(biāo)
知識與技能目標(biāo):形成并掌握任意角三角函數(shù)的定義,并學(xué)會運用這一定義,解決相關(guān)問題。
過程與方法目標(biāo):體會數(shù)學(xué)建模思想、類比思想和化歸思想在數(shù)學(xué)新概念形成中的重要作用。
情感態(tài)度與價值觀目標(biāo):引導(dǎo)學(xué)生學(xué)會閱讀數(shù)學(xué)教材,學(xué)會發(fā)現(xiàn)和欣賞數(shù)學(xué)的理性之美。
4、重點難點
重點:任意角三角函數(shù)的定義。
難點:任意角三角函數(shù)這一概念的理解(函數(shù)模型的建立)、類比與化歸思想的滲透。
5、學(xué)情分析
學(xué)生已有的認知結(jié)構(gòu):函數(shù)的概念、平面直角坐標(biāo)系的概念、任意角和弧度制的相關(guān)概念、以直角三角形為載體的銳角三角函數(shù)的概念。在教學(xué)過程中,需要先將學(xué)生的以直角三角形為載體的銳角三角函數(shù)的概念改造為以象限角為載體的銳角三角函數(shù),并形成以角的終邊與單位園的'交點的坐標(biāo)來表示的銳角三角函數(shù)的概念,再拓展到任意角的三角函數(shù)的定義,從而使學(xué)生形成新的認知結(jié)構(gòu)。
6、教法分析
“問題解決”教學(xué)法,是以問題為主線,引導(dǎo)和驅(qū)動學(xué)生的思維和學(xué)習(xí)活動,并通過問題,引導(dǎo)學(xué)生的質(zhì)疑和討論,充分展示學(xué)生的思維過程,最后在解決問題的過程中形成新的認知結(jié)構(gòu)。這種教學(xué)模式能較好地體現(xiàn)課堂上老師的主導(dǎo)作用,也能充分發(fā)揮課堂上學(xué)生的主體作用。
7、學(xué)法分析
本課時先通過“閱讀”學(xué)習(xí)法,引導(dǎo)學(xué)生改造已有的認知結(jié)構(gòu),再通過類比學(xué)習(xí)法引導(dǎo)學(xué)生形成“任意角的三角函數(shù)的定義”,最后引導(dǎo)學(xué)生運用類比學(xué)習(xí)法,來研究三角函數(shù)一些基本性質(zhì)和符號問題,從而使學(xué)生形成新的認識結(jié)構(gòu),達成教學(xué)目標(biāo)。
高一上冊數(shù)學(xué)教案3
一、教材分析
。ㄒ唬┙滩牡牡匚缓妥饔
“一元二次不等式解法”既是初中一元一次不等式解法在知識上的延伸和發(fā)展,又是本章集合知識的運用與鞏固,也為下一章函數(shù)的定義域和值域教學(xué)作鋪墊,起著鏈條的作用。同時,這部分內(nèi)容較好地反映了方程、不等式、函數(shù)知識的內(nèi)在聯(lián)系和相互轉(zhuǎn)化,蘊含著歸納、轉(zhuǎn)化、數(shù)形結(jié)合等豐富的數(shù)學(xué)思想方法,能較好地培養(yǎng)學(xué)生的觀察能力、概括能力、探究能力及創(chuàng)新意識。
(二)教學(xué)內(nèi)容
本節(jié)內(nèi)容分2課時學(xué)習(xí)。本課時通過二次函數(shù)的圖象探索一元二次不等式的解集。通過復(fù)習(xí)“三個一次”的關(guān)系,即一次函數(shù)與一元一次方程、一元一次不等式的關(guān)系;以舊帶新尋找“三個二次”的關(guān)系,即二次函數(shù)與一元二次方程、一元二次不等式的關(guān)系;采用“畫、看、說、用”的思維模式,得出一元二次不等式的'解集,品味數(shù)學(xué)中的和諧美,體驗成功的樂趣。
二、教學(xué)目標(biāo)分析
根據(jù)教學(xué)大綱的要求、本節(jié)教材的特點和高一學(xué)生的認知規(guī)律,本節(jié)課的教學(xué)目標(biāo)確定為:
知識目標(biāo)——理解“三個二次”的關(guān)系;掌握看圖象找解集的方法,熟悉一元二次不等式的解法。
能力目標(biāo)——通過看圖象找解集,培養(yǎng)學(xué)生“從形到數(shù)”的轉(zhuǎn)化能力,“從具體到抽象”、“從特殊到一般”的歸納概括能力。
情感目標(biāo)——創(chuàng)設(shè)問題情景,激發(fā)學(xué)生觀察、分析、探求的學(xué)習(xí)激情、強化學(xué)生參與意識及主體作用。
三、重難點分析
一元二次不等式是高中數(shù)學(xué)中最基本的不等式之一,是解決許多數(shù)學(xué)問題的重要工具。本節(jié)課的重點確定為:一元二次不等式的解法。
要把握這個重點。關(guān)鍵在于理解并掌握利用二次函數(shù)的圖象確定一元二次不等式解集的方法——圖象法,其本質(zhì)就是要能利用數(shù)形結(jié)合的思想方法認識方程的解,不等式的解集與函數(shù)圖象上對應(yīng)點的橫坐標(biāo)的內(nèi)在聯(lián)系。由于初中沒有專門研究過這類問題,高一學(xué)生比較陌生,要真正掌握有一定的難度。因此,本節(jié)課的難點確定為:“三個二次”的關(guān)系。要突破這個難點,讓學(xué)生歸納“三個一次”的關(guān)系作鋪墊。
高一上冊數(shù)學(xué)教案4
我們在初中的學(xué)習(xí)過程中,已了解了整數(shù)指數(shù)冪的概念和運算性質(zhì).從本節(jié)開始我們將在回顧平方根和立方根的基礎(chǔ)上,類比出正數(shù)的n次方根的定義,從而把指數(shù)推廣到分數(shù)指數(shù).進而推廣到有理數(shù)指數(shù),再推廣到實數(shù)指數(shù),并將冪的運算性質(zhì)由整數(shù)指數(shù)冪推廣到實數(shù)指數(shù)冪.
教材為了讓學(xué)生在學(xué)習(xí)之外就感受到指數(shù)函數(shù)的實際背景,先給出兩個具體例子:GDP的增長問題和碳14的衰減問題.前一個問題,既讓學(xué)生回顧了初中學(xué)過的整數(shù)指數(shù)冪,也讓學(xué)生感受到其中的函數(shù)模型,并且還有思想教育價值.后一個問題讓學(xué)生體會其中的函數(shù)模型的同時,激發(fā)學(xué)生探究分數(shù)指數(shù)冪、無理數(shù)指數(shù)冪的興趣與__,為新知識的學(xué)習(xí)作了鋪墊.
本節(jié)安排的內(nèi)容蘊涵了許多重要的數(shù)學(xué)思想方法,如推廣的思想(指數(shù)冪運算律的推廣)、類比的思想、逼近的思想(有理數(shù)指數(shù)冪逼近無理數(shù)指數(shù)冪)、數(shù)形結(jié)合的思想(用指數(shù)函數(shù)的圖象研究指數(shù)函數(shù)的性質(zhì))等,同時,充分關(guān)注與實際問題的結(jié)合,體現(xiàn)數(shù)學(xué)的應(yīng)用價值.
根據(jù)本節(jié)內(nèi)容的特點,教學(xué)中要注意發(fā)揮信息技術(shù)的力量,盡量利用計算器和計算機創(chuàng)設(shè)教學(xué)情境,為學(xué)生的數(shù)學(xué)探究與數(shù)學(xué)思維提供支持.
三維目標(biāo)
1.通過與初中所學(xué)的.知識進行類比,理解分數(shù)指數(shù)冪的概念,進而學(xué)習(xí)指數(shù)冪的性質(zhì).掌握分數(shù)指數(shù)冪和根式之間的互化,掌握分數(shù)指數(shù)冪的運算性質(zhì).培養(yǎng)學(xué)生觀察分析、抽象類比的能力.
2.掌握根式與分數(shù)指數(shù)冪的互化,滲透“轉(zhuǎn)化”的數(shù)學(xué)思想.通過運算訓(xùn)練,養(yǎng)成學(xué)生嚴謹治學(xué),一絲不茍的學(xué)習(xí)習(xí)慣,讓學(xué)生了解數(shù)學(xué)來自生活,數(shù)學(xué)又服務(wù)于生活的哲理.
3.能熟練地運用有理指數(shù)冪運算性質(zhì)進行化簡、求值,培養(yǎng)學(xué)生嚴謹?shù)乃季S和科學(xué)正確的計算能力.
4.通過訓(xùn)練及點評,讓學(xué)生更能熟練掌握指數(shù)冪的運算性質(zhì).展示函數(shù)圖象,讓學(xué)生通過觀察,進而研究指數(shù)函數(shù)的性質(zhì),讓學(xué)生體驗數(shù)學(xué)的簡潔美和統(tǒng)一美.
教學(xué)重點
(1)分數(shù)指數(shù)冪和根式概念的理解.
(2)掌握并運用分數(shù)指數(shù)冪的運算性質(zhì).
(3)運用有理指數(shù)冪的性質(zhì)進行化簡、求值.
教學(xué)難點
(1)分數(shù)指數(shù)冪及根式概念的理解.
(2)有理指數(shù)冪性質(zhì)的靈活應(yīng)用.
高一上冊數(shù)學(xué)教案5
1、知識與技能
(1)掌握任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號);
(2)理解任意角的三角函數(shù)不同的定義方法;
(3)了解如何利用與單位圓有關(guān)的有向線段,將任意角α的正弦、余弦、正切函數(shù)值分別用正弦線、余弦線、正切線表示出來;
。4)掌握并能初步運用公式一;
。5)樹立映射觀點,正確理解三角函數(shù)是以實數(shù)為自變量的函數(shù)。
2、過程與方法
初中學(xué)過:銳角三角函數(shù)就是以銳角為自變量,以比值為函數(shù)值的函數(shù)。引導(dǎo)學(xué)生把這個定義推廣到任意角,通過單位圓和角的終邊,探討任意角的三角函數(shù)值的求法,最終得到任意角三角函數(shù)的'定義。根據(jù)角終邊所在位置不同,分別探討各三角函數(shù)的定義域以及這三種函數(shù)的值在各象限的符號。最后主要是借助有向線段進一步認識三角函數(shù)。講解例題,總結(jié)方法,鞏固練習(xí)。
3、情態(tài)與價值
任意角的三角函數(shù)可以有不同的定義方法,而且各種定義都有自己的特點。過去習(xí)慣于用角的終邊上點的坐標(biāo)的“比值”來定義,這種定義方法能夠表現(xiàn)出從銳角三角函數(shù)到任意角的三角函數(shù)的推廣,有利于引導(dǎo)學(xué)生從自己已有認知基礎(chǔ)出發(fā)學(xué)習(xí)三角函數(shù),但它對準確把握三角函數(shù)的本質(zhì)有一定的不利影響,“從角的集合到比值的集合”的對應(yīng)關(guān)系與學(xué)生熟悉的一般函數(shù)概念中的“數(shù)集到數(shù)集”的對應(yīng)關(guān)系有沖突,而且“比值”需要通過運算才能得到,這與函數(shù)值是一個確定的實數(shù)也有不同,這些都會影響學(xué)生對三角函數(shù)概念的理解。
本節(jié)利用單位圓上點的坐標(biāo)定義任意角的正弦函數(shù)、余弦函數(shù)。這個定義清楚地表明了正弦、余弦函數(shù)中從自變量到函數(shù)值之間的對應(yīng)關(guān)系,也表明了這兩個函數(shù)之間的關(guān)系。
教學(xué)重難點
重點:任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號);終邊相同的角的同一三角函數(shù)值相等(公式一)。
難點:任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號);三角函數(shù)線的正確理解。
高一上冊數(shù)學(xué)教案6
教學(xué)目標(biāo):
。1)知識與技能:了解集合的含義,理解并掌握元素與集合的“屬于”關(guān)系、集合中元素的三個特性,識記數(shù)學(xué)中一些常用的的數(shù)集及其記法,能選擇自然語言、列舉法和描述法表示集合。
(2)過程與方法:從圓、線段的垂直平分線的定義引出“集合”一詞,通過探討一系列的例子形成集合的概念,舉例剖析集合中元素的三個特性,探討元素與集合的關(guān)系,比較用自然語言、列舉法和描述法表示集合。
(3)情感態(tài)度與價值觀:感受集合語言的意義和作用,培養(yǎng)合作交流、勤于思考、積極探討的精神,發(fā)展用嚴密謹慎的集合語言描述問題的習(xí)慣。
教學(xué)重難點:
。1)重點:了解集合的含義與表示、集合中元素的特性。
。2)難點:區(qū)別集合與元素的概念及其相應(yīng)的符號,理解集合與元素的關(guān)系,表示具體的集合時,如何從列舉法與描述法中做出選擇。
教學(xué)過程:
【問題1】在初中我們已經(jīng)學(xué)習(xí)了圓、線段的垂直平分線,大家回憶一下教材中是如何對它們進行定義的?
[設(shè)計意圖]引出“集合”一詞。
【問題2】同學(xué)們知道什么是集合嗎?請大家思考討論課本第2頁的思考題。
[設(shè)計意圖]探討并形成集合的含義。
【問題3】請同學(xué)們舉出認為是集合的例子。
[設(shè)計意圖]點評學(xué)生舉出的例子,剖析并強調(diào)集合中元素的三大特性:確定性、互異性、無序性。
【問題4】同學(xué)們知道用什么來表示一個集合,一個元素嗎?集合與元素之間有怎樣的關(guān)系?
[設(shè)計意圖]區(qū)別表示集合與元素的的符號,介紹集合中一些常用的的數(shù)集及其記法。理解集合與元素的關(guān)系。
【問題5】“地球上的.四大洋”組成的集合可以表示為{太平洋、大西洋、印度洋、北冰洋},“方程(x—1)(x+2)=0的所有實數(shù)根”組成的集
[設(shè)計意圖]引出并介紹列舉法。
【問題6】例1的講解。同學(xué)們能用列舉法表示不等式x—7<3的解集嗎?
【問題7】例2的講解。請同學(xué)們思考課本第6頁的思考題。
[設(shè)計意圖]幫助學(xué)生在表示具體的集合時,如何從列舉法與描述法中做出選擇。
【問題8】請同學(xué)們總結(jié)這節(jié)課我們主要學(xué)習(xí)了那些內(nèi)容?有什么學(xué)習(xí)體會?
[設(shè)計意圖]學(xué)習(xí)小結(jié)。對本節(jié)課所學(xué)知識進行回顧。
【高一上冊數(shù)學(xué)教案】相關(guān)文章:
高一上冊的數(shù)學(xué)教案02-14
高一上冊數(shù)學(xué)教案08-27
高一上冊數(shù)學(xué)教案優(yōu)選【4篇】10-21
高一數(shù)學(xué)教案11-08
高一政治上冊教案08-05
高一數(shù)學(xué)教案【熱門】11-28
【熱門】高一數(shù)學(xué)教案11-26
高一數(shù)學(xué)教案【精】11-29