高一數(shù)學(xué)教案大全范文優(yōu)秀
作為一位杰出的教職工,常常要根據(jù)教學(xué)需要編寫教案,借助教案可以讓教學(xué)工作更科學(xué)化。那么優(yōu)秀的教案是什么樣的呢?以下是小編收集整理的高一數(shù)學(xué)教案大全范文優(yōu)秀,僅供參考,大家一起來(lái)看看吧。
高一數(shù)學(xué)教案大全范文優(yōu)秀1
教學(xué)目標(biāo):
、僬莆諏(duì)數(shù)函數(shù)的性質(zhì)。
、趹(yīng)用對(duì)數(shù)函數(shù)的性質(zhì)可以解決:對(duì)數(shù)的大小比較,求復(fù)合函數(shù)的定義域、值 域及單調(diào)性。
、 注重函數(shù)思想、等價(jià)轉(zhuǎn)化、分類討論等思想的滲透,提高解題能力。
教學(xué)重點(diǎn)與難點(diǎn):對(duì)數(shù)函數(shù)的性質(zhì)的應(yīng)用。
教學(xué)過程設(shè)計(jì):
⒈復(fù)習(xí)提問:對(duì)數(shù)函數(shù)的概念及性質(zhì)。
、查_始正課
1 比較數(shù)的大小
例 1 比較下列各組數(shù)的大小。
、舕oga5.1 ,loga5.9 (a>0,a≠1)
、苐og0.50.6 ,logЛ0.5 ,lnЛ
師:請(qǐng)同學(xué)們觀察一下⑴中這兩個(gè)對(duì)數(shù)有何特征?
生:這兩個(gè)對(duì)數(shù)底相等。
師:那么對(duì)于兩個(gè)底相等的對(duì)數(shù)如何比大?
生:可構(gòu)造一個(gè)以a為底的對(duì)數(shù)函數(shù),用對(duì)數(shù)函數(shù)的單調(diào)性比大小。
師:對(duì),請(qǐng)敘述一下這道題的解題過程。
生:對(duì)數(shù)函數(shù)的單調(diào)性取決于底的大。寒(dāng)0
調(diào)遞減,所以loga5.1>loga5.9 ;當(dāng)a>1時(shí),函數(shù)y=logax單調(diào)遞
增,所以loga5.1
板書:
解:Ⅰ)當(dāng)0
∵5.1<5.9 loga5.1="">loga5.9
、)當(dāng)a>1時(shí),函數(shù)y=logax在(0,+∞)上是增函數(shù),∵5.1<5.9 ∴l(xiāng)oga5.1
師:請(qǐng)同學(xué)們觀察一下⑵中這三個(gè)對(duì)數(shù)有何特征?
生:這三個(gè)對(duì)數(shù)底、真數(shù)都不相等。
師:那么對(duì)于這三個(gè)對(duì)數(shù)如何比大?
生:找“中間量”, log0.50.6>0,lnЛ>0,logЛ0.5<0;lnл>1,
log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。
板書:略。
師:比較對(duì)數(shù)值的大小常用方法:
、贅(gòu)造對(duì)數(shù)函數(shù),直接利用對(duì)數(shù)函
數(shù) 的單調(diào)性比大小
、诮栌谩爸虚g量”間接比大小
、劾脤(duì)數(shù)
函數(shù)圖象的位置關(guān)系來(lái)比大小。
2 函數(shù)的定義域, 值 域及單調(diào)性。
例 2 ⑴求函數(shù)y=的定義域。
⑵解不等式log0.2(x2+2x-3)>log0.2(3x+3)
師:如何來(lái)求⑴中函數(shù)的定義域?(提示:求函數(shù)的定義域,就是要使函數(shù)有意義。若函數(shù)中含有分母,分母不為零;有偶次根式,被開方式大于或等于零;若函數(shù)中有對(duì)數(shù)的形式,則真數(shù)大于零,如果函數(shù)中同時(shí)出現(xiàn)以上幾種情況,就要全部考慮進(jìn)去,求它們共同作用的結(jié)果。)
生:分母2x-1≠0且偶次根式的被開方式log0.8x-1≥0,且真數(shù)x>0。
板書:
解:∵ 2x-1≠0 x≠0.5
log0.8x-1≥0 , x≤0.8
x>0 x>0
∴x(0,0.5)∪(0.5,0.8〕
師:接下來(lái)我們一起來(lái)解這個(gè)不等式。
分析:要解這個(gè)不等式,首先要使這個(gè)不等式有意義,即真數(shù)大于零,再根據(jù)對(duì)數(shù)函數(shù)的單調(diào)性求解。
師:請(qǐng)你寫一下這道題的解題過程。
生:<板書>
解: x2+2x-3>0 x<-3 x="">1
(3x+3)>0 , x>-1
x2+2x-3<(3x+3) -2
不等式的解為:1
例 3 求下列函數(shù)的值域和單調(diào)區(qū)間。
、舮=log0.5(x- x2)
、苰=loga(x2+2x-3)(a>0,a≠1)
師:求例3中函數(shù)的的值域和單調(diào)區(qū)間要用及復(fù)合函數(shù)的思想方法。
下面請(qǐng)同學(xué)們來(lái)解⑴。
生:此函數(shù)可看作是由y= log0.5u, u= x- x2復(fù)合而成。
板書:
解:⑴∵u= x- x2>0, ∴0
u= x- x2=-(x-0.5)2+0.25, ∴0
∴y= log0.5u≥log0.50.25=2
∴y≥2
x x(0,0.5] x[0.5,1)
u= x- x2
y= log0.5u
y=log0.5(x- x2)
函數(shù)y=log0.5(x- x2)的單調(diào)遞減區(qū)間(0,0.5],單調(diào)遞 增區(qū)間[0.5,1)
注:研究任何函數(shù)的性質(zhì)時(shí),都應(yīng)該首先保證這個(gè)函數(shù)有意義,否則
函數(shù)都不存在,性質(zhì)就無(wú)從談起。
師:在⑴的基礎(chǔ)上,我們一起來(lái)解
、啤U(qǐng)同學(xué)們觀察一下⑴與⑵有什
么區(qū)別?
生:
、诺牡讛(shù)是常值
、频牡讛(shù)是字母。
師:那么⑵如何來(lái)解?
生:只要對(duì)a進(jìn)行分類討論,做法與⑴類似。
板書:略。
、承〗Y(jié)
這堂課主要講解如何應(yīng)用對(duì)數(shù)函數(shù)的性質(zhì)解決一些問題,希望能
通過這堂課使同學(xué)們對(duì)等價(jià)轉(zhuǎn)化、分類討論等思想加以應(yīng)用,提高解題能力。
⒋作業(yè)
、沤獠坏仁
①lg(x2-3x-4)≥lg(2x+10);
②loga(x2-x)≥loga(x+1),(a為常數(shù))
⑵已知函數(shù)y=loga(x2-2x),(a>0,a≠1)
①求它的`單調(diào)區(qū)間;
、诋(dāng)0
、且阎瘮(shù)y=loga (a>0, b>0, 且 a≠1)
、偾笏亩x域;
、谟懻撍钠媾夹;
③討論它的單調(diào)性。
⑷已知函數(shù)y=loga(ax-1) (a>0,a≠1)
、偾笏亩x域;
、诋(dāng)x為何值時(shí),函數(shù)值大于1;
、塾懻撍
單調(diào)性。
5、課堂教學(xué)設(shè)計(jì)說(shuō)明
這節(jié)課是安排為習(xí)題課,主要利用對(duì)數(shù)函數(shù)的性質(zhì)解決一些問題,整個(gè)一堂課分兩個(gè)部分:一 。比較數(shù)的大小,想通過這一部分的練習(xí),培養(yǎng)同學(xué)們構(gòu)造函數(shù)的思想和分類討論、數(shù)形結(jié)合的思想。二。函數(shù)的定義域, 值 域及單調(diào)性,想通過這一部分的練習(xí),能使同學(xué)們重視求函數(shù)的定義域。因?yàn)閷W(xué)生在求函數(shù)的值域和單調(diào)區(qū)間時(shí),往往不考慮函數(shù)的定義域,并且這種錯(cuò)誤很頑固,不易糾正。因此,力求學(xué)生做到想法正確,步驟清晰。為了調(diào)動(dòng)學(xué)生的積極性,突出學(xué)生是課堂的主體,便把例題分了層次,由易到難,力求做到每題都能由學(xué)生獨(dú)立完成。但是,每一道題的解題過程,老師都應(yīng)該給以板書,這樣既讓學(xué)生有了獲取新知識(shí)的快樂,又不必為了解題格式的不熟悉而煩惱。每一題講完后,由教師簡(jiǎn)明扼要地小結(jié),以使好學(xué)生掌握地更完善,較差的學(xué)生也能夠跟上。
高一數(shù)學(xué)教案大全范文優(yōu)秀2
教學(xué)目標(biāo)
。1)正確理解充分條件、必要條件和充要條件的概念;
。2)能正確判斷是充分條件、必要條件還是充要條件;
。3)培養(yǎng)學(xué)生的邏輯思維能力及歸納總結(jié)能力;
。4)在充要條件的教學(xué)中,培養(yǎng)等價(jià)轉(zhuǎn)化思想.
教學(xué)建議
(一)教材分析
1.知識(shí)結(jié)構(gòu)
首先給出推斷符號(hào)“”,并引出的意義,在此基礎(chǔ)上講述了充要條件的初步知識(shí).
2.重點(diǎn)難點(diǎn)分析
本節(jié)的重點(diǎn)與難點(diǎn)是關(guān)于充要條件的判斷.
。1)充分但不必要條件、必要但不充分條件、充要條件、既不充分也不必要條件是重要的數(shù)學(xué)概念,主要用來(lái)區(qū)分命題的條件和結(jié)論之間的因果關(guān)系.
。2)在判斷條件和結(jié)論之間的因果關(guān)系中應(yīng)該:
①首先分清條件是什么,結(jié)論是什么;
②然后嘗試用條件推結(jié)論,再嘗試用結(jié)論推條件.推理方法可以是直接證法、間接證法(即反證法),也可以舉反例說(shuō)明其不成立;
③最后再指出條件是結(jié)論的什么條件.
。3)在討論條件和條件的關(guān)系時(shí),要注意:
、偃,但,則是的充分但不必要條件;
、谌簦,則是的必要但不充分條件;
、廴簦,則是的充要條件;
④若,且,則是的充要條件;
、萑,且,則是的既不充分也不必要條件.
。4)若條件以集合的形式出現(xiàn),結(jié)論以集合的形式出現(xiàn),則借助集合知識(shí),有助于充要條件的理解和判斷.
、偃,則是的充分條件;
顯然,要使元素,只需就夠了.類似地還有:
、谌簦瑒t是的必要條件;
③若,則是的充要條件;
、苋,且,則是的既不必要也不充分條件.
。5)要證明命題的條件是充要條件,就既要證明原命題成立,又要證明它的逆命題成立.證明原命題即證明條件的充分性,證明逆命題即證明條件的必要性.由于原命題逆否命題,逆命題否命題,當(dāng)我們證明某一命題有困難時(shí),可以證明該命題的逆否命題成立,從而得出原命題成立.
。ǘ┙谭ńㄗh
1.學(xué)習(xí)充分條件、必要條件和充要條件知識(shí),要注意與前面有關(guān)邏輯初步知識(shí)內(nèi)容相聯(lián)系.充要條件中的,與四種命題中的,要求是一樣的.它們可以是簡(jiǎn)單命題,也可以是不能判斷真假的語(yǔ)句,也可以是含有邏輯聯(lián)結(jié)詞或“若則”形式的復(fù)合命題.
2.由于這節(jié)課概念性、理論性較強(qiáng),一般的教學(xué)使學(xué)生感到枯燥乏味,為此,激發(fā)學(xué)生的學(xué)習(xí)興趣是關(guān)鍵.教學(xué)中始終要注意以學(xué)生為主,讓學(xué)生在自我思考、相互交流中去結(jié)概念“下定義”,去體會(huì)概念的本質(zhì)屬性.
3.由于“充要條件”與命題的真假、命題的條件與結(jié)論的相互關(guān)系緊密相關(guān),為此,教學(xué)時(shí)可以從判斷命題的真假入手,來(lái)分析命題的條件對(duì)于結(jié)論來(lái)說(shuō),是否充分,從而引入“充分條件”的概念,進(jìn)而引入“必要條件”的概念.
4.教材中對(duì)“充分條件”、“必要條件”的定義沒有作過多的解釋說(shuō)明,為了讓學(xué)生能理解定義的.合理性,在教學(xué)過程中,教師可以從一些熟悉的命題的條件與結(jié)論之間的關(guān)系來(lái)認(rèn)識(shí)“充分條件”的概念,從互為逆否命題的等價(jià)性來(lái)引出“必要條件”的概念.
教學(xué)設(shè)計(jì)示例
充要條件
教學(xué)目標(biāo):
。1)正確理解充分條件、必要條件和充要條件的概念;
。2)能正確判斷是充分條件、必要條件還是充要條件;
(3)培養(yǎng)學(xué)生的邏輯思維能力及歸納總結(jié)能力;
(4)在充要條件的教學(xué)中,培養(yǎng)等價(jià)轉(zhuǎn)化思想.
教學(xué)重點(diǎn)難點(diǎn):
關(guān)于充要條件的判斷
教學(xué)用具:
幻燈機(jī)或?qū)嵨锿队皟x
教學(xué)過程設(shè)計(jì)
1.復(fù)習(xí)引入
練習(xí):判斷下列命題是真命題還是假命題(用幻燈投影):
(1)若,則;
(2)若,則;
。3)全等三角形的面積相等;
(4)對(duì)角線互相垂直的四邊形是菱形;
(5)若,則;
。6)若方程有兩個(gè)不等的實(shí)數(shù)解,則.
。▽W(xué)生口答,教師板書.)
。1)、(3)、(6)是真命題,(2)、(4)、(5)是假命題.
置疑:對(duì)于命題“若,則”,有時(shí)是真命題,有時(shí)是假命題.如何判斷其真假的?
答:看能不能推出,如果能推出,則原命題是真命題,否則就是假命題.
對(duì)于命題“若,則”,如果由經(jīng)過推理能推出,也就是說(shuō),如果成立,那么一定成立.換句話說(shuō),只要有條件就能充分地保證結(jié)論的成立,這時(shí)我們稱條件是成立的充分條件,記作.
2.講授新課
。ò鍟浞謼l件的定義.)
一般地,如果已知,那么我們就說(shuō)是成立的充分條件.
提問:請(qǐng)用充分條件來(lái)敘述上述(1)、(3)、(6)的條件與結(jié)論之間的關(guān)系.
。▽W(xué)生口答)
。1)“,”是“”成立的充分條件;
。2)“三角形全等”是“三角形面積相等”成立的充分條件;
。3)“方程的有兩個(gè)不等的實(shí)數(shù)解”是“”成立的充分條件.
從另一個(gè)角度看,如果成立,那么其逆否命題也成立,即如果沒有,也就沒有,亦即是成立的必須要有的條件,也就是必要條件.
。ò鍟匾獥l件的定義.)
提出問題:用“充分條件”和“必要條件”來(lái)敘述上述6個(gè)命題.
。▽W(xué)生口答).
。1)因?yàn),所以是的充分條件,是的必要條件;
。2)因?yàn)椋允堑谋匾獥l件,是的充分條件;
(3)因?yàn)椤皟扇切稳取薄皟扇切蚊娣e相等”,所以“兩三角形全等”是“兩三角形面積相等”的充分條件,“兩三角形面積相等”是“兩三角形全等”的必要條件;
。4)因?yàn)椤八倪呅蔚膶?duì)角線互相垂直”“四邊形是菱形”,所以“四邊形的對(duì)角線互相垂直”是“四邊形是菱形”的必要條件,“四邊形是菱形”是“四邊形的對(duì)角線互相垂直”的充分條件;
。5)因?yàn)椋允堑谋匾獥l件,是的充分條件;
。6)因?yàn)椤胺匠痰挠袃蓚(gè)不等的實(shí)根”“”,而且“方程的有兩個(gè)不等的實(shí)根”“”,所以“方程的有兩個(gè)不等的實(shí)根”是“”充分條件,而且是必要條件.
總結(jié):如果是的充分條件,又是的必要條件,則稱是的充分必要條件,簡(jiǎn)稱充要條件,記作.
。ò鍟湟獥l件的定義.)
3.鞏固新課
例1(用投影儀投影.)
。▽W(xué)生活動(dòng),教師引導(dǎo)學(xué)生作出下面回答.)
①因?yàn)橛欣頂?shù)一定是實(shí)數(shù),但實(shí)數(shù)不一定是有理數(shù),所以是的充分非必要條件,是的必要非充分條件;
、谝欢芡瞥,而不一定推出,所以是的充分非必要條件,是的必要非充分條件;
③、是奇數(shù),那么一定是偶數(shù);是偶數(shù),、不一定都是奇數(shù)(可能都為偶數(shù)),所以是的充分非必要條件,是的必要非充分條件;
、鼙硎净颍允浅闪⒌谋匾浅浞謼l件;
⑤由交集的定義可知且是成立的充要條件;
⑥由知且,所以是成立的充分非必要條件;
、哂芍颍允,成立的必要非充分條件;
、嘁字笆4的倍數(shù)”是“是6的倍數(shù)”成立的既非充分又非必要條件;
。ㄍㄟ^對(duì)上述問題的交流、思辯,在爭(zhēng)論中得到了正確答案,并加深了對(duì)充分條件、必要條件的認(rèn)識(shí).)
例2已知是的充要條件,是的必要條件同時(shí)又是的充分條件,試與的關(guān)系.(投影)
解:由已知得,所以是的充分條件,或是的必要條件.
4.小結(jié)回授
今天我們學(xué)習(xí)了充分條件、必要條件和充要條件的概念,并學(xué)會(huì)了判斷條件A是B的什么條件,這為我們今后解決數(shù)學(xué)問題打下了等價(jià)轉(zhuǎn)化的基礎(chǔ).
課內(nèi)練習(xí):課本(人教版,試驗(yàn)修訂本,第一冊(cè)(上))第35頁(yè)練習(xí)l、2;第36頁(yè)練習(xí)l、2.
。ㄍㄟ^練習(xí),檢查學(xué)生掌握情況,有針對(duì)性的進(jìn)行講評(píng).)
5.課外作業(yè):教材第36頁(yè) 習(xí)題1.8 1、2、3.
高一數(shù)學(xué)教案大全范文優(yōu)秀3
一、教材的地位和作用
本節(jié)課是 “空間幾何體的三視圖和直觀圖”的第一課時(shí),主要內(nèi)容是投影和三視圖,這部分知識(shí)是立體幾何的基礎(chǔ)之一,一方面它是對(duì)上一節(jié)空間幾何體結(jié)構(gòu)特征的再一次強(qiáng)化,畫出空間幾何體的三視圖并能將三視圖還原為直觀圖,是建立空間概念的基礎(chǔ)和訓(xùn)練學(xué)生幾何直觀能力的有效手段。另外,三視圖部分也是新課程高考的重要內(nèi)容之一,常常結(jié)合給出的三視圖求給定幾何體的表面積或體積設(shè)置在選擇或填空中。同時(shí),三視圖在工程建設(shè)、機(jī)械制造中有著廣泛應(yīng)用,同時(shí)也為學(xué)生進(jìn)入高一層學(xué)府學(xué)習(xí)有很大的幫助。所以在人們的日常生活中有著重要意義。
二、教學(xué)目標(biāo)
。1) 知識(shí)與技能:能畫出簡(jiǎn)單空間圖形(長(zhǎng)方體,球,圓柱,圓錐,棱柱等的簡(jiǎn)易組合)的三視圖,能識(shí)別上述三視圖表示的立體模型,從而進(jìn)一步熟悉簡(jiǎn)單幾何體的結(jié)構(gòu)特征。
。2)過程與方法:通過直觀感知,操作確認(rèn),提高學(xué)生的空間想象能力、幾何直觀能力,培養(yǎng)學(xué)生的應(yīng)用意識(shí)。
。3)情感、態(tài)度與價(jià)值觀:讓感受數(shù)學(xué)就在身邊,提高學(xué)生學(xué)習(xí)立體幾何的興趣,培養(yǎng)學(xué)生相互交流、相互合作的精神。
三、設(shè)計(jì)思路
本節(jié)課的主要任務(wù)是引導(dǎo)學(xué)生完成由立體圖形到三視圖,再由三視圖想象立體圖形的復(fù)雜過程。直觀感知操作確認(rèn)是新課程幾何課堂的一個(gè)突出特點(diǎn),也是這節(jié)課的設(shè)計(jì)思路。通過大量的多媒體直觀,實(shí)物直觀使學(xué)生獲得了對(duì)三視圖的感性認(rèn)識(shí),通過學(xué)生的觀察思考,動(dòng)手實(shí)踐,操作練習(xí),實(shí)現(xiàn)認(rèn)知從感性認(rèn)識(shí)上升為理性認(rèn)識(shí)。培養(yǎng)學(xué)生的空間想象能力,幾何直觀能力為學(xué)習(xí)立體幾何打下基礎(chǔ)。
教學(xué)的重點(diǎn)、難點(diǎn)
。ㄒ唬┲攸c(diǎn):畫出空間幾何體及簡(jiǎn)單組合體的三視圖,體會(huì)在作三視圖時(shí)應(yīng)遵循的“長(zhǎng)對(duì)正、高平齊、寬相等”的原則。
。ǘ╇y點(diǎn):識(shí)別三視圖所表示的空間幾何體,即:將三視圖還原為直觀圖。
四、學(xué)生現(xiàn)實(shí)分析
本節(jié)首先簡(jiǎn)單介紹了中心投影和平行投影,中心投影和平行投影是日常生活中最常見的兩種投影形式,學(xué)生具有這方面的直接經(jīng)驗(yàn)和基礎(chǔ)。投影和三視圖雖為高中新增內(nèi)容,但學(xué)生在初中有一定基礎(chǔ),在七年級(jí)上冊(cè) “從不同方向看”的基礎(chǔ)上給出了三視圖的概念。到了九年級(jí)下冊(cè)則是在介紹了投影后,用投影的方法給出了三視圖的概念,這一概念已基本接近了高中的三視圖定義,只是在名字上略有差異。初中叫做主視圖、左視圖、俯視圖。進(jìn)入高中后特別是再次學(xué)習(xí)和認(rèn)識(shí)了柱、錐、臺(tái)等幾何體的概念后,學(xué)生在空間想象能力方面有了一定的提高,所以,給出了正視圖、側(cè)視圖、俯視圖的概念。這些概念的變化也說(shuō)明了學(xué)生年齡特點(diǎn)和思維差異。
五、教學(xué)方法
。1)教學(xué)方法及教學(xué)手段
針對(duì)本節(jié)課知識(shí)是由抽象到具體再到抽象、空間思維難度較大的特點(diǎn),我采用的教法是直觀教學(xué)法、啟導(dǎo)發(fā)現(xiàn)法。
在教學(xué)中,通過創(chuàng)設(shè)問題情境,充分調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性和主動(dòng)性,并引導(dǎo)啟發(fā)學(xué)生動(dòng)眼、動(dòng)腦、動(dòng)手、同時(shí)采用多媒體的教學(xué)手段,加強(qiáng)直觀性和啟發(fā)性,解決了教師“口說(shuō)無(wú)憑”的尷尬境地,增大了課堂容量,提高了課堂效率。
(2)學(xué)法指導(dǎo)
力爭(zhēng)在新課程要求的大背景下組織教學(xué),為學(xué)生創(chuàng)設(shè)良好的`問題情境,留給學(xué)生充分的思考空間,在學(xué)生的辯證和討論前提下,發(fā)揮教師的概括和引領(lǐng)的作用。
六、教學(xué)過程
。ㄒ唬﹦(chuàng)設(shè)情境,引出課題
通過攝影作品及汽車設(shè)計(jì)圖紙引出問題
1、照相、繪畫之所以有空間視覺效果,主要處決于線條、明暗和色彩,其中對(duì)線條畫法的基本原理是一個(gè)幾何問題,我們需要學(xué)習(xí)這方面的知識(shí)。
2、在建筑、機(jī)械等工程中,需要用平面圖形反映空間幾何體的形狀和大小,在作圖技術(shù)上這也是一個(gè)幾何問題,你想知道這方面的基礎(chǔ)知識(shí)嗎?
設(shè)計(jì)意圖:通過攝影作品及汽車設(shè)計(jì)圖紙的展示引出問題1,2,從貼近生活的實(shí)例入手,給學(xué)生以視覺沖擊,引領(lǐng)學(xué)生進(jìn)入本節(jié)課的內(nèi)容。
引出課題:投影與三視圖
知識(shí)探究(一):中心投影與平行投影
光是直線傳播的,一個(gè)不透明物體在光的照射下,在物體后面的屏幕上會(huì)留下這個(gè)物體的影子,這種現(xiàn)象叫做投影。其中的光線叫做投影線,留下物體影子的屏幕叫做投影面。
思考1:不同的光源發(fā)出的光線是有差異的,其中燈泡發(fā)出的光線與手電筒發(fā)出的光線有什么
不同?
思考2:我們把光由一點(diǎn)向外散射形成的投影叫做中心投影,把在一束平行光線照射下形成的投影叫做平行投影,那么用燈泡照射物體和用手電筒照射物體形成的投影分別是哪種投影?
思考3:用燈泡照射一個(gè)與投影面平行的不透明物體,在投影面上形成的影子與原物體的形狀、大小有什么關(guān)系?當(dāng)物體與燈泡的距離發(fā)生變化時(shí),影子的大小會(huì)有什么不同?
思考4:用手電筒照射一個(gè)與投影面平行的不透明物體,在投影面上形成的影子與原物體的形狀、大小有什么關(guān)系?當(dāng)物體與手電筒的距離發(fā)生變化化時(shí),影子的大小會(huì)有變化嗎?
思考5:在平行投影中,投影線正對(duì)著投影面時(shí)叫做正投影,否則叫做斜投影、一個(gè)與投影面平行的平面圖形,在正投影和斜投影下的形狀、大小是否發(fā)生變化?
思考6:一個(gè)與投影面不平行的平面圖形,在正投影和斜投影下的形狀、大小是否發(fā)生變化? 師生活動(dòng):學(xué)生思考,討論,教師歸納總結(jié)。
設(shè)計(jì)意圖:講解投影,投影線,投影面,讓學(xué)生了解投影式如何形成的。通過六個(gè)思考層層深入,學(xué)生在思考討論的過程中總結(jié)出投影的分類及每種投影的特點(diǎn)。
知識(shí)探究(二):柱、錐、臺(tái)、球的三視圖
把一個(gè)空間幾何體投影到一個(gè)平面上,可以獲得一個(gè)平面圖形。但只有一個(gè)平面圖形難以把握幾何體的全貌,因此我們需要從多個(gè)角度進(jìn)行投影,這樣就能較好地把握幾何體的形狀和大小,通常選擇三種正投影,即正面、側(cè)面和上面。
從不同的角度看建筑
問題1:要很好地描繪這幢房子,需要從哪些方向去看?
問題2:如果要建造房子,你是工程師,需要給施工員提供哪幾種圖紙?
設(shè)計(jì)意圖:通過觀察大樓的圖片,提出問題1,2,這種設(shè)計(jì)更易于讓學(xué)生接受,說(shuō)明數(shù)學(xué)與生活密不可分。
給出三視圖的含義:
。1)光線從幾何體的前面向后面正投影得到的投影圖,叫做幾何體的正視圖;
。2)光線從幾何體的左面向右面正投影得到的投影圖,叫做幾何體的側(cè)視圖;
。3)光線從幾何體的上面向下面正投影得到的投影圖,叫做幾何體的俯視圖;
。4)幾何體的正視圖、側(cè)視圖、俯視圖統(tǒng)稱為幾何體的三視圖。
思考1 :正視圖、側(cè)視圖、俯視圖分別是從幾何體的哪三個(gè)角度觀察得到的幾何體的正投影圖?它們都是平面圖形還是空間圖形?
思考2 :如圖,設(shè)長(zhǎng)方體的長(zhǎng)、寬、高分別為a、b、c ,那么其三視圖分別是什么?
一個(gè)幾何體的正視圖和側(cè)視圖的高度一樣,俯視圖和正視圖的的長(zhǎng)度一樣,側(cè)視圖和俯視圖的寬度一樣。
思考3 :圓柱、圓錐、圓臺(tái)的三視圖分別是什么?
思考4 :一般地,一個(gè)幾何體的正視圖、側(cè)視圖和俯視圖的長(zhǎng)度、寬度和高度有什么關(guān)系? 師生活動(dòng):分小組討論,動(dòng)手操作來(lái)完成思考題。
設(shè)計(jì)意圖:通過多媒體的動(dòng)態(tài)演示,對(duì)學(xué)生的結(jié)論進(jìn)行驗(yàn)證,大概花15分鐘的時(shí)間來(lái)完成這部分的教學(xué)。學(xué)生自主歸納總結(jié)將本節(jié)課的重點(diǎn)化解。
長(zhǎng)對(duì)正,高平齊,寬相等。
高一數(shù)學(xué)教案大全范文優(yōu)秀4
學(xué)習(xí)目標(biāo)
1. 根據(jù)具體函數(shù)圖象,能夠借助計(jì)算器用二分法求相應(yīng)方程的近似解;
2. 通過用二分法求方程的近似解,使學(xué)生體會(huì)函數(shù)零點(diǎn)與方程根之間的聯(lián)系,初步形成用函數(shù)觀點(diǎn)處理問題的意識(shí)。
舊知提示 (預(yù)習(xí)教材P89~ P91,找出疑惑之處)
復(fù)習(xí)1:什么叫零點(diǎn)?零點(diǎn)的等價(jià)性?零點(diǎn)存在性定理?
對(duì)于函數(shù) ,我們把使 的實(shí)數(shù)x叫做函數(shù) 的零點(diǎn)。
方程 有實(shí)數(shù)根 函數(shù) 的圖象與x軸 函數(shù) .
如果函數(shù) 在區(qū)間 上的圖象是連續(xù)不斷的一條曲線,并且有 ,那么,函數(shù) 在區(qū)間 內(nèi)有零點(diǎn)。
復(fù)習(xí)2:一元二次方程求根公式? 三次方程? 四次方程?
合作探究
探究:有12個(gè)小球,質(zhì)量均勻,只有一個(gè)是比別的球重的,你用天平稱幾次可以找出這個(gè)球的,要求次數(shù)越少越好。
解法:第一次,兩端各放 個(gè)球,低的那一端一定有重球;
第二次,兩端各放 個(gè)球,低的那一端一定有重球;
第三次,兩端各放 個(gè)球,如果平衡,剩下的就是重球,否則,低的就是重球。
思考:以上的方法其實(shí)這就是一種二分法的思想,采用類似的方法,如何求 的零點(diǎn)所在區(qū)間?如何找出這個(gè)零點(diǎn)?
新知:二分法的思想及步驟
對(duì)于在區(qū)間 上連續(xù)不斷且 0的函數(shù) ,通過不斷的把函數(shù)的零點(diǎn)所在的'區(qū)間一分為二,使區(qū)間的兩個(gè)端點(diǎn)逐步逼近零點(diǎn),進(jìn)而得到零點(diǎn)近似值的方法叫二分法(bisection).
反思: 給定精度,用二分法求函數(shù) 的零點(diǎn)近似值的步驟如何呢?
、俅_定區(qū)間 ,驗(yàn)證 ,給定精度
、谇髤^(qū)間 的中點(diǎn) ;[]
、塾(jì)算 : 若 ,則 就是函數(shù)的零點(diǎn); 若 ,則令 (此時(shí)零點(diǎn) ); 若 ,則令 (此時(shí)零點(diǎn) );
、芘袛嗍欠襁_(dá)到精度即若 ,則得到零點(diǎn)零點(diǎn)值a(或b);否則重復(fù)步驟②~④.
典型例題
例1 借助計(jì)算器或計(jì)算機(jī),利用二分法求方程 的近似解。
練1. 求方程 的解的個(gè)數(shù)及其大致所在區(qū)間。
練2.求函數(shù) 的一個(gè)正數(shù)零點(diǎn)(精確到 )
零點(diǎn)所在區(qū)間 中點(diǎn)函數(shù)值符號(hào) 區(qū)間長(zhǎng)度
練3. 用二分法求 的近似值。
課堂小結(jié)
、 二分法的概念;
、诙址ú襟E;
、鄱址ㄋ枷。
知識(shí)拓展
高次多項(xiàng)式方程公式解的探索史料
在十六世紀(jì),已找到了三次和四次函數(shù)的求根公式,但對(duì)于高于4次的函數(shù),類似的努力卻一直沒有成功,到了十九世紀(jì),根據(jù)阿貝爾(Abel)和伽羅瓦(Galois)的研究,人們認(rèn)識(shí)到高于4次的代數(shù)方程不存在求根公式,亦即,不存在用四則運(yùn)算及根號(hào)表示的一般的公式解。同時(shí),即使對(duì)于3次和4次的代數(shù)方程,其公式解的表示也相當(dāng)復(fù)雜,一般來(lái)講并不適宜作具體計(jì)算。因此對(duì)于高次多項(xiàng)式函數(shù)及其它的一些函數(shù),有必要尋求其零點(diǎn)近似解的方法,這是一個(gè)在計(jì)算數(shù)學(xué)中十分重要的課題。
學(xué)習(xí)評(píng)價(jià)
1. 若函數(shù) 在區(qū)間 上為減函數(shù),則 在 上( ).
A. 至少有一個(gè)零點(diǎn) B. 只有一個(gè)零點(diǎn)
C. 沒有零點(diǎn) D. 至多有一個(gè)零點(diǎn)
2. 下列函數(shù)圖象與 軸均有交點(diǎn),其中不能用二分法求函數(shù)零點(diǎn)近似值的是().
3. 函數(shù) 的零點(diǎn)所在區(qū)間為( ).
A. B. C. D.
4. 用二分法求方程 在區(qū)間[2,3]內(nèi)的實(shí)根,由計(jì)算器可算得 , , ,那么下一個(gè)有根區(qū)間為 .
課后作業(yè)
1.若函數(shù)f(x)是奇函數(shù),且有三個(gè)零點(diǎn)x1、x2、x3,則x1+x2+x3的值為()
A.-1 B.0 C.3 D.不確定
2.已知f(x)=-x-x3,x[a,b],且f(a)f(b)0,則f(x)=0在[a,b]內(nèi)()
A.至少有一實(shí)數(shù)根 B.至多有一實(shí)數(shù)根
C.沒有實(shí)數(shù)根 D.有惟一實(shí)數(shù)根
3.設(shè)函數(shù)f(x)=13x-lnx(x0)則y=f(x)()
A.在區(qū)間1e,1,(1,e)內(nèi)均有零點(diǎn) B.在區(qū)間1e,1, (1,e)內(nèi)均無(wú)零點(diǎn)
C.在區(qū)間1e,1內(nèi)有零點(diǎn);在區(qū)間(1,e)內(nèi)無(wú)零點(diǎn)[]
D.在區(qū)間1e,1內(nèi)無(wú)零點(diǎn),在區(qū)間(1,e)內(nèi)有零點(diǎn)
4.函數(shù)f(x)=ex+x-2的零點(diǎn)所在的一個(gè)區(qū)間是()
A.(-2,-1) B.(-1,0) C.(0,1) D.(1,2)
5.若方程x2-3x+mx+m=0的。兩根均在(0,+)內(nèi),則m的取值范圍是()
A.m1 B.01 D.0
6.函數(shù)f(x)=(x-1)ln(x-2)x-3的零點(diǎn)有()
A.0個(gè) B.1個(gè) C.2個(gè) D.3個(gè)
7.函數(shù)y=3x-1x2的一個(gè)零點(diǎn)是()
A.-1 B.1 C.(-1,0) D.(1,0)
8.函數(shù)f(x)=ax2+bx+c,若f(1)0,f(2)0,則f(x)在(1,2)上零點(diǎn)的個(gè)數(shù)為( )
A.至多有一個(gè) B.有一個(gè)或兩個(gè) C.有且僅有一個(gè) D.一個(gè)也沒有
9.根據(jù)表格中的數(shù)據(jù),可以判定方程ex-x-2=0的一個(gè)根所在的區(qū)間為()
x -1 0 1 2 3
ex 0.37 1 2.72 7.39 20.09
A.(-1,0) B.(0,1) C.(1,2) D.(2,3)
10.求函數(shù)y=x3-2x2-x+2的零點(diǎn),并畫出它的簡(jiǎn)圖。
【高一數(shù)學(xué)教案優(yōu)秀】相關(guān)文章:
(精華)高一數(shù)學(xué)教案優(yōu)秀5篇08-28
高一數(shù)學(xué)教案11-05
高一數(shù)學(xué)教案11-08
【熱門】高一數(shù)學(xué)教案11-26
【薦】高一數(shù)學(xué)教案11-27
【熱】高一數(shù)學(xué)教案12-05
高一數(shù)學(xué)教案【薦】12-02
【精】高一數(shù)學(xué)教案12-01
高一數(shù)學(xué)教案(精品)10-14