【熱】七年級數(shù)學上冊教案15篇
作為一名為他人授業(yè)解惑的教育工作者,通常會被要求編寫教案,借助教案可以恰當?shù)剡x擇和運用教學方法,調動學生學習的積極性。優(yōu)秀的教案都具備一些什么特點呢?下面是小編幫大家整理的七年級數(shù)學上冊教案,希望能夠幫助到大家。
七年級數(shù)學上冊教案1
一、教學目標
。ㄒ唬┱J知目標
1.借助頻率或考慮實驗觀察到的結果,區(qū)分不可能發(fā)生、可能發(fā)生和必然發(fā)生這三個概念.
2.借助頻數(shù)或頻率,初步體會隨機事件發(fā)生的可能性是有大有小的.
。ǘ┣楦心繕
讓學生在解決現(xiàn)實問題的同時,能受到愛國主義教育,增進對數(shù)學價值的認識.
二、教學重點
正確區(qū)分“不可能”、“必然”和“可能”.
三、教學難點
怎樣分清不確定的現(xiàn)象和確定的現(xiàn)象.
四、教學過程
。ㄒ唬⿲胄抡n
同學們還記得拋擲硬幣的游戲嗎?再拋10次試一試,記錄一下,看看有________次正面朝上,有_______次反面朝上.
提問:在剛才的拋擲硬幣游戲中,你發(fā)現(xiàn)正反面同時朝上有幾次?
學生回答:0次;一次也沒有;不可能.
回答得很好.在我們的'周圍有很多事情有可能發(fā)生,也有不可能發(fā)生的.下面再請同學們拿出準備好的骰子.
。ǘ┬率
骰子都是正方體,它有六個面,每一面的點數(shù)分別是從1到6這六個數(shù)字中的一個.骰子的質地是均勻的,也就是說每個數(shù)字被擲得的機會都是一樣的.
下面兩人一組做擲骰子的游戲.
要求:一個同學擲骰子,另一個同學做記錄,用“正”字法把每個點數(shù)出現(xiàn)的頻數(shù)記錄下來,填入備好的表里.擲完20次以后,兩人交換角色,再記錄下數(shù)據(jù).
提問:“點數(shù)7”出現(xiàn)了多少次?
學生回答:0次.
從每個小組的頻數(shù)表中,我們可以看到,不管如何,“點數(shù)7”出現(xiàn)的次數(shù)總是0.這并不是因為我們擲的時間還不夠長或擲的次數(shù)還不夠多,而是因為骰子上根本沒有“7”.所以,無論再挪多少次,“點數(shù)7”都不會出現(xiàn).我們可以說“擲得的點數(shù)是7”這件事是不可能發(fā)生的.
提問:在剛才的游戲中,還有什么事是不可能發(fā)生的?
學生進行簡單討論.
讓學生自由發(fā)言:大干“點數(shù)7”的點數(shù),像8、9都不可能發(fā)生.
那么,可能發(fā)生的事是什么呢?
七年級數(shù)學上冊教案2
教學目標
1.知識與技能
會利用絕對值比較兩個負數(shù)的大小.
2.過程與方法
利用絕對值概念比較有理數(shù)的大小,培養(yǎng)學生的邏輯思維能力.
3.情感、態(tài)度與價值觀
敢于面對數(shù)學活動中的困難,有學好數(shù)學的自信心.
教學重點難點
重點:利用絕對值比較兩個負數(shù)的大小.
難點:利用絕對值比較兩個異分母負分數(shù)的大小.
教與學互動設計
(一)創(chuàng)設情境,導入新課
投影 你能比較下列各組數(shù)的大小嗎?
(1)│-3│與│-8│ (2)4與-5 (3)0與3
(4)-7和0 (5)0.9和1.2
(二)合作交流,解讀探究
討論交流 由以上各組數(shù)的大小比較可見:正數(shù)都大于0,0都大于負數(shù),正數(shù)都大于負數(shù).
思考 若任取兩個負數(shù),該如何比較它的大小呢?
點撥 若-7表示-7℃,-1表示-1℃,則兩個溫度誰高誰低?
【總結】 兩個負數(shù),絕對值大的反而小,或說,兩個負數(shù)絕對值小的反而大.
注意 ①比較兩個負數(shù)的大小又多了一種方法,即:兩個負數(shù),絕對值大的`反而小.
②異號的兩數(shù)比較大小,要考慮它們的正負;同號兩數(shù)比較大小,要考慮先比較它們的絕對值.
③在數(shù)軸上表示有理數(shù),它們從左到右的順序也就是從小到大的順序,即:左邊的數(shù)總比右邊的數(shù)要小.即:利用數(shù)軸來比較有理數(shù)的大小.
七年級數(shù)學上冊教案3
一、背景知識
《有理數(shù)》選自浙江版《義務教育課程標準實驗教科書·數(shù)學·七年級上冊》第一章《從自然數(shù)到有理數(shù)》中的第二節(jié),這一章是開啟整個初中階段代數(shù)學習的大門!队欣頂(shù)》是本章的第二節(jié)。本節(jié)內容讓學生在現(xiàn)實的情境中理解負數(shù)的引入確實是實際生活的需要,感受到有理數(shù)應用的廣泛性,是在小學學習自然數(shù)和分數(shù)之后,數(shù)的概念的第一次擴充,是自然數(shù)和分數(shù)到有理數(shù)的銜接與過渡,并且是以后學習數(shù)軸、絕對值及有理數(shù)運算的基礎。
二、教學目標
1、知識目標:理解有理數(shù)產生的必然性、合理性;會判斷一個數(shù)是正數(shù)還是負數(shù),能靈活運用正、負數(shù)表示生活中具有相反意義的量;會將有理數(shù)從不同的角度進行分類。
2、過程與方法:利用學生身邊熟悉的事物引入負數(shù)、學習有理數(shù);運用有理數(shù)表示現(xiàn)實生活問題中的量;讓學生經(jīng)歷有理數(shù)概念的形成及運用過程,領會分析、總結的方法。
3、情感與能力目標:通過提供適當?shù)那榫迟Y料,吸引學生的注意力,激發(fā)學生的學習興趣;在合作討論中學會交流與合作,啟迪思維,提高創(chuàng)新能力;通過實際問題的解決和從不同角度對有理數(shù)分類,可提高學生應用數(shù)學能力和培養(yǎng)學生的分類思想。
三、教學重點、難點
重點:能應用正、負數(shù)表示具有相反意義的量和對有理數(shù)進行合理的分類。
難點:用有理數(shù)表示實際生活中的量。
四、教學設計
。ㄒ唬﹦(chuàng)設情境 探求新知
如圖表示某一天我國5個城市的最低氣溫。
請同學們合作討論下列問題:
1、-20℃、-10℃、5℃、0℃、10℃ 這幾個量分別表示什么?
2、你還在哪些地方見到過用帶有“-”號的數(shù)來表示某一種量,請講出來。
把學生講出的較恰當?shù)牧繉懙胶诎迳希僖龑W生把與之相對的量分別寫在后邊,如:零下20℃——零上10℃, 降低5米——升高8米, 支出100元——收入500元。指出這樣的量就是具有相反意義的量,并從以下方面加以理解。
。1)具有相反意義的量是:意義相反,與值無關。
(2)區(qū)分“意義相反”與“意義不同”。
反問學生:以上具有相反意義的量能用我們學過的自然數(shù)和分數(shù)表示出來嗎?
顯然是不能的'。為了解決這樣的實際問題,我們需要引進一種新的數(shù)——負數(shù)。
我們把一種意義的量(如零上)規(guī)定為正,用學過的數(shù)(零除外)來表示,這樣的數(shù)叫做正數(shù),正數(shù)前面可以放上正號“+”來表示(常省略不寫),;把另一種與之意義相反的量規(guī)定負,用學過的數(shù)(零除外)前面放上負號“-”來表示,這樣的數(shù)叫做負數(shù)(負號不能省略)。
如:“+2”讀做“正2”、“-3.3”讀做“負3.3”等。
這樣我們學過的數(shù)中又增加了新的數(shù)——負整數(shù)和負分數(shù);相應地我們學過的自然數(shù)和分數(shù)分別稱為正整數(shù)和正分數(shù)。
(二)運用新知 體驗成功
填空:
1)規(guī)定盈利為正,某公司去年虧損了2.5萬元,記做__________萬元,今年盈利了3.2萬元,記做__________萬元;
2)規(guī)定海平面以上的海拔高度為正,新疆烏魯木齊市高于海平面918米,記做海拔__________米;吐魯番盆地最低處低于海平面155米,記做海拔__________米;
3)汽車在一條南北走向的高速公路上行駛,規(guī)定向北行駛的路程為正。汽車向北行駛75km,記做________km(或_______km),汽車向南行駛100km,記做________km;
4)下降米記做米,則上升米記做__________米;
5)如果向銀行存入50元記為50元,那么-30.50元表示__________;
6)規(guī)定增加的百分比為正,增加25%記做__________,-12%表示__________.
利用第3)題說明在表示具有相反意義的量時,把哪一種意義的量規(guī)定為正,是相對的例如我們可以把向南100米記做+100km,那么向北記做-75km.但習慣上,人們常把上升、運進、零上、增加、收入等規(guī)定為正。
(請同學獨立完成,然后同桌同學相互評價。)
。ㄈ 師生互動,繼續(xù)探究
。ê献鲗W習)讀一讀這些數(shù)0,880,-20xx,+123,-233,-2.5,+3.2,+918,-155,+75,-100,25%,-12%,請根據(jù)你認定的數(shù)的特征進行分類,并說出分類的特征。
讓學生四人小組合作討論完成。
估計可能出現(xiàn)的正確結論有:
;
;
對于較為正確的分類,并能說出特征的都將給予肯定,重視個體差異,體現(xiàn)多元評價的思想,發(fā)揮評價的激勵作用,保護學生的自尊心,增強學生的自信心.然后教師給出規(guī)范的分類:
正整數(shù)、零和負整數(shù)統(tǒng)稱整數(shù);正分數(shù)、負分數(shù)統(tǒng)稱分數(shù);整數(shù)和分數(shù)統(tǒng)稱有理數(shù)。
說明:①分類的標準不同,結果也不同;②分類的結果應無遺漏、無重復;③零是整數(shù),零既不是正數(shù),也不是負數(shù).
。ㄋ模 分層練習,鞏固提高
為了使學生實現(xiàn)從掌握知識到運用知識的轉化,使知識教育與能力培養(yǎng)結合起來,設計分層練習。
例 下列給出的各數(shù),哪些是正數(shù)?哪些是負數(shù)?哪些是整數(shù)?哪些是分數(shù)?哪些是有理數(shù)?
-8.4, 22, ,0.33, , -9.
練習1 判斷表中各數(shù)屬于什么數(shù),在相應的空格內打“√” .
正整數(shù)
整數(shù)
分數(shù)
正數(shù)
負數(shù)
有理數(shù)
20xx
√
√
√
√
-4.9
0
-12
探究活動:
練習2 如圖,兩個圈內分別表示所有正數(shù)組成的正數(shù)集合和所有整數(shù)組成的整數(shù)集合.請寫出3個分別滿足下列條件的數(shù):
1)屬于正數(shù)集合,但不屬于整數(shù)集合的數(shù);
2)屬于整數(shù)集合,但不屬于正數(shù)集合的數(shù);
3)既屬于正數(shù)集合,又屬于整數(shù)集合的數(shù).
將它們分別填入圖中適當?shù)奈恢?你能說出這兩個圈的重疊部分表示什么數(shù)的集合嗎?
通過多角度的練習,并對典型錯誤進行討論與矯正,使學生鞏固所學內容,同時完成對新知的遷移。
。ㄎ澹└爬ㄊ崂,形成系統(tǒng)
采取師生互動的形式完成。即:
學生談本節(jié)課的收獲,教師適當?shù)难a充、概括,以本節(jié)知識目標的要求進行把關,確保基礎知識的當堂落實。
。┎贾米鳂I(yè)
1、課后作業(yè)
2、設計題可根據(jù)自己的喜好和學有余利的同學完成。
七年級數(shù)學上冊教案4
一、教學目標:
1、掌握絕對值的概念,有理數(shù)大小比較法則。
2、學會絕對值的計算,會比較兩個或多個有理數(shù)的大小。
3、體驗數(shù)學的概念、法則來自于實際生活,滲透數(shù)形結合和分類思想。
二、教學難點:
兩個負數(shù)大小的比較。
三、知識重點:
絕對值的概念。
四、教學過程:
。ㄒ唬┰O置情境。
1、引入課題。
星期天黃老師從學校出發(fā),開車去游玩,她先向東行20千米,到朱家尖,下午她又向西行30千米,回到家中(學校、朱家尖、家在同一直線上),如果規(guī)定向東為正:
。1)用有理數(shù)表示黃老師兩次所行的路程。
(2)如果汽車每公里耗油0.15升,計算這天汽車共耗油多少升?
2、學生思考后,教師作如下說明:
實際生活中有些問題只關注量的具體值,而與相反意義無關,即正負性無關,如汽車的耗油量我們只關心汽車行駛的距離和汽油的價格,而與行駛的方向無關。
3、觀察并思考:
畫一條數(shù)軸,原點表示學校,在數(shù)軸上畫出表示朱家尖和黃老師家的點,觀察圖形,說出朱家尖黃老師家與學校的距離。
4、學生回答后,教師說明如下:
數(shù)軸上表示數(shù)的點到原點的距離只與這個點離開原點的長度有關,而與它所表示的數(shù)的正負性無關;一般地,數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值,記做|a|。
例如,上面的問題中|20|=20,|-10|=10顯然,|0|=0這個例子中,第一問是相反意義的量,用正負數(shù)表示,后一問的解答則與符號沒有關系,說明實際生活中有些問題,人們只需知道它們的具體數(shù)值,而并不關注它們所表示的意義。為引入絕對值概念做準備。使學生體驗數(shù)學知識與生活實際的聯(lián)系。因為絕對值概念的幾何意義是數(shù)形轉化的典型模型,學生初次接觸較難接受,所以配置此觀察與思考,為建立絕對值概念作準備。
。ǘ┖献鹘涣。
1、探究規(guī)律例1求下列各數(shù)的絕對值,并歸納求有理數(shù)a的絕對有什么規(guī)律?
-3,5,0,+58,0.6。
2、要求小組討論,合作學習。
3、教師引導學生利用絕對值的意義先求出答案,然后觀察原數(shù)與它的絕對值這兩個數(shù)據(jù)的特征,并結合相反數(shù)的意義,最后總結得出求絕對值法則(見教科書第15頁)。
。ㄈ╈柟叹毩暎航炭茣15頁練習。
1、其中第1題按法則直接寫出答案,是求絕對值的基本訓練;第2題是對相反數(shù)和絕對值概念進行辨別,對學生的分析、判斷能力有較高要求,要注意思考的周密性,要讓學生體會出不同說法之間的區(qū)別。求一個數(shù)的絕時值的法則,可看做是絕對值概念的一個應用,所以安排此例。 學生能做的盡量讓學生完成,教師在教學過程中只是組織者。本著這個理念,設計這個討論。
2、結合實際發(fā)現(xiàn)新知引導學生看教科書第16頁的圖,并回答相關問題:
。1)把14個氣溫從低到高排列。
。2)把這14個數(shù)用數(shù)軸上的點表示出來。
3、觀察并思考:
。1)觀察這些點在數(shù)軸上的位置,并思考它們與溫度的高低之間的關系,由此你覺得兩個有理數(shù)可以比較大小嗎?應怎樣比較兩個數(shù)的大小呢?
。2)學生交流后,教師總結:
14個數(shù)從左到右的順序就是溫度從低到高的順序:在數(shù)軸上表示有理數(shù),它們從左到右的順序就是從小到大的順序,即左邊的數(shù)小于右邊的數(shù)。在上面14個數(shù)中,選兩個數(shù)比較,再選兩個數(shù)試試,通過比較,歸納得出有理數(shù)大小比較法則。
4、想象練習:
想象頭腦中有一條數(shù)軸,其上有兩個點,分別表示數(shù)-100和-90,體會這兩個點到原點的距離(即它們的絕對值)以及這兩個數(shù)的大小之間的關系。要求學生在頭腦中有清晰的圖形。讓學生體會到數(shù)學的.規(guī)定都來源于生活,每一種規(guī)定都有它的合理性。
數(shù)在大小比較法則第2點學生較難掌握,要從絕對值的意義和數(shù)軸上的數(shù)左小右大這方面結合起來來了解,所以配置想象練習 ,加強數(shù)與形的想象。
5、課堂練習例2,比較下列各數(shù)的大小。(教科書第17頁例)
比較大小的過程要緊扣法則進行,注意書寫格式。
6、練習:第18頁練習。
(三)小結與作業(yè)。
課堂小結怎樣求一個數(shù)的絕對值,怎樣比較有理數(shù)的大?
。ㄋ模┍菊n作業(yè)。
1、必做題:教產書第19頁習題1,2,第4,5,6,10
2、選做題:教師自行安排。
五、本課教育評注(課堂設計理念,實際教學效果及改進設想)。
1、情景的創(chuàng)設出于如下考慮:
(1)體現(xiàn)數(shù)學知識與生活實際的緊密聯(lián)系,讓學生在這些熟悉的日常生活情境中獲得數(shù)學體驗,不僅加深對絕對值的理解,更感受到學習絕對值概念的必要性和激發(fā)學習的興趣。
。2)教材中數(shù)的絕對值概念是根據(jù)幾何意義來定義的(其本質是將數(shù)轉化為形來解釋,是難點),然后通過練習歸納出求有理數(shù)的絕對值的規(guī)律,如果直接給出絕對值的概念,灌輸知識的味道很濃,且太抽象,學生不易接受。
2、一個數(shù)絕對值的法則,實際上是絕對值概念的直接應用,也體現(xiàn)著分類的數(shù)學思想,所以直接通過例1歸納得出,顯得非常緊湊,是教學重點;從知識的發(fā)展和學生的能力培養(yǎng)角度來看,教師應更重視學生的自主學習和探究的過程,關注學生的思維,做好教學的組織和引導,留給學生足夠的空間。
3、有理數(shù)大小的比較法則是大小規(guī)定的直接歸納,其中第(2)條學生較難理解,教學中要結合絕對值的意義和規(guī)定:在數(shù)軸上表示有理數(shù),它們從左到右的順序就是從小到大的順序,幫助學生建立數(shù)軸上越左邊的點到原點的距離越大,所以表示的數(shù)越小這個數(shù)形結合的模型。為此設置了想象練習。
4、本節(jié)課的內容包括絕對值的概念和數(shù)的絕對值的求法、有理數(shù)大小比較的法則,教學內容很多,學生接受起來可能會有困難,建議把有理數(shù)的大小比較移到下節(jié)課教學。
七年級數(shù)學上冊教案5
一、教材分析
(一)教材的地位和作用
本節(jié)內容是一元一次方程應用的延伸與拓展,它進一步讓學生親身經(jīng)歷將實際問題抽象成數(shù)學模型并進行解釋與應用的過程,同時又滲透了函數(shù)與不等式的思想,為以后內容學習奠定了必要的數(shù)學基礎,本節(jié)內容具有承上啟下的作用.學生能深刻地認識到方程是刻畫現(xiàn)實世界有效的數(shù)學模型,領悟到“方程”的數(shù)學思想方法.總之,本節(jié)內容無論在知識上還是在數(shù)學思想方法上,都是十分很好的素材,能很好培養(yǎng)學生的探索精神、應用意識以及創(chuàng)新能力.
(二)教材的重難點
本節(jié)的重點是探索并掌握列一元一次方程解決實際問題的方法.而方程的建模思想學生還是初步接觸,尋找相等關系對學生來說仍相當困難,所以確定“找出已知量與未知量之間的關系,尤其是相等關系”為本節(jié)的難點之一,列方程解應用題的最終目標是運用方程的解對客觀現(xiàn)實作出合理的解釋,這是本節(jié)的難點之二.
二、教學目標分析
(一)知識技能目標
1.目標內容
(1) 結合生活實際,會在獨立思考后與他人合作,結合估算和試探,列出一元一次方程解決本節(jié)的三個實際問題,并能解釋結果的實際意義及其合理性.
(2) 培養(yǎng)學生建立方程模型來分析、解決實際問題的能力以及探索精神、合作意識.
2.目標分析
(1) 本節(jié)的內容就是通過列方程、解方程來解決實際問題,這是必須掌握的知識,估算與試探的思維方法也很重要,這是發(fā)現(xiàn)和解決問題的有效途徑.
(2) 七年級的學生對數(shù)學建模還比較陌生,建模能突出應用數(shù)學的意識,而探索精神和合作意識又是課標所大力倡導的,因而必須加強培養(yǎng)學生這方面的能力.
(二)過程目標
1.目標內容
在活動中感受方程思想在數(shù)學中的作用,進一步增強應用意識.
2.目標分析
利用方程解決問題是有用的數(shù)學方法,學生在前兩節(jié)的數(shù)學活動中,有了一些初步的經(jīng)驗,但是更接近生活,更富有挑戰(zhàn)性的問題則需要師生合作,探索解決.
(三)情感目標
1.目標內容
(1) 在探索中獲得成功的體驗,激發(fā)學生學習數(shù)學的熱情,享受與他人合作的樂趣,建立自信心.
(2) 通過對實際問題的解決,進一步體會“數(shù)學來源于生活,且服務于生活”的辯證思想.
2.目標分析
七年級學生的年齡特征決定了他們好奇心強、思想活躍、求知心切.利用教材培養(yǎng)學生良好的學習習慣、方法和品質,這是落實新課標倡導的教育理念的關鍵.
三、教材處理與教法分析
本節(jié)內容擬定兩課時完成,今天說課的內容是第一課時(探究Ⅰ、探究Ⅱ).根據(jù)本節(jié)課的特點及七年級學生的心理特征和認知特征,本節(jié)課采用探索發(fā)現(xiàn)法進行教學,在活動中充分體現(xiàn)學生是學習的主人,教師是學習的組織者、引導者、合作者.本課借助多媒體輔助教學,給學生以直觀形象的演示,增強感性認識,增強教學效果.課中以設疑提問、分組活動等方式,激發(fā)學生的興趣,引導學生自主探索與合作交流,主動獲得知識.
四、教學過程分析
(一)教學過程流程圖
探究Ⅰ
(二)教學過程Ⅰ
。ㄒ蕴骄繛橹骶、形式多樣化)
1.問題情境
(1) 多媒體展示有關盈虧的新聞報道,感受生活實際.
(2) 據(jù)此生活實例,展示探究Ⅰ,引入新課.
考慮到學生不完全明白“盈利”、“虧損”這樣的商業(yè)術語,故針對性地播放相關新聞報道,然后引出要探索的問題Ⅰ.
2.討論交流
(1) 學生結合自己的生活實際,交流對“盈利”、“虧損”含義的理解.
(2) 學生交流后,老師提出問題:某件商品的進價是40元,賣出后盈利25%,那么利潤是多少?如果賣出后虧損25%,利潤又是多少?(利潤是負數(shù),是什么意思?)
(3) 要求學生對探究Ⅰ中商店的盈虧進行估算,交流討論并說明理由.在討論中學生對商店盈虧可能出現(xiàn)不同的觀點,因此引導學生用數(shù)學方法解決問題,統(tǒng)一認識.
(4) 師生互動,要知道究竟是盈是虧,必須先知道什么?從而引出要算出每件衣服的進價.
讓學生討論盈利和虧損的含義,理解其概念,建立感性認識;乍一看,大多數(shù)學生可能在大體估算后得到不虧不盈,直覺上也是如此,但要解決實際問題,還要知其原價(未知量),從這一分析引入未知量,為后面建立模型,做了必要的鋪墊.
3.建立模型
(1) 學生自主探索,尋找已知量與未知量之間的關系,確定相等關系.
(2) 學生分組,根據(jù)找出的相等關系列出方程,其中一組計算盈利25%的衣服的進價,另一組計算虧損25%的衣服的進價.
(3) 師生互動:①兩件衣服的進價和為________;②兩件衣服的售價和為________;③由于進價________售價,由此可知兩件衣服的盈虧情況.
。ń處熂皶r給出完整的解答過程)
學生分組、計算盈虧;教師參與、適當提示;師生互動、得到?jīng)Q策.這樣設計,讓學生體會到合作交流、互相評價、互相尊重的'學習方式,有利于學生知識的形成與發(fā)展,也有利于學生健康人格的養(yǎng)成.這樣設計易于突出重點,突破難點,鞏固應用一元一次方程作工具來解決實際問題的方法,也很好地讓學生從已有的經(jīng)驗中、活動中,有意義地構建自己的知識結構,獲得富有成效的學習體驗.
4.小結
一個感悟:估算與主觀判斷往往與實際情況大相徑庭,需要我們通過準確的計算來檢驗自己的判斷.
培養(yǎng)學生科學的學習態(tài)度與嚴謹?shù)膶W習作風.
探究Ⅱ
(三)教學過程Ⅱ
1.在燈具店選購燈具時,由于兩種燈具價格、能耗的不同,引起矛盾沖突.
恰當?shù)膯栴}情境激發(fā)學生探索的欲望,同時讓學生體會到數(shù)學來源于生活,又服務于生活的實用性.
啟發(fā):選擇的目的是節(jié)省費用,費用又是由哪些因素決定的?學生討論得出結論:
2.列代數(shù)式
費用=燈的售價+電費
電費=0.5×燈的功率(千瓦)×照明時間(時)
在此基礎上,用t表示照明時間(小時).要求學生列出代數(shù)式表示這兩種燈的費用.
節(jié)能燈的費用(元):60+0.5×0.011t.
白熾燈的費用(元):3+0.5×0.06t.
分析各個量之間的關系,列出代數(shù)式,為后面列方程,并進一步探索提供了基礎.
3.特值試探
具體感知
學生分組計算:
t=1000、20xx、2500、3000時,這兩種燈具的使用費用,填入下表:
時間(小時)
1000
20xx
2500
3000
節(jié)能燈的費用(元)
白熾燈的費用(元)
七年級數(shù)學上冊教案6
單元教學內容
1、本單元結合學生的生活經(jīng)驗,列舉了學生熟悉的用正、負數(shù)表示的實例,從擴充運算的角度引入負數(shù),然后再指出可以用正、負數(shù)表示現(xiàn)實生活中具有相反意義的量,使學生感受到負數(shù)的引入是來自實際生活的需要,體會數(shù)學知識與現(xiàn)實世界的聯(lián)系
引入正、負數(shù)概念之后,接著給出正整數(shù)、負整數(shù)、正分數(shù)、負分數(shù)集合及整數(shù)、分數(shù)和有理數(shù)的概念
2、通過怎樣用數(shù)簡明地表示一條東西走向的馬路旁的樹、電線桿與汽車站的相對位置關系引入數(shù)軸、數(shù)軸是非常重要的數(shù)學工具,它可以把所有的有理數(shù)用數(shù)軸上的點形象地表示出來,使數(shù)與形結合為一體,揭示了數(shù)形之間的內在聯(lián)系,從而體現(xiàn)出以下4個方面的作用:
(1)數(shù)軸能反映出數(shù)形之間的對應關系
。2)數(shù)軸能反映數(shù)的性質、
。3)數(shù)軸能解釋數(shù)的某些概念,如相反數(shù)、絕對值、近似數(shù)
。4)數(shù)軸可使有理數(shù)大小的比較形象化
3、對于相反數(shù)的概念,從“數(shù)軸上表示互為相反數(shù)的兩點分別在原點的兩旁,且離開原點的距離相等”來說明相反數(shù)的幾何意義,同時補充“零的相反數(shù)是零”作為相反數(shù)意義的一部分
4、正確理解絕對值的概念是難點
根據(jù)有理數(shù)的'絕對值的兩種意義,可以歸納出有理數(shù)的絕對值有如下性質:
(1)任何有理數(shù)都有唯一的絕對值
。2)有理數(shù)的絕對值是一個非負數(shù),即最小的絕對值是零
(3)兩個互為相反數(shù)的絕對值相等,即│a│=│-a│
(4)任何有理數(shù)都不大于它的絕對值,即│a│≥a,│a│≥-a
。5)若│a│=│b│,則a=b,或a=-b或a=b=0
三維目標
1、知識與技能
。1)了解正數(shù)、負數(shù)的實際意義,會判斷一個數(shù)是正數(shù)還是負數(shù)
(2)掌握數(shù)軸的畫法,能將已知數(shù)在數(shù)軸上表示出來,能說出數(shù)軸上已知點所表示的解
。3)理解相反數(shù)、絕對值的幾何意義和代數(shù)意義,會求一個數(shù)的相反數(shù)和絕對值
。4)會利用數(shù)軸和絕對值比較有理數(shù)的大小
2、過程與方法
經(jīng)過探索有理數(shù)運算法則和運算律的過程,體會“類比”、“轉化”、“數(shù)形結合”等數(shù)學方法
3、情感態(tài)度與價值觀
使學生感受數(shù)學知識與現(xiàn)實世界的聯(lián)系,鼓勵學生探索規(guī)律,并在合作交流中完善規(guī)范語言
重、難點與關鍵
1、重點:正確理解有理數(shù)、相反數(shù)、絕對值等概念;會用正、負數(shù)表示具有相反意義的量,會求一個數(shù)的相反數(shù)和絕對值
2、難點:準確理解負數(shù)、絕對值等概念
3、關鍵:正確理解負數(shù)的意義和絕對值的意義
課時劃分
1、1 正數(shù)和負數(shù) 2課時
1、2 有理數(shù) 5課時
1、3 有理數(shù)的加減法 4課時
1、4 有理數(shù)的乘除法 5課時
1、5 有理數(shù)的乘方 4課時
第一章有理數(shù)(復習) 2課時
1、1正數(shù)和負數(shù)
第一課時
三維目標
一、知識與技能
能判斷一個數(shù)是正數(shù)還是負數(shù),能用正數(shù)或負數(shù)表示生活中具有相反意義的量
二、過程與方法
借助生活中的實例理解有理數(shù)的意義,體會負數(shù)引入的必要性和有理數(shù)應用的廣泛性
三、情感態(tài)度與價值觀
培養(yǎng)學生積極思考,合作交流的意識和能力
教學重、難點與關鍵
1、重點:正確理解負數(shù)的意義,掌握判斷一個數(shù)是正數(shù)還是負數(shù)的方法。
2、難點:正確理解負數(shù)的概念。
3、關鍵:創(chuàng)設情境,充分利用學生身邊熟悉的事物,加深對負數(shù)意義的理解。
教具準備
投影儀、
教學過程
四、課堂引入
我們知道,數(shù)是人們在實際生活和生活需要中產生,并不斷擴充的、人們由記數(shù)、排序、產生數(shù)1,2,3,…;為了表示“沒有物體”、“空位”引進了數(shù)“0”,測量和分配有時不能得到整數(shù)的結果,為此產生了分數(shù)和小數(shù)、
在生活、生產、科研中經(jīng)常遇到數(shù)的表示與數(shù)的運算的問題,例如課本第2頁至第3頁中提到的四個問題,這里出現(xiàn)的新數(shù):-3,-2,-2.7%在前面的實際問題中它們分別表示:零下3攝氏度,凈輸2球,減少2.7%、
五、講授新課
。1)、像-3,-2,-2.7%這樣的數(shù)(即在以前學過的0以外的數(shù)前面加上負號“-”的數(shù))叫做負數(shù)、而3,2,+2.7%在問題中分別表示零上3攝氏度,凈勝2球,增長2.7%,它們與負數(shù)具有相反的意義,我們把這樣的數(shù)(即以前學過的0以外的數(shù))叫做正數(shù),有時在正數(shù)前面也加上“+”(正)號,例如,+3,+2,+0.5,+ ,…就是3,2,0.5, ,…一個數(shù)前面的“+”、“-”號叫做它的符號,這種符號叫做性質符號
。2)、中國古代用算籌(表示數(shù)的工具)進行計算,紅色算籌表示正數(shù),黑色算籌表示負數(shù)
。3)、數(shù)0既不是正數(shù),也不是負數(shù),但0是正數(shù)與負數(shù)的分界數(shù)
。4) 、0可以表示沒有,還可以表示一個確定的量,如今天氣溫是0℃,是指一個確定的溫度;海拔0表示海平面的平均高度。
用正負數(shù)表示具有相反意義的量。
(5)、 把0以外的數(shù)分為正數(shù)和負數(shù),起源于表示兩種相反意義的量、正數(shù)和負數(shù)在許多方面被廣泛地應用、在地形圖上表示某地高度時,需要以海平面為基準,通常用正數(shù)表示高于海平面的某地的海拔高度,負數(shù)表示低于海平面的某地的海拔高度、例如:珠穆朗瑪峰的海拔高度為8844,吐魯番盆地的海拔高度為-155、記錄賬目時,通常用正數(shù)表示收入款額,負數(shù)表示支出款額。
。6)、 請學生解釋課本中圖1、1-2,圖1、1-3中的正數(shù)和負數(shù)的含義。
。7)、 你能再舉一些用正負數(shù)表示數(shù)量的實際例子嗎?
。8)、例如,通常用正數(shù)表示汽車向東行駛的路程,用負數(shù)表示汽車向西行駛的路程;用正數(shù)表示水位升高的高度,用負數(shù)表示水位下降的高度;用正數(shù)表示買進東西的數(shù)量,用負數(shù)表示賣出東西的數(shù)量
六、鞏固練
課本第3頁,練習1、2、3、4題
七年級數(shù)學上冊教案7
【學習目標】
1、理解什么是一元一次方程。
2、理解什么是方程的解及解方程,學會檢驗一個數(shù)值是不是方程的解的方法。
【重點難點】能驗證一個數(shù)是否是一個方程的解。
1.某工廠加強節(jié)能措施,去年下半年與上半年相比,月平均用電量減少2 000度,全年用電15萬度,如果設上半年每月平均用電x度,那么所列方程正確的是( )
A.6x+6(x-2 000)=150 000
B.6x+6(x+2 000)=150 000
C.6x+6(x-2 000)=15
D.6x+6(x+2 000)=15
2.李紅買了8個蓮蓬,付50元,找回38元.設每個蓮蓬的價格為x元,根據(jù)題意,列出方程為________.
3.一個正方形花圃邊長增加2 m,所得新正方形花圃的周長是28 m,則原正方形花圃的邊長是多少?(只列方程)
《3.1.等式的性質》同步四維訓練含答案
知識點一:等式的性質1
1.下列變形錯誤的是(D )
A.若a=b,則a+c=b+c
B.若a+2=b+2,則a=b
C.若4=x-1,則x=4+1
D.若2+x=3,則x=3+2
2.已知m+a=n+b,根據(jù)等式的性質變形為m=n,那么a,b必須符合的條件是(C )
A.a=-b
B.-a=b
C.a=b
D.a,b可以是任意有理
《3.1從算式到方程》同步練習含解析
7.解:把x=3代入方程,得:15-a=3,
解得:a=12.
故選B.
根據(jù)方程解的定義,將方程的解代入方程,就可得一個關于字母a的一元一次方程,從而可求出a的值.
本題考查了方程的解的定義,解決本題的.關鍵在于:根據(jù)方程的解的定義將x=3代入,從而轉化為關于a的一元一次方程.
8.解:A、7x-4=3x是方程;
B、4x-6不是等式,不是方程;
C、4+3=7沒有未知數(shù),不是方程;
D、2x<5不是等式,不是方程;
故選:A.
根據(jù)方程的定義:含有未知數(shù)的等式叫方程解答即可.數(shù)或整式
七年級數(shù)學上冊教案8
教學目標:
1、了解正數(shù)與負數(shù)是實際生活的需要。
2、會判斷一個數(shù)是正數(shù)還是負數(shù)。
3、會用正負數(shù)表示互為相反意義的量。
教學重點:
會判斷正數(shù)、負數(shù),運用正負數(shù)表示具有相反意義的量,理解表示具有相反意義的量的意義。
教學難點:
負數(shù)的引入。
教與學互動設計:
(一)創(chuàng)設情境,導入新課
課件展示 珠穆朗瑪峰和吐魯番盆地,讓同學感受高于水平面和低于水平面的不同情況。
。ǘ┖献鹘涣,解讀探究
舉出一些生活中常遇到的具有相反意義的量,如溫度是零上7 ℃和零下5 ℃,買進90張課桌與賣出80張課桌,汽車向東行50米和向西行120米等。
想一想 以上都是一些具有相反意義的`量,你能用小學算術中的數(shù)來表示出每一對量嗎?你能再舉一些日常生活中具有相反意義的量嗎?該如何表示它們呢?
為了用數(shù)表示具有相反意義的量,我們把具有其中一種意義的量,如零上溫度、前進、收入、上升、高出等規(guī)定為正的,而把具有與它意義相反的量,如零下溫度、后退、支出、下降、低于等規(guī)定為負的,正的量用算術里學過的數(shù)表示,負的量用學過的數(shù)前面加上“—”(讀作負)號來表示(零除外)。
活動 每組同學之間相互合作交流,一同學說出有關相反意義的兩個量,由其他同學用正負數(shù)表示。
討論 什么樣的數(shù)是負數(shù)?什么樣的數(shù)是正數(shù)?0是正數(shù)還是負數(shù)?自己列舉正數(shù)、負數(shù)。
總結 正數(shù)是大于0的數(shù),負數(shù)是在正數(shù)前面加“—”號的數(shù),0既不是正數(shù),也不是負數(shù),是正數(shù)與負數(shù)的分界點。
。ㄈ⿷眠w移,鞏固提高
【例1】舉出幾對具有相反意義的量,并分別用正、負數(shù)表示。
【提示】具有相反意義的量有“上升”與“下降”,“前”與“后”、“高于”與“低于”、“得到”與“失去”、“收入”與“支出”等。
【例2】在某次乒乓球檢測中,一只乒乓球超過標準質量0.02 g,記作+0.02 g,那么—00.3 g表示什么?
【例3】 某項科學研究以45分鐘為1個時間單位,并記為每天上午10時為0,10時以前記為負,10時以后記為正。例如,9:15記為—1,10:45記為1等等。依此類推,上午7:45應記為( )
A.3 B.—3 C.—2.5 D.—7.45
【點撥】讀懂題意是解決本題的關鍵。7:45與10:00相差135分鐘。
(四)總結反思,拓展升華
為了表示現(xiàn)實生活中具有相反意義的量引進了負數(shù)。正數(shù)就是我們過去學過(除零外)的數(shù),在正數(shù)前加上“—”號就是負數(shù),不能說“有正號的數(shù)是正數(shù),有負號的數(shù)是負數(shù)”。另外,0既不是正數(shù),也不是負數(shù)。
1、下表是小張同學一周中簡記儲蓄罐中錢的進出情況表(存入記為“+”):
星期 日 一 二 三 四 五 六
。ㄔ +16 +5.0 —1.2 —2.1 —0.9 +10 —2.6
(1)本周小張一共用掉了多少錢?存進了多少錢?
(2)儲蓄罐中的錢與原來相比是多了還是少了?
。3)如果不用正、負數(shù)的方法記賬,你還可以怎樣記賬?比較各種記賬的優(yōu)劣。
2、數(shù)學游戲:4個同學站或蹲成一排,從左到右每個人編上號:1,2,3,4。用“+”表示“站”,“—”(負號)表示“蹲”。
(1)由一個同學大聲喊:+1,—2,—3,+4,則第1、第4個同學站,第2、第3個同學蹲,并保持這個姿勢,然后再大聲喊:—1,—2,+3,+4,如果第2、第4個同學中有改變姿勢的,則表示輸了,作小小的“懲罰”;
。2)增加游戲難度,把4個同學順序調整一下,但每個人記作自己原來的編號,再重復(1)中的游戲。
。ㄎ澹┱n堂跟蹤反饋
夯實基礎
1、填空題:
。1)如果節(jié)約用水30噸記為+30噸,那么浪費20噸記為xxx噸。
。2)如果4年后記作+4年,那么8年前記作xxx年。
。3)如果運出貨物7噸記作—7噸,那么+100噸表示xxx。
。4)一年內,小亮體重增加了3 kg,記作+3 kg;小陽體重減少了2 kg,則小陽增加了xxx。
2、中午12時,水位低于標準水位0。5米,記作—0。5米,下午1時,水位上漲了1米,下午5時,水位又上漲了0。5米。
。1)用正數(shù)或負數(shù)記錄下午1時和下午5時的水位;
。2)下午5時的水位比中午12時水位高多少?
提升能力
3、糧食每袋標準重量是50公斤,現(xiàn)測得甲、乙、丙三袋糧食重量如下:52公斤,49公斤,49。8公斤。如果超重部分用正數(shù)表示,請用正數(shù)和負數(shù)記錄甲、乙、丙三袋糧食的超重數(shù)和不足數(shù)。
。┱n時小結
1、與以前相比,0的意義又多了哪些內容?
2、怎樣用正數(shù)和負數(shù)表示具有相反意義的量?(用正數(shù)表示其中具有一種意義的量,另一種量用負數(shù)表示)
七年級數(shù)學上冊教案9
學習目標:
1、引導學生正確區(qū)分“線段、射線、直線”,掌握其表示方法,理解并能運用相關性質、公理。
2、了解線段中點的概念,能借助刻度尺、圓規(guī)等畫圖工具畫一條線段等于已知線段。
3、引領學生在感受美妙多變的圖形世界中,培養(yǎng)他們的觀察、分析、比較、探究等能力。
重點與難點:了解線段中點的概念,能畫一條線段等于已知線段。發(fā)展學生有條理的思考,并能正確地表述。
學習過程:
一、課前預習導學
1、如圖,點a、b、c、d在直線ab上,則圖中能用字母表示的共有條線段,有條射線,有條直線。
2、從a到b地有①、②、③三條路可以走,每條路長分別為:,則第條路最短,另兩條路的長短關系是。
第1題
第2題
3、如圖,若是中點,是中點,
。1)若,_________;
(2)若,_________。
二、課堂學習1、議一議:
(1)、在平面內畫一個點,過這個點畫直線,能畫多少條?
。2)、要在墻上釘牢一根木條,至少要用幾個釘子?為什么?
。3)、如果平面內有兩個點,過這兩個點畫直線,又能畫多少條?
總結:“過兩點有______,并且____ ”
思考:過平面上三點中的每兩點畫直線,可畫多少條?
2、做一做:已知兩點a、b
。1)畫線段ab(連接ab)
(2)延長線段ab到點c,使bc=ab
注意:我們把上圖中的點b叫做線段ac的。
3、想一想:(1)如果點b是線段ac的中點,那么線段ab、bc、ac之間有怎樣的.數(shù)量關系?與同學交流。
。2)如何用符號語言表述中點的概念?
總結:如果點b是線段ac的中點,那么;
如果,那么b是線段ac的中點。
4、知識運用:
例1、如圖,線段ab=8cm,c是ab的中點,點d在cb上,db=1.5cm.求線段cd的長度。
練習:1、如圖ab=8cm,點c是ab的中點,
點d是cb的中點,則ad=____cm
2、如圖,下列說法,不能判斷點c是線段ab的中點的是( )
a、ac=cb b、ab=2ac c、ac+cb=ab d、cb=0.5ab
3、已知線段ab=8cm,點c是線段ab上任意一點,點m,n分別是線段ac與線段bc的中點,求線段mn的長。
三、課堂檢測1.下列說法中,正確的是()
a.射線oa和射線ao表示同一條射線;b.延長直線ab;
c.經(jīng)過兩點有一條直線,并且只有一條直線;d.如果ac=bc,那么點c是線段ab的中點.
2.如果要在墻上固定一根木條,你認為至少要釘子()
a.1根b.2根c.3根d.4根
3.如圖,若是中點,是中點,
。1)若,,_________;(2)若,_________。
4.如圖在平面內有a、b、c、d四點,按要求畫圖。
。1)畫直線ab、射線bc、線段bd
(2)連結ac交bd于點o
。3)畫射線cd并反向延長射線cd,
。4)連結ad并延長至點e,使ad=de。
四、課后作業(yè)
1、下列說法中正確的是()
a、連結兩點的線段叫做兩點之間的距離b、直線沒有端點,射線至少有一個端點
c、經(jīng)過平面內兩點有且只有一條直線d、運動場上的300m賽跑,表示起點和終點之間的距離是300米
2、如圖,b是線段ad上一點,c是線段bd的中點,ad=10,bc=3,求線段cd、ab的長度
3、如圖,線段ad=8,ab=cd=3,e、f分別是ab、cd的中點,求線段ef的長。
4、已知線段mn=7,點p在直線mn上,且mp=3,則np= 。
5、一條直線上有a,b,c三點,其中ab=4cm,bc=3cm,若o是線段ac的中點,求線段ob的長度。
七年級數(shù)學上冊教案10
教學目標:
1.通過對“零”的意義的探討,進一步理解正數(shù)和負數(shù)的概念,能利用正負數(shù)正確表示具有相反意義的量(規(guī)定了向指定方向變化的量);
2.進一步體驗正負數(shù)在生產生活中的廣泛應用,提高解決實際問題的能力.
教學重點:
深化對正負數(shù)概念的理解.
教學難點:
正確理解和表示向指定方向變化的量.
教與學互動設計:
(一)知識回顧和理解
通過對上節(jié)課的學習,我們知道在實際生產和生活中存在著具有兩種不同意義的量,為了區(qū)分它們,我們用正數(shù)和負數(shù)來分別表示它們.
[問題1]:“零”為什么既不是正數(shù)也不是負數(shù)呢?
學生思考討論,借助舉例說明.
參考例子:用正數(shù)、負數(shù)和零表示零上溫度、零下溫度和零度.
思考“0”在實際問題中有什么意義?
歸納“0”在實際問題中不僅表示“沒有”的意思,它還具有一定的實際意義.
如:水位不升不降時的水位變化,記作:0 m.
[問題2]:引入負數(shù)后,數(shù)按照“具有兩種相反意義的量”來分,可以分成幾類?分別是什么?
(二)深化理解,解決問題
[問題3]:(課本P3例題)
【例1】(1)一個月內,小明體重增加2 kg,小華體重減少1kg,小強體重無變化,寫出他們這個月的體重增長值;
【例2】(2)某年,下列國家的商品進出口總額比上年的變化情況是:
美國減少6.4%,德國增長1.3%,
法國減少2.4%,英國減少3.5%,
意大利增長0.2%,中國增長7.5%.
寫出這些國家這一年商品進出口總額的增長率.
解后語:在同一個問題中,分別用正數(shù)和負數(shù)表示的量具有相反的意義.寫出體重的增長值和進出口的增長率就暗示著用正數(shù)來表示增長的量.類似的還有水位上升、收入上漲等等.我們要在解決問題時注意體會這些指明方向的量,正確地用正負數(shù)表示它們.
鞏固練習
1.通過例題(2)提醒學生審題時要注意要求,題中求的是增長率,不是增長值.
2.讓學生再舉出一些常見的具有相反意義的量.
3.1990~1995年下列國家年平均森林面積(單位:千米2)的變化情況是:
中國減少866,印度增長72,
韓國減少130,新西蘭增長434,
泰國減少3247,孟加拉減少88.
(1)用正數(shù)和負數(shù)表示這六國1990~1995年平均森林面積的增長量;
(2)如何表示森林面積減少量,所得結果與增長量有什么關系?
(3)哪個國家森林面積減少最多?
(4)通過對這些數(shù)據(jù)的分析,你想到了什么?
閱讀與思考
(課本P6)用正數(shù)和負數(shù)表示加工允許誤差.
問題:1.直徑為30.032 mm和直徑為29.97 mm的零件是否合格?
2.你知道還有哪些事件可以用正負數(shù)表示允許誤差嗎?請舉例.
(三)應用遷移,鞏固提高
1.甲冷庫的溫度是-12℃,乙冷庫的`溫度比甲冷庫低5 ℃,則乙冷庫的溫度是.
2.一種零件的內徑尺寸在圖紙上是9±0.05(單位:mm),表示這種零件的標準尺寸是9 mm,加工要求不超過標準尺寸多少?最小不小于標準尺寸多少?
3.摩托車廠本周計劃每天生產250輛摩托車,由于工人實行輪休,每天上班的人數(shù)不一定相等,實際每天生產量(與計劃量相比)的增減值如下表:
星期一二三四
增減-5 +7 -3 +4
根據(jù)上面的記錄,問:哪幾天生產的摩托車比計劃量多?星期幾生產的摩托車最多,是多少輛?星期幾生產的摩托車最少,是多少輛?
類比例題,要求學生注意書寫格式,體會正負數(shù)的應用.
(四)課時小結(師生共同完成)
七年級數(shù)學上冊教案11
教學內容:
第89頁例3、例4,90頁課堂活動,練習二十二第5、6、7、8題。
教學目標:
1.在熟悉的生活情境中,進一步理解負數(shù)的意義,會用正負數(shù)表示相反意義的量。
2.感受負數(shù)在生活中的廣泛應用,會解釋生活中的一些負數(shù)的實際意義。
教學重點:
會用正、負數(shù)表示相反意義的量。
教學難點:
會用正、負數(shù)解決生活中的實際問題。
教具準備:
多媒體課件
教學方法:
合作交流、師生互動
教學過程:
一、游戲激趣
教師:我們來玩?zhèn)游戲輕松一下,游戲名叫《我反,我反,我反反反》。游戲規(guī)則:老師說一句話,請你說出與它相反意思的話。誰先試一試?
向上看 向前走200米 電梯上升15層 我在銀行存入了500元
二、復習舊知
我們已經(jīng)學習了負數(shù),你能舉幾個負數(shù)的例子嗎?
通過前面內容的學習,你還知道哪些知識?
三、學習新知
1.教學例3。
出示例3的情境:小明向東走200米,小軍向西走200米。
教師問:你準備怎樣來表示這兩個不同意思的量?
學生1:向東走200米記作+200米,向西走200米就記作-200米。
學生2:向西走200米記作+200米,向東走200米就記作-200米。
教師對這兩種記法都應給予肯定。
學生獨立試一試
(1)如果汽車向正北方向行駛50m記作+50m,那么汽車向正南方向行駛100m該怎樣記?
(2)如果體重減少2kg記作-2kg,那么+5kg表示什么?
學生完成后,集體訂正并小結:由此可見,我們可以用正數(shù)、負數(shù)來表示相反意義的量。
(3)練習:課堂活動第2題:說出表中正數(shù)、負數(shù)表示的意義。
項目 父母工資 電話費 父母獎金 水、電、氣費 伙食費
收支情況(元) 4500 -130 1000 -280 -1750
2.教學例4。
教師:其實,正、負數(shù)在生活中有著廣泛的應用。如某農用物資商場把下半年的盈虧情況做了一個表:(出示例4)
月份 7月 8月 9月 10月 11月 12月
盈虧情況(元) +6500 -2700 0 -750 +9500 +16700
教師:表中的正數(shù),負數(shù)各表示什么意思?(正數(shù)表示盈利,負數(shù)表示虧損。)
教師:從表中你獲得了哪些信息?
學生小組內交流,然后全班匯報。
教師:盈和虧也是兩個相反意義的量,我們用正數(shù)、負數(shù)來表示,簡潔而準確。
3.討論生活中的.負數(shù)。
教師出示存折和電梯圖上的負數(shù),讓學生講講表示的是什么意思。
教師:存折上的-800表示什么意思?
學生:取出800元記作-800;存入了1200元記作1200元,還可以記作+1200元
電梯里的1和-1表示什么意思?(以地面為界線,地面以上一層我們用1或+1來表示,-1就表示地下一層)
老師現(xiàn)在要到33層應該按幾啊?要到地下3層呢?
四、課堂練習
1.下圖每段表示1m,小麗剛開始的位置在0處。
(1)小麗從0處向東行5m表示+5m,那么她從0點向西行4m表示為( )
(2)如果小麗的位置是+8m,說明她是從0點向( )行了( )m。
(3)如果小麗的位置是-6,說明她是從0點向( )行了( )m。
(4)如果小麗先向西行6m,再向東行9m,這時小麗的位置表示為( )m。
(5)如果小麗先向東行3m,再向西行7m,這時小麗的位置表示為( )m。
2.如果順時針方向旋轉90°記作+90°,那么逆時針方向旋轉90°記作( )。
3.如果-20分表示比平均分低20分,那么+15表示( )
4.如果比規(guī)定任務多做5個記作+5個,那么-5表示( )
5.2.如果在銀行存入10000元記作+10000,那么-5000表示( )。
五、自學“你知道嗎?”
學生閱讀教科書92頁內容,說說有什么收獲?
六、課堂小結
通過今天的學習,你有什么收獲?
七、課堂作業(yè)
練習二十二第6、7題。
家庭作業(yè):90頁課堂活動第3題,練習二十二第5、8題
板書設計:
認識具有相反意義的量及其簡單應用
向東走200米記作+200米,向西走200米就記作-200米
正數(shù)、負數(shù)來表示相反意義的量。
七年級數(shù)學上冊教案12
教學目標:
知識目標:有理數(shù)的概念,有理數(shù)的分類,熟練的寫出某集合中的數(shù)。
過程與方法:感受分類的思想,分類的依據(jù)。
情感態(tài)度價值觀:感受數(shù)的對稱美,
課堂教學過程
一.情境問題:
到目前為止,你能舉出哪些數(shù),你能把這些數(shù)分類嗎?你的分類依據(jù)是什么?有理數(shù):整數(shù)正整數(shù),0,負整數(shù)。
分數(shù)正分數(shù),負分數(shù)。
有理數(shù):正有理數(shù)
負有理數(shù)。
二.嘗試應用:
1課本第8頁練習。補充:整數(shù)集合,負整數(shù)集合,分數(shù)集合。
2判斷:1.正整數(shù)和負整數(shù)統(tǒng)稱為整數(shù)。
2.小數(shù)不是有理數(shù)。
3正數(shù)和負數(shù)統(tǒng)稱為有理數(shù)。
4分數(shù)包括正分數(shù)和負分數(shù)。
http://baogao.oh100.com 是有理數(shù)。
三.補償提高:
將下列的.數(shù)填在相應的括號中。
-8.5,6,-21/5,0,-200,+13/5,-2,35,0.01,+86.
正整數(shù)集合:
負整數(shù)集合:
正分數(shù)集合:
負分數(shù)集合:
正數(shù)集合:
分數(shù)集合:
非正數(shù)集合:
自然數(shù)集合:
思考:既是正數(shù)又是整數(shù)的數(shù)是什么數(shù)?既是負數(shù)又是分數(shù)的數(shù)是什么數(shù)?
四.小結與反思:
本節(jié)課用到得思想,重要知識,注意問題,你的疑惑.
教后反思:
本節(jié)對有理數(shù)的分類:按正負來分,按整數(shù)和分數(shù)來分。明確分類標準。能正確的寫出某些數(shù)的集合。
本節(jié)需要學生熟練。再有理數(shù)的分類的探討上二班較流暢,但是正負來分為落實好。
七年級數(shù)學上冊教案13
一、教學目標
1.使學生認識平行線的特征,能靈活地利用平行線的三個特征解決問題.
2.繼續(xù)對學生進行初步的數(shù)學語言的訓練,使學生能用數(shù)學語言敘述平行線的特征,并能用初步的數(shù)學語言進行簡單的邏輯推理.
3.使學生理解平移的思想,知道圖形經(jīng)過平移以后的位置,并能畫出平移后的圖形.
4.通過利用“幾何畫板”所做的數(shù)學實驗的演示等,培養(yǎng)學生的`觀察能力,即在圖形的運動變化中抓住圖形的本質特征,發(fā)展學生邏輯思維能力,通過實際問題的解決培養(yǎng)學生分析問題和解決問題的能力.
5.通過課堂設疑,培養(yǎng)學生勇于發(fā)現(xiàn)、探索新知識的精神.
6.通過創(chuàng)設問題情境,讓學生親身體驗、直觀感知并操作確認,激發(fā)學生自主學習的欲望,使之愛學、會學、學會、會用.
二、教學重點
平行線的三個特征.
三、教學難點
靈活地利用平行線的三個特征解決問題.
四、教學過程
老師:同學們,如圖所示,是我們大連的馬欄河,河上有兩座橋:新華橋和光明橋.河的兩岸是兩條平行的公路:黃河路與高爾基路,某測量員在A點測得.如果你不通過測量,能否猜出的度數(shù)是多少?
王亮:.
老師:他到底猜得對不對呢?下面我們要先做一個實驗,拿出尺子,畫兩條平行的直線a、b,第三條直線l和這兩條直線相交,標出所得到的角,用量角器量出各個角的度數(shù),觀察當兩直線平行時,各種角有什么關系.
學生動手按要求做實驗.
老師:將你發(fā)現(xiàn)的規(guī)律與組內同學進行交流.
學生以小組為單位進行交流與研究.
老師:請每組派一名代表將你們得到的規(guī)律寫到黑板上,并結合你畫的圖講解你們組的結論.
第1組學生代表:如果兩直線平行,同位角就相等。
七年級數(shù)學上冊教案14
教學目標
1,整理前兩個學段學過的整數(shù)、分數(shù)(包括小數(shù))的知識,掌握正數(shù)和負數(shù)的概念;
2,能區(qū)分兩種不同意義的量,會用符號表示正數(shù)和負數(shù);
3,體驗數(shù)學發(fā)展的一個重要原因是生活實際的需要,激發(fā)學生學習數(shù)學的興趣。
教學難點正確區(qū)分兩種不同意義的量。
知識重點兩種相反意義的量
教學過程(師生活動)設計理念
設置情境
引入課題上課開始時,教師應通過具體的例子,簡要說明在前兩個學段我們已經(jīng)學過的數(shù),并由此請學生思考:生
活中僅有這些“以前學過的數(shù)”夠用了嗎?下面的例子
僅供參考.
師:今天我們已經(jīng)是七年級的學生了,我是你們的數(shù)學老師.下面我先向你們做一下自我介紹,我的名字是XX,身高1。73米,體重58。5千克,今年40歲.我們的班級是七(13)班,有60個同學,其中男同學有22個,占全班總人數(shù)的37%…
問題1:老師剛才的介紹中出現(xiàn)了幾個數(shù)?分別是什么?你能將這些數(shù)按以前學過的數(shù)的分類方法進行分類嗎?
學生活動:思考,交流
師:以前學過的數(shù),實際上主要有兩大類,分別是整數(shù)和分數(shù)(包括小數(shù)).
問題2:在生活中,僅有整數(shù)和分數(shù)夠用了嗎?
請同學們看書(觀察本節(jié)前面的幾幅圖中用到了什么數(shù),讓學生感受引入負數(shù)的必要性)并思考討論,然后進行交流。
(也可以出示氣象預報中的氣溫圖,地圖中表示地形高低地形圖,工資卡中存取錢的記錄頁面等)
學生交流后,教師歸納:以前學過的數(shù)已經(jīng)不夠用了,有時候需要一種前面帶有“-”的新數(shù)。先回顧小學里學過的數(shù)的.類型,歸納出我們已經(jīng)學了整數(shù)和分數(shù),然后,舉一些實際生活中共有相反意義的量,說明為了表示相反意義的量,我們需要引入負數(shù),這樣做強調了數(shù)學的嚴密性,但對于學生來說,更多地感到了數(shù)學的枯燥乏味為了既復習小學里學過的數(shù),又能激發(fā)學生的學習興趣,所以創(chuàng)設如下的問題情境,以盡量貼近學生的實際.
這個問題能激發(fā)學生探究的欲望,學生自己看書學習是培養(yǎng)學生自主學習的重要途徑,都應予以重視。
以上的情境和實例使學生體會生活中處處有數(shù)學,通過實例,使學生獲取大量的感性材料,為正確建立相反意義的量奠定基礎。
分析問題
探究新知問題3:前面帶有“一”號的新數(shù)我們應怎樣命名它呢?為什么要引人負數(shù)呢?通常在日常生活中我們用正數(shù)和負數(shù)分別表示怎樣的量呢?
這些問題都必須要求學生理解.
教師可以用多媒體出示這些問題,讓學生帶著這些問題看書自學,然后師生交流.
這階段主要是讓學生學會正數(shù)和負數(shù)的表示.
強調:用正,負數(shù)表示實際問題中具有相反意義的量,而相反意義的量包含兩個要素:一是它們的意義相反,如向東與向西,收人與支出;二是它們都是數(shù)量,而且是同類的量.這些問題是這節(jié)課的主要知識,教師要清楚地向學生說明,并且要注意語言的準確與規(guī)范,要舍得花時間讓學充分發(fā)表想法。
舉一反三思維拓展經(jīng)過上面的討論交流,學生對為什么要引人負數(shù),對怎樣用正數(shù)和負數(shù)表示兩種相反意義的量有了初步的理解,教師可以要求學生舉出實際生活中類似的例子,以加深對正數(shù)和負數(shù)概念的理解,并開拓思維.
問題4:請同學們舉出用正數(shù)和負數(shù)表示的例子.
問題5:你是怎樣理解“正整數(shù)”“負整數(shù),,’’正分數(shù)”和“負分數(shù)”的呢?請舉例說明.
能否舉出例子是學生對知識掌握程度的體現(xiàn),也能進一步幫助學生理解引負數(shù)的必要性
課堂練習教科書第5頁練習
小結與作業(yè)
課堂小結圍繞下面兩點,以師生共同交流的方式進行:
1,0由于實際問題中存在著相反意義的量,所以要引人負數(shù),這樣數(shù)的范圍就擴大了;
2,正數(shù)就是以前學過的0以外的數(shù)(或在其前面加“+”),負數(shù)就是在以前學過的0以外的數(shù)前面加“-”。
本課作業(yè)教科書第7頁習題1。1第1,2,4,5(第3題作為下節(jié)課的思考題。
作業(yè)可設必做題和選做題,體現(xiàn)要求的層次性,以滿足不同學生的需要
本課教育評注(課堂設計理念,實際教學效果及改進設想)
密切聯(lián)系生活實際,創(chuàng)設學習情境.本課是有理數(shù)的第一節(jié)課時.引人負數(shù)是數(shù)的范圍的一次重要擴充,學生頭腦中關于數(shù)的結構要做重大調整(其實是一次知識的順應過程),而負數(shù)相對于以前的數(shù),對學生來說顯得更抽象,因此,這個概念并不是一下就能建立的.為了接受這個新的數(shù),就必須對原有的數(shù)的結構進行整理,引人幣的舉例就是這個目的.
負數(shù)的產生主要是因為原有的數(shù)不夠用了(不能正確簡潔地表示數(shù)量),書本的例子
或圖片中出現(xiàn)的負數(shù)就是讓學生去感受和體驗這一點.使學生接受生活生產實際中確實
存在著兩種相反意義的量是本課的教學難點,所以在教學中可以多舉幾個這方面的例
子,并且所舉的例子又應該符合學生的年齡和思維特點。當學生接受了這個事實后,引入負數(shù)(為了區(qū)分這兩種相反意義的量)就是順理成章的事了.
這個教學設計突出了數(shù)學與實際生活的緊密聯(lián)系,使學生體會到數(shù)學的應用價值,
體現(xiàn)了學生自主學習、合作交流的教學理念,書本中的圖片和例子都是生活生產中常見
的事實,學生容易接受,所以應該讓學生自己看書、學習,并且鼓勵學生討論交流,教師作適當引導就可以了。
七年級數(shù)學上冊教案15
教學目標:
知識能力:理解有理數(shù)的概念,掌握有理數(shù)的兩種分類方法,能夠按要求對給定的有理數(shù)進行分類。
過程與方法:通過本節(jié)的學習,培養(yǎng)學生正確的分類討論觀點和分類能力。
情感、態(tài)度、價值觀:通過本節(jié)課的學習,體驗成功的喜悅,保持學好數(shù)學的信心。
教學重點:
掌握有理數(shù)的兩種分類方法
教學難點:
給定的數(shù)字將被填入它所屬的集合中
教學方法:
問題導向法
學習方法:
自主探究法
教學過程:
一、形勢歸納
小學我們學了整數(shù)和分數(shù),上節(jié)課我們學了正數(shù)和負數(shù)。誰能快速提出以下問題?
1、有以下數(shù)字:15,—1/9,—5,2/15,—13/8,0.1,—5.22,—80,0,123,2.33
。1)將以上數(shù)字填入以下兩組:正整數(shù)集{}和負整數(shù)集{}。你填完了嗎?
。2)將以上數(shù)字填入以下兩個集合:整數(shù)集合{}和分數(shù)集合{}。你填完了嗎?
稱整數(shù)和分數(shù)為有理數(shù)。(指點題,板書)
二、自學指導
學生自學課本,根據(jù)課本尋找自學的機會
提綱中問題的答案;老師先做必要的`板書準備,再到學生中巡視指導,并了解掌握學生自學情況,為展示歸納作準備。
三、展示歸納
1、找有問題的學生逐題展示自學提綱中的問題答案,學生說,老師板書;
2、發(fā)動學生進行評價、補充、完善,教師根據(jù)每個題目的展示情況進行必要的講解和強調;
3、全部展示完畢后,老師對本段知識做系統(tǒng)梳理,關鍵點予以強調。
四、變式練習
逐題出示,先讓學生獨立完成,再請有問題的學生匯報結果,老師板書,并發(fā)動其他學生評價、補充并完善,最后老師根據(jù)需要進行重點強調。
五、總結與反思:通過本節(jié)課的學習,你有什么收獲?
六、作業(yè):必做題:課本14頁:1、9題
【七年級數(shù)學上冊教案】相關文章:
數(shù)學七年級上冊教案04-16
七年級數(shù)學上冊教案01-11
七年級上冊數(shù)學教學教案06-01
七年級數(shù)學上冊教案(精選)06-14
數(shù)學新七年級上冊教案模板01-24
七年級上冊數(shù)學教案12-16
七年級上冊數(shù)學教案01-19