八年級(jí)數(shù)學(xué)上冊(cè)的教案15篇(熱門(mén))
作為一位兢兢業(yè)業(yè)的人民教師,就有可能用到教案,借助教案可以更好地組織教學(xué)活動(dòng)。那么大家知道正規(guī)的教案是怎么寫(xiě)的嗎?以下是小編精心整理的八年級(jí)數(shù)學(xué)上冊(cè)的教案,僅供參考,希望能夠幫助到大家。
八年級(jí)數(shù)學(xué)上冊(cè)的教案1
一、學(xué)生起點(diǎn)分析
通過(guò)前一章《勾股定理》的學(xué)習(xí),學(xué)生已經(jīng)明白什么是勾股數(shù),但也發(fā)現(xiàn)并不是所有的直角三角形的邊長(zhǎng)都是勾股數(shù),甚至有些直角三角形的邊長(zhǎng)連有理數(shù)都不是,例如:①腰長(zhǎng)為1的等腰直角三角形的底邊長(zhǎng)不是有理數(shù),②兩條直角邊分別為1,2的直角三角形的斜邊長(zhǎng)不是有理數(shù),這為引入“新數(shù)”奠定了必要性.
二、教學(xué)任務(wù)分析
《數(shù)不夠用了》是義務(wù)教育課程標(biāo)準(zhǔn)北師大版實(shí)驗(yàn)教科書(shū)八年級(jí)(上)第二章《實(shí)數(shù)》的第一節(jié). 本節(jié)內(nèi)容安排了2個(gè)課時(shí)完成,第1課時(shí)讓學(xué)生感受無(wú)理數(shù)的存在,初步建立無(wú)理數(shù)的印象,結(jié)合勾股定理知識(shí),會(huì)根據(jù)要求畫(huà)線(xiàn)段;第2課時(shí)借助計(jì)算器感受無(wú)理數(shù)是無(wú)限不循環(huán)小數(shù),會(huì)判斷一個(gè)數(shù)是無(wú)理數(shù).本課是第1課時(shí),學(xué)生將在具體的實(shí)例中,通過(guò)操作、估算、分析等活動(dòng),感受無(wú)理數(shù)的客觀(guān)存在性和引入的必要性,并能判斷一個(gè)數(shù)是不是有理數(shù).
本節(jié)課的教學(xué)目標(biāo)是:
①通過(guò)拼圖活動(dòng),讓學(xué)生感受客觀(guān)世界中無(wú)理數(shù)的存在;
、谀芘袛嗳切蔚哪尺呴L(zhǎng)是否為無(wú)理數(shù);
、蹖W(xué)生親自動(dòng)手做拼圖活動(dòng),培養(yǎng)學(xué)生的動(dòng)手能力和探索精神;
、苣苷_地進(jìn)行判斷某些數(shù)是否為有理數(shù),加深對(duì)有理數(shù)和無(wú)理數(shù)的理解;
三、教學(xué)過(guò)程設(shè)計(jì)
本節(jié)課設(shè)計(jì)了6個(gè)教學(xué)環(huán)節(jié):
第一環(huán)節(jié):置疑;第二環(huán)節(jié):課題引入;第三環(huán)節(jié):獲取新知;第四環(huán)節(jié):應(yīng)用與鞏固;第五環(huán)節(jié):課堂小結(jié);第六環(huán)節(jié):作業(yè)布置.
第一環(huán)節(jié):質(zhì)疑
內(nèi)容:【想一想】
、乓粋(gè)整數(shù)的平方一定是整數(shù)嗎?
、埔粋(gè)分?jǐn)?shù)的平方一定是分?jǐn)?shù)嗎?
目的:作必要的知識(shí)回顧,為第二環(huán)節(jié)埋下伏筆,便于后續(xù)問(wèn)題的說(shuō)理.
效果:為后續(xù)環(huán)節(jié)的進(jìn)行起了很好的鋪墊的作用
第二環(huán)節(jié):課題引入
內(nèi)容:1.【算一算】
已知一個(gè)直角三角形的兩條直角邊長(zhǎng)分別為1和2,算一算斜邊長(zhǎng) 的平方 ,并提出問(wèn)題: 是整數(shù)(或分?jǐn)?shù))嗎?
2.【剪剪拼拼】
把邊長(zhǎng)為1的兩個(gè)小正方形通過(guò)剪、拼,設(shè)法拼成一個(gè)大正方形,你會(huì)嗎?
目的:選取客觀(guān)存在的“無(wú)理數(shù)“實(shí)例,讓學(xué)生深刻感受“數(shù)不夠用了”.
效果:巧設(shè)問(wèn)題背景,順利引入本節(jié)課題.
第三環(huán)節(jié):獲取新知
內(nèi)容:【議一議】→【釋一釋】→【憶一憶】→【找一找】
【議一議】: 已知 ,請(qǐng)問(wèn):① 可能是整數(shù)嗎?② 可能是分?jǐn)?shù)嗎?
【釋一釋】:釋1.滿(mǎn)足 的 為什么不是整數(shù)?
釋2.滿(mǎn)足 的 為什么不是分?jǐn)?shù)?
【憶一憶】:讓學(xué)生回顧“有理數(shù)”概念,既然 不是整數(shù)也不是分?jǐn)?shù),那么 一定不是有理數(shù),這表明:有理數(shù)不夠用了,為“新數(shù)”(無(wú)理數(shù))的學(xué)習(xí)奠定了基礎(chǔ)
【找一找】:在下列正方形網(wǎng)格中,先找出長(zhǎng)度為有理數(shù)的線(xiàn)段,再找出長(zhǎng)度不是有理數(shù)的線(xiàn)段
目的:創(chuàng)設(shè)從感性到理性的認(rèn)知過(guò)程,讓學(xué)生充分感受“新數(shù)”(無(wú)理數(shù))的存在,從而激發(fā)學(xué)習(xí)新知的興趣
效果:學(xué)生感受到無(wú)理數(shù)產(chǎn)生的過(guò)程,確定存在一種數(shù)與以往學(xué)過(guò)的數(shù)不同,產(chǎn)生了學(xué)習(xí)新數(shù)的必要性.
第四環(huán)節(jié):應(yīng)用與鞏固
內(nèi)容:【畫(huà)一畫(huà)1】→【畫(huà)一畫(huà)2】→【仿一仿】→【賽一賽】
【畫(huà)一畫(huà)1】:在右1的正方形網(wǎng)格中,畫(huà)出兩條線(xiàn)段:
1.長(zhǎng)度是有理數(shù)的線(xiàn)段
2.長(zhǎng)度不是有理數(shù)的線(xiàn)段
【畫(huà)一畫(huà)2】:在右2的正方形網(wǎng)格中畫(huà)出四個(gè)三角形 (右1)
2.三邊長(zhǎng)都是有理數(shù)
2.只有兩邊長(zhǎng)是有理數(shù)
3.只有一邊長(zhǎng)是有理數(shù)
4.三邊長(zhǎng)都不是有理數(shù)
【仿一仿】:例:在數(shù)軸上表示滿(mǎn)足 的
解: (右2)
仿:在數(shù)軸上表示滿(mǎn)足 的
【賽一賽】:右3是由五個(gè)單位正方形組成的紙片,請(qǐng)你把
它剪成三塊,然后拼成一個(gè)正方形,你會(huì)嗎?試試看! (右3)
目的:進(jìn)一步感受“新數(shù)”的存在,而且能把“新數(shù)”表示在數(shù)軸上
效果:加深了對(duì)“新知”的理解,鞏固了本課所學(xué)知識(shí).
第五環(huán)節(jié):課堂小結(jié)
內(nèi)容:
1.通過(guò)本課學(xué)習(xí),感受有理數(shù)又不夠用了, 請(qǐng)問(wèn)你有什么收獲與體會(huì)?
2.客觀(guān)世界中,的確存在不是有理數(shù)的數(shù),你能列舉幾個(gè)嗎?
3.除了本課所認(rèn)識(shí)的非有理數(shù)的數(shù)以外,你還能找到嗎?
目的:引導(dǎo)學(xué)生自己小結(jié)本節(jié)課的知識(shí)要點(diǎn)及數(shù)學(xué)方法,使知識(shí)系統(tǒng)化.
效果:學(xué)生總結(jié)、相互補(bǔ)充,學(xué)會(huì)進(jìn)行概括總結(jié).
第六環(huán)節(jié):布置作業(yè)
習(xí)題2.1
六、教學(xué)設(shè)計(jì)反思
。ㄒ唬┥钍菙(shù)學(xué)的源泉,興趣是學(xué)習(xí)的.動(dòng)力
大量事實(shí)都證明一點(diǎn),與生活貼得越近的東西最容易引起學(xué)習(xí)者的濃厚興趣,才能激發(fā)學(xué)習(xí)者的學(xué)習(xí)積極性,學(xué)習(xí)才可能是主動(dòng)的.本節(jié)課中教師首先用拼圖游戲引發(fā)學(xué)生學(xué)習(xí)的欲望,把課程內(nèi)容通過(guò)學(xué)生的生活經(jīng)驗(yàn)呈現(xiàn)出來(lái),然后進(jìn)行大膽置疑,生活中的數(shù)并不都是有理數(shù),那它們究竟是什么數(shù)呢?從而引發(fā)了學(xué)生的好奇心,為獲取新知,創(chuàng)設(shè)了積極的氛圍.在教學(xué)中,不要盲目的搶時(shí)間,讓學(xué)生能夠充分的思考與操作.
。ǘ┗橄鬄榫唧w
常言道:“數(shù)學(xué)是鍛煉思維的體操”,數(shù)學(xué)教師應(yīng)通過(guò)一系列數(shù)學(xué)活動(dòng)開(kāi)啟學(xué)生的思維,因此對(duì)新數(shù)的學(xué)習(xí)不能僅僅停留于感性認(rèn)識(shí),還應(yīng)要求學(xué)生充分理解,并能用恰當(dāng)數(shù)學(xué)語(yǔ)言進(jìn)行解釋?zhuān)腔谶@個(gè)原因,在教學(xué)過(guò)程中,刻意安排了一些環(huán)節(jié),加深對(duì)新數(shù)的理解,充分感受新數(shù)的客觀(guān)存在,讓學(xué)生覺(jué)得新數(shù)并不抽象.
(三)強(qiáng)化知識(shí)間聯(lián)系,注意糾錯(cuò)
既然稱(chēng)之為“新數(shù)”,那它當(dāng)然不是有理數(shù),亦即不是整數(shù),也不是分?jǐn)?shù),所以“新數(shù)”不可以用分?jǐn)?shù)來(lái)表示,這為進(jìn)一步學(xué)習(xí)“新數(shù)”,即第二課時(shí)教學(xué)埋下了伏筆,在教學(xué)中,要著重強(qiáng)調(diào)這一點(diǎn):“新數(shù)”不能表示成分?jǐn)?shù),為無(wú)理數(shù)的教學(xué)奠好基.
八年級(jí)數(shù)學(xué)上冊(cè)的教案2
一、知識(shí)點(diǎn):
1.坐標(biāo)(x,y)與點(diǎn)的對(duì)應(yīng)關(guān)系
有序數(shù)對(duì):有順序的兩個(gè)數(shù)x與y組成的數(shù)對(duì),記作(x,y);
注意:x、y的先后順序?qū)ξ恢玫挠绊憽?/p>
2.平面直角坐標(biāo)系:
(1)、構(gòu)成坐標(biāo)系的各種名稱(chēng):四個(gè)象限和兩條坐標(biāo)軸
(2)、各種特殊點(diǎn)的坐標(biāo)特點(diǎn):坐標(biāo)軸上的點(diǎn)至少有一個(gè)坐標(biāo)
為0;X軸上的點(diǎn)的縱坐標(biāo)為0,y軸上點(diǎn)的橫坐標(biāo)為0,原點(diǎn)
的坐標(biāo)為(0,0)。
3.坐標(biāo)(x,y)的幾何意義
平面直角坐標(biāo)系是代數(shù)與幾何聯(lián)系的紐帶,坐標(biāo)(x,y)有某
幾何意義,如點(diǎn)A(-3,2)它到x軸、y軸、原點(diǎn)的距離分別是︱x︱
=︱2︱=2,︱y︱=︱-3︱=3,OA = 。
4.注意各象限內(nèi)點(diǎn)的坐標(biāo)的符號(hào)
點(diǎn)P(x,y)在第一象限內(nèi),則x0,y0,反之亦然.
點(diǎn)P(x,y)在第二象限內(nèi),則x0,y0,反之亦然.
點(diǎn)P(x,y)在第三象限內(nèi),則x0,y0,反之亦然.
點(diǎn)P(x,y)在第四象限內(nèi),則x0,y0,反之亦然.
5.平行于坐標(biāo)軸的直線(xiàn)的點(diǎn)的坐標(biāo)特點(diǎn):
平行于x軸(或橫軸)的直線(xiàn)上的點(diǎn)的這 縱 坐標(biāo)相同;
平行于y軸(或縱軸)的直線(xiàn)上的點(diǎn)的 橫 坐標(biāo)相同。
6.各象限的角平分線(xiàn)上的點(diǎn)的坐標(biāo)特點(diǎn):
第一、三象限角平分線(xiàn)上的點(diǎn)的橫縱坐標(biāo) 相同 ;
第二、四象限角平分線(xiàn)上的點(diǎn)的橫縱坐標(biāo) 互為相反數(shù) 。
7.與坐標(biāo)軸、原點(diǎn)對(duì)稱(chēng)的點(diǎn)的坐標(biāo)特點(diǎn):
關(guān)于x軸對(duì)稱(chēng)的點(diǎn)的橫坐標(biāo) 相同 ,縱坐標(biāo) 互為相反數(shù)
關(guān)于y軸對(duì)稱(chēng)的點(diǎn)的縱坐標(biāo) 相同 ,橫坐標(biāo) 互為相反數(shù)
關(guān)于原點(diǎn)對(duì)稱(chēng)的點(diǎn)的橫坐標(biāo)、縱坐標(biāo)都 互為相反數(shù)
8.特殊位置點(diǎn)的特殊坐標(biāo):
坐標(biāo)軸上點(diǎn)P(x,y) 連線(xiàn)平行于坐標(biāo)軸的點(diǎn) 點(diǎn)P(x,y)在各象限的坐標(biāo)特點(diǎn)
X軸 Y軸 原點(diǎn) 平行X軸 平行Y軸 第一象限 第二象限 第三象限 第四象限
(x,0) (0,y) (0,0) 縱坐標(biāo) 相同
橫坐標(biāo) 不同 橫坐標(biāo) 相同
縱坐標(biāo) 不同
9.利用平面直角坐標(biāo)系繪制區(qū)域內(nèi)一些點(diǎn)分布情況平面圖過(guò)程如下:
(1)建立坐標(biāo)系,選擇一個(gè)適當(dāng)?shù)膮⒄拯c(diǎn)為原點(diǎn),確定x軸、y軸的正方向;
(2)根據(jù)具體問(wèn)題確定適當(dāng)?shù)谋壤,在坐?biāo)軸上標(biāo)出單位長(zhǎng)度;
(3)在坐標(biāo)平面內(nèi)畫(huà)出這些點(diǎn),寫(xiě)出各點(diǎn)的坐標(biāo)和各個(gè)地點(diǎn)的名稱(chēng)。
10.用坐標(biāo)表示平移:見(jiàn)下圖
二、典型訓(xùn)練:
1.位置的確定
1、如圖,圍棋盤(pán)的左下角呈現(xiàn)的是一局圍棋比賽中的幾手棋.為記錄棋譜方便,橫線(xiàn)用數(shù)字表示.縱線(xiàn)用英文字母表示,這樣,黑棋①的位置可記為(C,4),白棋②的位置可記為(E,3),則白棋⑨的位置應(yīng)記為 _____.
2、如圖所示的象棋盤(pán)上,若帥位于點(diǎn)(1,﹣3)上,相位于點(diǎn)(3,﹣3)上,則炮位于點(diǎn)( )
A、(﹣1,1) B、(﹣l,2) C、(﹣2,0) D、(﹣2,2)
2.平面直角坐標(biāo)系內(nèi)的點(diǎn)的特點(diǎn): 一)確定字母取值范圍:
1、點(diǎn)A(m+3,m+1)在x軸上,則A點(diǎn)的坐標(biāo)為( )
A (0,-2) B、(2,0) C、(4,0) D、(0,-4)
2、若點(diǎn)M(1, )在第四象限內(nèi),則 的取值范圍是 .
3、已知點(diǎn)P(x,y+1)在第二象限,則點(diǎn)Q(﹣x+2,2y+3)在第 象限.
二)確定點(diǎn)的坐標(biāo):
1、點(diǎn) 在第二象限內(nèi), 到 軸的距離是4,到 軸的距離是3,那么點(diǎn) 的坐標(biāo)為( )
A.(-4,3) B.(-3, -4) C.(-3, 4) D.(3, -4)
2、若點(diǎn)P在x軸的下方,y軸的左方,到每條坐標(biāo)軸的距離都是3,則點(diǎn)P的坐標(biāo)為( )
A、(3,3) B、(﹣3,3) C、(﹣3,﹣3) D、(3,﹣3)
3、在x軸上與點(diǎn)(0,﹣2)距離是4個(gè)單位長(zhǎng)度的點(diǎn)有 .
4、若點(diǎn)(5﹣a,a﹣3)在第一、三象限角平分線(xiàn)上,則a= .
三)確定對(duì)稱(chēng)點(diǎn)的坐標(biāo):
1、P(﹣1,2)關(guān)于x軸對(duì)稱(chēng)的點(diǎn)是 ,關(guān)于y軸對(duì)稱(chēng)的點(diǎn)是 ,關(guān)于原點(diǎn)對(duì)稱(chēng)的點(diǎn)是 .
2、已知點(diǎn) 關(guān)于 軸的對(duì)稱(chēng)點(diǎn)為 ,則 的值是( )
A. B. C. D.
3、在平面直角坐標(biāo)系中,將點(diǎn)A(1,2)的橫坐標(biāo)乘以﹣1,縱坐標(biāo)不變,
得到點(diǎn)A,則點(diǎn)A和點(diǎn)A的關(guān)系是( )
A、關(guān)于x軸對(duì)稱(chēng) B、將點(diǎn)A向x軸負(fù)方向平移一個(gè)單位得點(diǎn)A
C、關(guān)于原點(diǎn)對(duì)稱(chēng) D、關(guān)于y軸對(duì)稱(chēng)
3.與平移有關(guān)的問(wèn)題
1、通過(guò)平移把點(diǎn)A(2,﹣3)移到點(diǎn)A(4,﹣2),按同樣的平移方式,點(diǎn)B(3,1)移到點(diǎn)B,則點(diǎn)B的坐標(biāo)是 .
2、如圖,點(diǎn)A坐標(biāo)為(-1,1),將此小船ABCD向左平移2個(gè)單位,再向上平移3個(gè)單位得ABCD.
(1)畫(huà)出平面直角坐標(biāo)系;
(2)畫(huà)出平移后的小船ABCD,
寫(xiě)出A,B,C,D各點(diǎn)的坐標(biāo).
3、在平面直角坐標(biāo)系中,□ABCD的頂點(diǎn)A、B、D的坐標(biāo)分別是(0,0),(5,0),(2,3),則頂點(diǎn)C的坐標(biāo)是( )
A.(3,7) B.(5,3) C.(7,3) D.(8,2)
4.建立直角坐標(biāo)系
1、如圖1是某市市區(qū)四個(gè)旅游景點(diǎn)示意圖(圖中每個(gè)小正方形的邊長(zhǎng)為1個(gè)單位長(zhǎng)度),請(qǐng)以某景點(diǎn)為原點(diǎn),建立平面直角坐標(biāo)系,用坐標(biāo)表示下列景點(diǎn)的位置.①動(dòng)物園 ,②烈士陵園 .
2、如圖,機(jī)器人從A點(diǎn),沿著西南方向,行了4 個(gè)單位到達(dá)B點(diǎn)后,觀(guān)察到原點(diǎn)O在它的南偏東60的方向上,則原來(lái)A的坐標(biāo)為 (結(jié)果保留根號(hào)).
3、如圖,△AOB是邊長(zhǎng)為5的等邊三角形,則A,B兩點(diǎn)的坐標(biāo)分別是A ,B .
5.創(chuàng)新題: 一)規(guī)律探索型:
1、如圖2,已知Al(1,0)、A2(1,1)、A3(-1,1)、A4(-1,-1)、A5(2,-1)、.則點(diǎn)A2015的坐標(biāo)為_(kāi)_______.
二)閱讀理解型:
1、在直角坐標(biāo)系中,我們把橫、縱坐標(biāo)都為整數(shù)的點(diǎn)叫做整點(diǎn),設(shè)坐標(biāo)軸的單位長(zhǎng)度為1cm,整點(diǎn)P從原點(diǎn)O出發(fā),速度為1cm/s,且整點(diǎn)P作向上或向右運(yùn)動(dòng)(如圖1所示.運(yùn)動(dòng)時(shí)間(s)與整點(diǎn)(個(gè))的'關(guān)系如下表:
整點(diǎn)P從原點(diǎn)出發(fā)的時(shí)間(s) 可以得到整點(diǎn)P的坐標(biāo) 可以得到整點(diǎn)P的個(gè)數(shù)
1 (0,1)(1,0) 2
2 (0,2)(1,1),(2,0) 3
3 (0,3)(1,2)(2,1)(3,0) 4
根據(jù)上表中的規(guī)律,回答下列問(wèn)題:
(1)當(dāng)整點(diǎn)P從點(diǎn)O出發(fā)4s時(shí),可以得到的整點(diǎn)的個(gè)數(shù)為_(kāi)_______個(gè).
(2)當(dāng)整點(diǎn)P從點(diǎn)O出發(fā)8s時(shí),在直角坐標(biāo)系中描出可以得到的所有整點(diǎn),并順次連結(jié)這些整點(diǎn).
(3)當(dāng)整點(diǎn)P從點(diǎn)O出發(fā)____s時(shí),可以得到整點(diǎn)(16,4)的位置.
三、易錯(cuò)題:
1、 已知點(diǎn)P(4,a)到橫軸的距離是3,則點(diǎn)P的坐標(biāo)是_____.
2、 已知點(diǎn)P(m,n)到x軸的距離為3,到y(tǒng)軸的距離等于5,則點(diǎn)P的坐標(biāo)是_____.
3、 已知點(diǎn)P(m,2m-1)在x軸上,則P點(diǎn)的坐標(biāo)是_______.
4、如圖,四邊形ABCD各個(gè)頂點(diǎn)的坐標(biāo)分別為 (2,8),(11,6),(14,0),(0,0)。
(1)確定這個(gè)四邊形的面積;
(2)如果把原來(lái)ABCD各個(gè)頂點(diǎn)縱坐標(biāo)保持不變,橫坐標(biāo)增加2,所得的四邊形面積又是多少?
四、提高題:
1、在平面直角坐標(biāo)系中,點(diǎn)(-2,4)所在的象限是( )
A、第一象限 B、第二象限 C、第三象限 D、第四象限
2、若a0,則點(diǎn)P(-a,2)應(yīng)在 ( )
A.第象限內(nèi) B.第二象限內(nèi) C.第三象限內(nèi) D.第四象限內(nèi)
3、已知 ,則點(diǎn) 在第______象限.
4、若 +(b+2)2=0,則點(diǎn)M(a,b)關(guān)于y軸的對(duì)稱(chēng)點(diǎn)的坐標(biāo)為_(kāi)_____.
5、點(diǎn)P(1,2)關(guān)于y軸對(duì)稱(chēng)點(diǎn)的坐標(biāo)是 . 已知點(diǎn)A和點(diǎn)B(a,-b)關(guān)于y軸對(duì)稱(chēng),求點(diǎn)A關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)C的坐標(biāo)___________.
6、已知點(diǎn) A(3a-1,2-b),B(2a-4,2b+5).
若A與B關(guān)于x軸對(duì)稱(chēng),則a=________,b=_______;若A與B關(guān)于y軸對(duì)稱(chēng),則a=________,b=_______;
若A與B關(guān)于原點(diǎn)對(duì)稱(chēng),則a=________,b=_______.
7、學(xué)生甲錯(cuò)將P點(diǎn)的橫坐標(biāo)與縱坐標(biāo)的次序顛倒,寫(xiě)成(m,n),學(xué)生乙錯(cuò)將Q點(diǎn)的坐標(biāo)寫(xiě)成它關(guān)于x軸對(duì)稱(chēng)點(diǎn)的坐標(biāo),寫(xiě)成(-n,-m),則P點(diǎn)和Q點(diǎn)的位置關(guān)系是_________.
8、點(diǎn)P(x,y)在第四象限內(nèi),且|x|=2,|y| =5,P點(diǎn)關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)的坐標(biāo)是_______.
9、以點(diǎn)(4,0)為圓心,以5為半徑的圓與y軸交點(diǎn)的坐標(biāo)為_(kāi)_____.
10、點(diǎn)P( , )到x軸的距離為_(kāi)_______,到y(tǒng)軸的距離為_(kāi)________。
11、點(diǎn)P(m,-n)與兩坐標(biāo)軸的距離___________________________________________________。
12、已知點(diǎn)P到x軸和y軸的距離分別為3和4,則P點(diǎn)坐標(biāo)為_(kāi)_________________________.
13、點(diǎn)P在第二象限,若該點(diǎn)到x軸的距離為,到y(tǒng)軸的距離為1,則點(diǎn)P的坐標(biāo)是( )
A.( 1, ) B.( ,1) C.( , ) D.(1, )
14、點(diǎn)A(4,y)和點(diǎn)B(x, ),過(guò)A,B兩點(diǎn)的直線(xiàn)平行x軸,且 ,則 ______, ______.
15、已知等邊三角形ABC的邊長(zhǎng)是4,以AB邊所在的直線(xiàn)為x軸,AB邊的中點(diǎn)為原點(diǎn),建立直角坐標(biāo)系,則頂點(diǎn)C的坐標(biāo)為_(kāi)_______________.
16、通過(guò)平移把點(diǎn)A(2,-3)移到點(diǎn)A(4,-2),按同樣的平移方式,點(diǎn)B(3,1)移到點(diǎn)B,則點(diǎn)B的坐標(biāo)是_____________.
17、如圖11,若將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90后得到△ABC,則A點(diǎn)的對(duì)應(yīng)點(diǎn)A的坐標(biāo)是( )
A.(-3,-2) B.(2,2) C.(3,0) D.(2,1)
18、平面直角坐標(biāo)系 內(nèi)有一點(diǎn)A(a,b),若ab=0,則點(diǎn)A的位置在( ).
A.原點(diǎn) B. x軸上 C.y 軸上 D.坐標(biāo)軸上
19、已知等邊△ABC的兩個(gè)頂點(diǎn)坐標(biāo)為A(-4,0)、B(2,0),則點(diǎn)C的坐標(biāo)為_(kāi)_____,△ABC的面積為_(kāi)_____.
20、(1)將下圖中的各個(gè)點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)都乘以-1,與原圖案相比,所得圖案有什么變化?
(2)將下圖中的各個(gè)點(diǎn)的橫坐標(biāo)不變,縱坐標(biāo)都乘以-1,與原圖案相比,所得圖案有什么變化?
(3)將下圖中的各個(gè)點(diǎn)的橫坐標(biāo)都乘以-2,縱坐標(biāo)都乘以-2,與原圖案相比,所得圖案有什么變化?
八年級(jí)數(shù)學(xué)上冊(cè)的教案3
《正方形》教學(xué)設(shè)計(jì)
教學(xué)內(nèi)容分析:
⑴學(xué)習(xí)特殊的平行四邊形—正方形,它的特殊的性質(zhì)和判定。
、魄懊鎸W(xué)習(xí)了平行四邊形、矩形菱形,類(lèi)比他們的性質(zhì)與判斷,有利于對(duì)正方形的研究。
、菍(duì)本節(jié)的學(xué)習(xí),繼續(xù)培養(yǎng)學(xué)生分類(lèi)研究的思想,并且建立新舊知識(shí)的聯(lián)系,類(lèi)比的基礎(chǔ)上進(jìn)行歸納,梳理知識(shí),進(jìn)一步發(fā)展學(xué)生的推理能力。
學(xué)生分析:
、艑W(xué)生在小學(xué)初步認(rèn)識(shí)了正方形,并且本節(jié)課之前,學(xué)生又學(xué)習(xí)了幾種平行四邊形,已經(jīng)具備了觀(guān)察研究平行四邊形的經(jīng)驗(yàn)與知識(shí)基礎(chǔ)。
、茖W(xué)生在上幾節(jié)已有了推理的經(jīng)歷,但是對(duì)于證明,學(xué)生的思維能力還不成熟,有待于提高。
教學(xué)目標(biāo):
、胖R(shí)與技能:了解正方形是特殊的平行四邊形,掌握它的性質(zhì)和判定,會(huì)利用性質(zhì)與判定進(jìn)行簡(jiǎn)單的說(shuō)理。
⑵過(guò)程與方法:通過(guò)類(lèi)比前邊的四邊形的研究,探索并歸納正方形的性質(zhì)與判定。通過(guò)運(yùn)用提高學(xué)生的推理能力。
、乔楦袘B(tài)度與價(jià)值觀(guān):在學(xué)習(xí)中體會(huì)正方形的完美性,通過(guò)活動(dòng)獲得成功的喜悅與自信。
重點(diǎn):掌握正方形的性質(zhì)與判定,并進(jìn)行簡(jiǎn)單的推理。
難點(diǎn):探索正方形的判定,發(fā)展學(xué)生的推理能
教學(xué)方法:類(lèi)比與探究
教具準(zhǔn)備:可以活動(dòng)的四邊形模型。
一、教學(xué)分析
(一)教學(xué)內(nèi)容分析
1.教材:義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)《數(shù)學(xué)》九年級(jí)上冊(cè)(人民教育出版社)
2.本課教學(xué)內(nèi)容的地位、作用,知識(shí)的前后聯(lián)系
《中心對(duì)稱(chēng)圖形》是新人教版九年級(jí)數(shù)學(xué)上冊(cè)第二十三章第二單元第二節(jié)課的內(nèi)容。本節(jié)教材屬于圖形變換的內(nèi)容,是在學(xué)習(xí)了“軸對(duì)稱(chēng)和軸對(duì)稱(chēng)圖形”、“旋轉(zhuǎn)和中心對(duì)稱(chēng)”后的一種對(duì)稱(chēng)圖形,因此涉及歸納、類(lèi)比等思想方法,對(duì)激發(fā)學(xué)生探索精神和創(chuàng)新意識(shí)等方面都有重要意義。
3.本課教學(xué)內(nèi)容的特點(diǎn),重點(diǎn)分析體現(xiàn)新課程理念的特點(diǎn)
本節(jié)課主要介紹中心對(duì)稱(chēng)圖形的概念、中心對(duì)稱(chēng)圖形的識(shí)別、中心對(duì)稱(chēng)圖形與軸對(duì)稱(chēng)圖形與中心對(duì)稱(chēng)的比較、中心對(duì)稱(chēng)圖形的性質(zhì)。為使學(xué)生感受、理解知識(shí)的產(chǎn)生和發(fā)展過(guò)程,培養(yǎng)學(xué)生的抽象思維,我將通過(guò):(1)例舉日常生活中的一些旋轉(zhuǎn)對(duì)稱(chēng)圖形引出中心對(duì)稱(chēng)圖形的概念;(2)引導(dǎo)學(xué)生觀(guān)察、猜想、實(shí)驗(yàn)、歸納、類(lèi)比等方法探究中心對(duì)稱(chēng)圖形的性質(zhì),(3)通過(guò)多媒體演示使學(xué)生對(duì)中心對(duì)稱(chēng)圖形的性質(zhì)有直觀(guān)的表象。我認(rèn)為這環(huán)環(huán)相扣、層層深入、循序漸進(jìn)的活動(dòng)過(guò)程,符合新課程標(biāo)準(zhǔn)理念和學(xué)生建構(gòu)知識(shí)的規(guī)律,有利于激發(fā)學(xué)生的學(xué)習(xí)情趣。
(二)教學(xué)對(duì)象分析
1.學(xué)生所在地區(qū)、學(xué)校及班級(jí)的特色
我授課的班級(jí)是西安市閻良區(qū)振興中學(xué)九年級(jí)一班,作為九年級(jí)的學(xué)生,在圖形的對(duì)稱(chēng)方面已經(jīng)積累一些經(jīng)驗(yàn),已經(jīng)具有一定的觀(guān)察、猜想、實(shí)驗(yàn)、歸納、類(lèi)比等研究圖形對(duì)稱(chēng)變換的能力;班級(jí)學(xué)生具有個(gè)性活潑,思維活躍,對(duì)各種事物充滿(mǎn)好奇,學(xué)習(xí)情緒易于調(diào)動(dòng),學(xué)習(xí)積極性高的特點(diǎn),但學(xué)生的抽象思維能力個(gè)體差異較大,并且班級(jí)中已出現(xiàn)分化現(xiàn)象。
2.學(xué)生的年齡特點(diǎn)和認(rèn)知特點(diǎn)
班級(jí)學(xué)生的年齡大多在15歲到17歲間。他們已具備了一定的獨(dú)立分析、解決問(wèn)題的能力,表現(xiàn)欲望較為強(qiáng)烈,喜好發(fā)表個(gè)人見(jiàn)解并且具有一定的合作交流、共同探討的意識(shí)與經(jīng)驗(yàn),因此在課程內(nèi)容的安排中,適當(dāng)?shù)貏?chuàng)設(shè)一些具有一定思維深度的問(wèn)題,加強(qiáng)學(xué)生在學(xué)習(xí)過(guò)程中自主探索與合作交流的緊密結(jié)合,促使學(xué)生在探究的過(guò)程中,更多地獲得成功的體驗(yàn),感受學(xué)習(xí)思考的樂(lè)趣。
教學(xué)過(guò)程:
一:復(fù)習(xí)鞏固,建立聯(lián)系。
【教師活動(dòng)】
問(wèn)題設(shè)置:①平行四邊形、矩形,菱形各有哪些性質(zhì)?
、()的四邊形是平行四邊形。()的平行四邊形是矩形。()的平行四邊形是菱形。()的四邊形是矩形。()的四邊形是菱形。
【學(xué)生活動(dòng)】
學(xué)生回憶,并舉手回答,對(duì)于填空題,讓更多的學(xué)生參與,說(shuō)出更多的答案。
【教師活動(dòng)】
評(píng)析學(xué)生的結(jié)果,給予表?yè)P(yáng)。
總結(jié)性質(zhì)從邊角對(duì)角線(xiàn)考慮,在填空時(shí)也考慮這幾方面之外,還應(yīng)該考慮三者之間的聯(lián)系與區(qū)別。
演示平行四邊形變?yōu)榫匦瘟庑蔚倪^(guò)程。
二:動(dòng)手操作,探索發(fā)現(xiàn)。
活動(dòng)一:拿出一張矩形紙片,拉起一角,使其寬AB落在長(zhǎng)AD邊上,如下圖所示,沿著B(niǎo)′E剪下,能得到什么圖形?
【學(xué)生活動(dòng)】
學(xué)生拿出自備矩形紙片,動(dòng)手操作,不難發(fā)現(xiàn)它是正方形。
設(shè)置問(wèn)題:①什么是正方形?
觀(guān)察發(fā)現(xiàn),從活動(dòng)中體會(huì)。
【教師活動(dòng)】:演示矩形變?yōu)檎叫蔚倪^(guò)程,菱形變?yōu)檎叫蔚倪^(guò)程。
【學(xué)生活動(dòng)】認(rèn)真觀(guān)察變化過(guò)程,思考之間的聯(lián)系,舉手回答設(shè)置問(wèn)題。
設(shè)置問(wèn)題②正方形是矩形嗎,是菱形嗎?是平行四邊形嗎?為什么?
【學(xué)生活動(dòng)】
小組討論,分組回答。
【教師活動(dòng)】
總結(jié)板書(shū):㈠(一組鄰邊相等)的矩形是正方形,(一個(gè)角是直角)的菱形是正方形。
設(shè)置問(wèn)題③正方形有那些性質(zhì)?
【學(xué)生活動(dòng)】
小組討論,舉手搶答。
【教師活動(dòng)】
表?yè)P(yáng)學(xué)生發(fā)言,板書(shū)學(xué)生發(fā)現(xiàn),㈡正方形每一條對(duì)角線(xiàn)平分一組對(duì)角
活動(dòng)二:拿出活動(dòng)一得到的正方形折一折,正方形是軸對(duì)稱(chēng)圖形嗎?有幾條對(duì)稱(chēng)軸?
學(xué)生活動(dòng)
折紙發(fā)現(xiàn),說(shuō)出自己的發(fā)現(xiàn)。得到正方形的又一性質(zhì)。正方形是軸對(duì)稱(chēng)圖形。
教師活動(dòng)
演示從平行四邊形變?yōu)檎叫蔚?過(guò)程,擦去板書(shū)㈠中的括號(hào)內(nèi)容,出示一下問(wèn)題:你還可以怎樣填空?
()的菱形是正方形,()的矩形是正方形,()的平行四邊形是正方形,()的四邊形是正方形。
學(xué)生活動(dòng)
小組充分交流,表達(dá)不同的意見(jiàn)。
教師活動(dòng)
評(píng)析活動(dòng),總結(jié)發(fā)現(xiàn):
一組鄰邊相等的矩形是正方形,對(duì)角線(xiàn)互相平分的矩形是正方形;
有一個(gè)角是直角的菱形是正方形,對(duì)角線(xiàn)相等的菱形是正方形,;
有一組鄰邊相等且有一個(gè)角是直角的平行四邊形是正方形,對(duì)角線(xiàn)相等且互相平分的平行四邊形是正方形;
四邊相等且有一角是直角的四邊形是正方形,對(duì)角線(xiàn)相等且互相垂直平分的四邊形是正方形。
以上是正方形的判定方法。
正方形是一個(gè)多么完美的平行四邊形呀?大家互相說(shuō)一說(shuō),它的完美體現(xiàn)在哪里?生活中有哪些利用正方形的例子?
學(xué)生交流,感受正方形
三,應(yīng)用體驗(yàn),推理證明。
出示例一:正方形ABCD的兩條對(duì)角線(xiàn)AC,BD交與O,AB長(zhǎng)4cm,求AC,AO長(zhǎng),及的度數(shù)。
方法一解:∵四邊形ABCD是正方形
∴∠ABC=90°(正方形的四個(gè)角是直角)
BC=AB=4cm(正方形的四條邊相等)
∴=45°(等腰直角三角形的底角是45°)
∴利用勾股定理可知,AC===4cm
∵AO=AC(正方形的對(duì)角線(xiàn)互相平分)
∴AO=×4=2cm
方法二:證明△AOB是等腰直角三角形,即可得證。
學(xué)生活動(dòng)
獨(dú)立思考,寫(xiě)出推理過(guò)程,再進(jìn)行小組討論,并且各小組指派代表寫(xiě)在黑板上,共同交流。
教師活動(dòng)
總結(jié)解題方法,從正方形的性質(zhì)全面考慮,準(zhǔn)確利用條件,減少麻煩。評(píng)析解題步驟,表?yè)P(yáng)突出學(xué)生。
出示例二:在正方形ABCD中,E、F、G、H分別在它的四條邊上,且AE=BF=CG=DH,四邊形EFGH是什么特殊的四邊形,你是如何判斷的?
學(xué)生活動(dòng)
小組交流,分析題意,整理思路,指名口答。
教師活動(dòng)
說(shuō)明思路,從已知出發(fā)或者從已有的判定加以選擇。
四,歸納新知,梳理知識(shí)。
這一節(jié)課你有什么收獲?
學(xué)生舉手談?wù)撟约旱氖斋@。
請(qǐng)把平行四邊形,矩形,菱形,正方形分別填寫(xiě)在下圖的ABCDC處,說(shuō)明它們的關(guān)系。
發(fā)表評(píng)論
教學(xué)目標(biāo):
情意目標(biāo):培養(yǎng)學(xué)生團(tuán)結(jié)協(xié)作的精神,體驗(yàn)探究成功的樂(lè)趣。
能力目標(biāo):能利用等腰梯形的性質(zhì)解簡(jiǎn)單的幾何計(jì)算、證明題;培養(yǎng)學(xué)生探究問(wèn)題、自主學(xué)習(xí)的能力。
認(rèn)知目標(biāo):了解梯形的概念及其分類(lèi);掌握等腰梯形的性質(zhì)。
教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):等腰梯形性質(zhì)的探索;
難點(diǎn):梯形中輔助線(xiàn)的添加。
教學(xué)課件:PowerPoint演示文稿
教學(xué)方法:?jiǎn)l(fā)法、
學(xué)習(xí)方法:討論法、合作法、練習(xí)法
教學(xué)過(guò)程:
(一)導(dǎo)入
1、出示圖片,說(shuō)出每輛汽車(chē)車(chē)窗形狀(投影)
2、板書(shū)課題:5梯形
3、練習(xí):下列圖形中哪些圖形是梯形?(投影)
結(jié)梯形概念:只有4、總結(jié)梯形概念:一組對(duì)邊平行另以組對(duì)邊不平行的四邊形是梯形。
5、指出圖形中各部位的名稱(chēng):上底、下底、腰、高、對(duì)角線(xiàn)。(投影)
6、特殊梯形的分類(lèi):(投影)
。ǘ┑妊菪涡再|(zhì)的探究
【探究性質(zhì)一】
思考:在等腰梯形中,如果將一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎樣的三角形?(投影)
猜想:由此你能得到等腰梯形的內(nèi)角有什么樣的性質(zhì)?(學(xué)生操作、討論、作答)
如圖,等腰梯形ABCD中,AD∥BC,AB=CD。求證:∠B=∠C
想一想:等腰梯形ABCD中,∠A與∠D是否相等?為什么?
等腰梯形性質(zhì):等腰梯形的同一條底邊上的兩個(gè)內(nèi)角相等。
【操練】
。1)如圖,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,則腰AB=cm。(投影)
(2)如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延長(zhǎng)線(xiàn)于點(diǎn)E,CA平分∠BCD,求證:∠B=2∠E.(投影)
【探究性質(zhì)二】
如果連接等腰梯形的兩條對(duì)角線(xiàn),圖中有哪幾對(duì)全等三角形?哪些線(xiàn)段相等?(學(xué)生操作、討論、作答)
如上圖,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求證:AC=BD。(投影)
等腰梯形性質(zhì):等腰梯形的兩條對(duì)角線(xiàn)相等。
【探究性質(zhì)三】
問(wèn)題一:延長(zhǎng)等腰梯形的兩腰,哪些三角形是軸對(duì)稱(chēng)圖形?為什么?對(duì)稱(chēng)軸呢?(學(xué)生操作、作答)
問(wèn)題二:等腰梯是否軸對(duì)稱(chēng)圖形?為什么?對(duì)稱(chēng)軸是什么?(重點(diǎn)討論)
等腰梯形性質(zhì):同以底上的兩個(gè)內(nèi)角相等,對(duì)角線(xiàn)相等
(三)質(zhì)疑反思、小結(jié)
讓學(xué)生回顧本課教學(xué)內(nèi)容,并提出尚存問(wèn)題;
學(xué)生小結(jié),教師視具體情況給予提示:性質(zhì)(從邊、角、對(duì)角線(xiàn)、對(duì)稱(chēng)性等角度總結(jié))、解題方法(化梯形問(wèn)題為三角形及平行四邊形問(wèn)題)、梯形中輔助線(xiàn)的添加方法。
八年級(jí)數(shù)學(xué)上冊(cè)的教案4
一、創(chuàng)設(shè)情景,明確目標(biāo)
投影:金字塔,斜拉大橋,塔吊,自行車(chē)等,讓學(xué)生感受生活中處處有三角形的身影,我們研究的“三角形”這個(gè)課題來(lái)源于實(shí)際生活之中。
請(qǐng)說(shuō)一說(shuō)你已經(jīng)學(xué)習(xí)了三角形的哪些知識(shí)?
二、自主學(xué)習(xí),指向目標(biāo)
1、自學(xué)教材第1至3頁(yè)。
2、學(xué)習(xí)至此:請(qǐng)完成《學(xué)生用書(shū)》相應(yīng)部分。
三、合作探究,達(dá)成目標(biāo)
三角形的概念表示方法及分類(lèi)
活動(dòng)一:閱讀教材第1至2頁(yè)內(nèi)容,并思考以下問(wèn)題:
。1)具有什么特征的圖形叫三角形?(不在同一直線(xiàn)上的三條線(xiàn)段,首尾順次相接所組成的圖形)
。2)三角形有幾條邊?有幾個(gè)內(nèi)角?有幾個(gè)頂點(diǎn)?(3,3,3)
。3)三角形ABC用符號(hào)如何表示?三角形ABC的邊AB、AC和BC怎樣用小寫(xiě)字母分別表示?(a,b,c)
(4)三角形按邊分可以分成幾類(lèi)?按角分呢?
展示點(diǎn)評(píng):學(xué)生結(jié)合圖形分別回答,師生共同點(diǎn)評(píng)。
小組討論:三角形的概念,如何用符號(hào)表示及分類(lèi)?
反思小結(jié):三角形的圖形特征,有三條邊,三個(gè)內(nèi)角,三個(gè)頂點(diǎn),邊可以用兩個(gè)大寫(xiě)字母表示,也可以用一個(gè)小寫(xiě)字母表示。
針對(duì)訓(xùn)練:見(jiàn)《學(xué)生用書(shū)》相應(yīng)部分。
三角形的三邊關(guān)系
活動(dòng)二:畫(huà)出一個(gè)△ABC,假設(shè)有一只小蟲(chóng)要從B出發(fā),沿三角形的邊爬到C,它有幾種路線(xiàn)可以選擇?各條路線(xiàn)的長(zhǎng)有什么數(shù)量關(guān)系?請(qǐng)說(shuō)明你結(jié)論的正確性。
展示點(diǎn)評(píng):(1)小蟲(chóng)從B出發(fā)沿三角形的邊爬到C如下幾條線(xiàn)段。
a、從xxBxx鯻xCxx
b、從xxBxx鯻xAxx鯻xCxx
從B沿邊BC到C的路線(xiàn)長(zhǎng)為xxBCxx。
從B沿邊BA到A,從A沿C到C的路線(xiàn)長(zhǎng)為xxAB+ACxx。
經(jīng)過(guò)測(cè)量可以說(shuō)xxAB+ACxx>xxBCxx,可以說(shuō)這兩條路線(xiàn)的長(zhǎng)是xx不相等xx的
小組討論:在同一個(gè)三角形中,任意兩邊之和與第三邊有什么關(guān)系?任意兩邊之差與第三邊有什么關(guān)系?三角形的三邊有怎么樣的不等關(guān)系?
反思小結(jié):三角形的任意兩邊之和大于第三邊,任意兩邊之差小于第三邊。
針對(duì)訓(xùn)練:見(jiàn)《學(xué)生用書(shū)》相應(yīng)部分
三角形有關(guān)知識(shí)的運(yùn)用
活動(dòng)三:見(jiàn)教材P3例題
小組討論:等腰三角形中有幾個(gè)不同的邊長(zhǎng)?第(2)問(wèn)中的長(zhǎng)4 cm沒(méi)有明確是腰還是底時(shí)應(yīng)怎么處理?
展示點(diǎn)評(píng):等腰三角形的底和腰的長(zhǎng)度,不確定時(shí),應(yīng)分情況予以討論。
反思小結(jié):當(dāng)題目中的條件不明確時(shí)要分類(lèi)討論。所有的三角形必須要滿(mǎn)足三邊關(guān)系定理。
針對(duì)訓(xùn)練:見(jiàn)《學(xué)生用書(shū)》相應(yīng)部分
四、總結(jié)梳理,內(nèi)化目標(biāo)
1、概念:三角形,內(nèi)角,邊,頂點(diǎn)
2、符號(hào)語(yǔ)言。
3、三邊關(guān)系。
4、角形的分類(lèi)。
五、達(dá)標(biāo)檢測(cè),反思目標(biāo)
1、現(xiàn)有兩根木棒,它們的長(zhǎng)度分別為20 cm和30 cm,若不改變木棒的長(zhǎng)度,要釘成一個(gè)三角形木架,應(yīng)在下列四根木棒中選取(B)
A、 cm的木棒B。20 cm的木棒C。50 cm的木棒D。60 cm的木棒
2、已知等腰三角形的兩邊長(zhǎng)分別為3和6,則它的周長(zhǎng)為(C)
A、9 B、12 C、15 D、12或15
3、已知三角形的.三邊長(zhǎng)為連續(xù)整數(shù),且周長(zhǎng)為12 cm,則它的最短邊長(zhǎng)為(B)
A、2 cm B、3 cm C、4 cm D、5 cm
4、若五條線(xiàn)段的長(zhǎng)分別是1 cm,2 cm,3 cm,4 cm,5 cm,則以其中三條線(xiàn)段為邊可構(gòu)成xx3xx個(gè)三角形。若等腰三角形的兩邊長(zhǎng)分別為3和7,則它的周長(zhǎng)為xx17xx;若等腰三角形的兩邊長(zhǎng)分別是3和4,則它的周長(zhǎng)為xx10或11xx。
5、如果以5 cm為等腰三角形的一邊,另一邊為10 cm,則它的周長(zhǎng)為xx25xcmxx。
6、工人師傅用35 cm長(zhǎng)的鐵絲圍成一個(gè)等腰三角形鐵架。
(1)若腰長(zhǎng)是底邊長(zhǎng)的3倍,那么各邊的長(zhǎng)分別是多少?
。2)能?chē)捎幸贿呴L(zhǎng)為7 cm的等腰三角形嗎?為什么?
《11。1。1三角形的邊》同步練習(xí)題(含答案)
2、四條線(xiàn)段的長(zhǎng)度分別為4,6,8,10,則可以組成三角形的個(gè)數(shù)為()
A、4 B、3 C、2 D、1
答案B選出三條線(xiàn)段的所有組合有4,6,8;4,6,10;4,8,10;6,8,10,只有4,6,10不能組成三角形。故選B。
3、已知等腰三角形的一邊長(zhǎng)為3 cm,且它的周長(zhǎng)為12 cm,則它的底邊長(zhǎng)為()
A、3 cm B6 、cm C、9 cm D、3 cm或6 cm
答案A當(dāng)3 cm是等腰三角形的腰長(zhǎng)時(shí),底邊長(zhǎng)=12—3×2=6(cm),∵3+3=6,∴3 cm,3 cm,6 cm不能構(gòu)成三角形,∴此種情況不存在;當(dāng)3 cm是等腰三角形的底邊長(zhǎng)時(shí),腰長(zhǎng)= =4。5(cm),此時(shí)能組成三角形。∴底邊長(zhǎng)為3 cm,故選A。
《11.1與三角形有關(guān)的線(xiàn)段》同步測(cè)試(含答案解析)
2、一個(gè)三角形3條邊長(zhǎng)分別為x cm、(x+1)cm、(x+2)cm,它的周長(zhǎng)不超過(guò)39 cm,則x的取值范圍是xx。
3、一個(gè)等腰三角形的周長(zhǎng)為9,三條邊長(zhǎng)都為整數(shù),則等腰三角形的腰長(zhǎng)為xxx。
4、已知a,b,c是三角形的三邊長(zhǎng)。
。1)化簡(jiǎn):|b+c—a|+|b—c—a|—|c—a—b|—|a—b+c|;
。2)在(1)的條件下,若a,b,c滿(mǎn)足a+b=11,b+c=9,a+c=10,求這個(gè)式子的值。
八年級(jí)數(shù)學(xué)上冊(cè)的教案5
一、教學(xué)目標(biāo)
知識(shí)與技能
1、了解立方根的概念,初步學(xué)會(huì)用根號(hào)表示一個(gè)數(shù)的立方根.
2、了解開(kāi)立方與立方互為逆運(yùn)算,會(huì)用立方運(yùn)算求某些數(shù)的立方根.
過(guò)程與方法
1讓學(xué)生體會(huì)一個(gè)數(shù)的立方根的惟一性.
2培養(yǎng)學(xué)生用類(lèi)比的思想求立方根的能力,體會(huì)立方與開(kāi)立方運(yùn)算的互逆性,滲透數(shù)學(xué)的轉(zhuǎn)化思想。
情感態(tài)度與價(jià)值觀(guān)
通過(guò)立方根符號(hào)的引入體會(huì)數(shù)學(xué)的簡(jiǎn)潔美。
二、重點(diǎn)難點(diǎn)
重點(diǎn)
立方根的概念和求法。
難點(diǎn)
立方根與平方根的區(qū)別,立方根的求法
三、學(xué)情分析
前面已經(jīng)學(xué)過(guò)了平方根的知識(shí),由于平方根與立方根的學(xué)習(xí)有很多相似之處,所以在教學(xué)設(shè)計(jì)上,主要還是采取類(lèi)比的思想,在全面回顧平方根的基礎(chǔ)上,再來(lái)引導(dǎo)學(xué)生進(jìn)行立方根知識(shí)的學(xué)習(xí),讓學(xué)生感覺(jué)到其實(shí)立方根知識(shí)并不難,可以與平方根知識(shí)對(duì)比著學(xué),這樣可以克服學(xué)生學(xué)習(xí)新知識(shí)的陌生心理。在學(xué)習(xí)方法上,提倡讓學(xué)生在反思中學(xué)習(xí),在概念的得出,歸納性質(zhì),解題之后都要進(jìn)行適當(dāng)?shù)姆此,在反思中看待與理解新知識(shí)和新問(wèn)題,會(huì)更理性和全面,會(huì)有更大的進(jìn)步。
四、教學(xué)過(guò)程設(shè)計(jì)
教學(xué)環(huán)節(jié)問(wèn)題設(shè)計(jì)師生活動(dòng)備注
情境創(chuàng)設(shè)問(wèn)題:要制作一種容積為27m3的'正方體形狀的包裝箱,這種包裝箱的邊長(zhǎng)應(yīng)該是多少?
設(shè)這種包裝箱的邊長(zhǎng)為xm,則=27這就是求一個(gè)數(shù),使它的立方等于27.
因?yàn)?27,所以x=3.即這種包裝箱的邊長(zhǎng)應(yīng)為3m
歸納:
立方根的概念:
創(chuàng)設(shè)問(wèn)題情境,引起學(xué)生學(xué)習(xí)的興趣,經(jīng)小組討論后引出概念。
通過(guò)具體問(wèn)題得出立方根的概念
探究一:
根據(jù)立方根的意義填空,看看正數(shù)、0、負(fù)數(shù)的立方根各有什么特點(diǎn)?
因?yàn)椋ǎ?.125的立方根是()
因?yàn)椋ǎ,所?8的立方根是()
因?yàn)椋ǎ,所?0.125的立方根是()
因?yàn)椋ǎ,所?的立方根是()
一個(gè)正數(shù)有一個(gè)正的立方根
0有一個(gè)立方根,是它本身
一個(gè)負(fù)數(shù)有一個(gè)負(fù)的立方根
任何數(shù)都有唯一的立方根
【總結(jié)歸納】
一個(gè)數(shù)的立方根,記作,讀作:“三次根號(hào)”,其中叫被開(kāi)方數(shù),3叫根指數(shù),不能省略,若省略表示平方。.
探究二:
因?yàn)樗?
因?yàn)椋?總結(jié):
利用開(kāi)立方和立方互為逆運(yùn)算關(guān)系,求一個(gè)數(shù)的立方根,就可以利用這種互逆關(guān)系,檢驗(yàn)其正確性,求負(fù)數(shù)的立方根,可以先求出這個(gè)負(fù)數(shù)的絕對(duì)值的立方根,再取其相反數(shù),即。
八年級(jí)數(shù)學(xué)上冊(cè)的教案6
第二環(huán)節(jié):探索發(fā)現(xiàn)勾股定理
1、探究活動(dòng)一
內(nèi)容:投影顯示如下地板磚示意圖,引導(dǎo)學(xué)生從面積角度觀(guān)察圖形:
問(wèn):你能發(fā)現(xiàn)各圖中三個(gè)正方形的面積之間有何關(guān)系嗎?
學(xué)生通過(guò)觀(guān)察,歸納發(fā)現(xiàn):
結(jié)論1以等腰直角三角形兩直角邊為邊長(zhǎng)的小正方形的面積的和,等于以斜邊為邊長(zhǎng)的正方形的面積。
意圖:從觀(guān)察實(shí)際生活中常見(jiàn)的地板磚入手,讓學(xué)生感受到數(shù)學(xué)就在我們身邊。通過(guò)對(duì)特殊情形的探究得到結(jié)論1,為探究活動(dòng)二作鋪墊。
效果:1.探究活動(dòng)一讓學(xué)生獨(dú)立觀(guān)察,自主探究,培養(yǎng)獨(dú)立思考的習(xí)慣和能力;
2.通過(guò)探索發(fā)現(xiàn),讓學(xué)生得到成功體驗(yàn),激發(fā)進(jìn)一步探究的熱情和愿望。
2、探究活動(dòng)二
內(nèi)容:由結(jié)論1我們自然產(chǎn)生聯(lián)想:一般的直角三角形是否也具有該性質(zhì)呢?
(1)觀(guān)察下面兩幅圖:
。2)填表:
A的面積
(單位面積)B的面積
。▎挝幻娣e)C的面積
。▎挝幻娣e)
左圖
右圖
(3)你是怎樣得到正方形C的面積的?與同伴交流(學(xué)生可能會(huì)做出多種方法,教師應(yīng)給予充分肯定)。
學(xué)生的方法可能有:
方法一:
如圖1,將正方形C分割為四個(gè)全等的直角三角形和一個(gè)小正方形。
方法二:
如圖2,在正方形C外補(bǔ)四個(gè)全等的直角三角形,形成大正方形,用大正方形的面積減去四個(gè)直角三角形的面積。
方法三:
如圖3,正方形C中除去中間5個(gè)小正方形外,將周?chē)糠诌m當(dāng)拼接可成為正方形,如圖3中兩塊紅色(或兩塊綠色)部分可拼成一個(gè)小正方形,按此拼法。
。4)分析填表的數(shù)據(jù),你發(fā)現(xiàn)了什么?
學(xué)生通過(guò)分析數(shù)據(jù),歸納出:
結(jié)論2以直角三角形兩直角邊為邊長(zhǎng)的小正方形的面積的和,等于以斜邊為邊長(zhǎng)的正方形的面積。
意圖:探究活動(dòng)二意在讓學(xué)生通過(guò)觀(guān)察、計(jì)算、探討、歸納進(jìn)一步發(fā)現(xiàn)一般直角三角形的性質(zhì)。由于正方形C的面積計(jì)算是一個(gè)難點(diǎn),為此設(shè)計(jì)了一個(gè)交流環(huán)節(jié)。
效果:學(xué)生通過(guò)充分討論探究,在突破正方形C的面積計(jì)算這一難點(diǎn)后得出結(jié)論2.
3、議一議
內(nèi)容:(1)你能用直角三角形的邊長(zhǎng),來(lái)表示上圖中正方形的.面積嗎?
。2)你能發(fā)現(xiàn)直角三角形三邊長(zhǎng)度之間存在什么關(guān)系嗎?
。3)分別以5厘米、12厘米為直角邊作出一個(gè)直角三角形,并測(cè)量斜邊的長(zhǎng)度。2中發(fā)現(xiàn)的規(guī)律對(duì)這個(gè)三角形仍然成立嗎?
勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方。如果用,分別表示直角三角形的兩直角邊和斜邊,那么。
數(shù)學(xué)小史:勾股定理是我國(guó)最早發(fā)現(xiàn)的,中國(guó)古代把直角三角形中較短的直角邊稱(chēng)為勾,較長(zhǎng)的直角邊稱(chēng)為股,斜邊稱(chēng)為弦,“勾股定理”因此而得名(在西方文獻(xiàn)中又稱(chēng)為畢達(dá)哥拉斯定理)。
意圖:議一議意在讓學(xué)生在結(jié)論2的基礎(chǔ)上,進(jìn)一步發(fā)現(xiàn)直角三角形三邊關(guān)系,得到勾股定理。
效果:1.讓學(xué)生歸納表述結(jié)論,可培養(yǎng)學(xué)生的抽象概括能力及語(yǔ)言表達(dá)能力;
2.通過(guò)作圖培養(yǎng)學(xué)生的動(dòng)手實(shí)踐能力。
八年級(jí)數(shù)學(xué)上冊(cè)的教案7
一、內(nèi)容和內(nèi)容解析
1.內(nèi)容
三角形中相關(guān)元素的概念、按邊分類(lèi)及三角形的三邊關(guān)系.
2.內(nèi)容解析
三角形是一種最基本的幾何圖形,是認(rèn)識(shí)其他圖形的基礎(chǔ),在本章中,學(xué)好了三角形的有關(guān)概念和性質(zhì),為進(jìn)一步學(xué)習(xí)多邊形的相關(guān)內(nèi)容打好基礎(chǔ),本節(jié)主要介紹與三角形的的概念、按邊分類(lèi)和三角形三邊關(guān)系,使學(xué)生對(duì)三角形的有關(guān)知識(shí)有更為深刻的理解.
本節(jié)課的教學(xué)重點(diǎn):三角形中的相關(guān)概念和三角形三邊關(guān)系.
本節(jié)課的教學(xué)難點(diǎn):三角形的三邊關(guān)系.
二、目標(biāo)和目標(biāo)解析
1.教學(xué)目標(biāo)
(1)了解三角形中的相關(guān)概念,學(xué)會(huì)用符號(hào)語(yǔ)言表示三角形中的對(duì)應(yīng)元素.
(2)理解并且靈活應(yīng)用三角形三邊關(guān)系.
2.教學(xué)目標(biāo)解析
(1)結(jié)合具體圖形,識(shí)三角形的概念及其基本元素.
(2)會(huì)用符號(hào)、字母表示三角形中的相關(guān)元素,并會(huì)按邊對(duì)三角形進(jìn)行分類(lèi).
(3)理解三角形兩邊之和大于第三邊這一性質(zhì),并會(huì)運(yùn)用這一性質(zhì)來(lái)解決問(wèn)題.
三、教學(xué)問(wèn)題診斷分析
在探索三角形三邊關(guān)系的過(guò)程中,讓學(xué)生經(jīng)歷觀(guān)察、探究、推理、交流等活動(dòng)過(guò)程,培養(yǎng)學(xué)生的和推理能力和合作學(xué)習(xí)的精神.
四、教學(xué)過(guò)程設(shè)計(jì)
1.創(chuàng)設(shè)情境,提出問(wèn)題
問(wèn)題回憶生活中的三角形實(shí)例,結(jié)合你以前對(duì)三角形的了解,請(qǐng)你給三角形下一個(gè)定義.
師生活動(dòng):先讓學(xué)生分組討論,然后各小組派代表發(fā)言,針對(duì)學(xué)生下的定義,給出各種圖形反例,如下圖,指出其不完整性,加深學(xué)生對(duì)三角形概念的理解.
【設(shè)計(jì)意圖】三角形概念的獲得,要讓學(xué)生經(jīng)歷其描述的過(guò)程,借此培養(yǎng)學(xué)生的語(yǔ)言表述能力,加深學(xué)生對(duì)三角形概念的理解.
2.抽象概括,形成概念
動(dòng)態(tài)演示“首尾順次相接”這個(gè)的動(dòng)畫(huà),歸納出三角形的定義.
師生活動(dòng):
三角形的定義:由不在同一直線(xiàn)上的三條線(xiàn)段首尾順次相接所組成的圖形叫做三角形.
【設(shè)計(jì)意圖】讓學(xué)生體會(huì)由抽象到具體的過(guò)程,培養(yǎng)學(xué)生的'語(yǔ)言表述能力.
補(bǔ)充說(shuō)明:要求學(xué)生學(xué)會(huì)三角形、三角形的頂點(diǎn)、邊、角的概念以及幾何表達(dá)方法.
師生活動(dòng):結(jié)合具體圖形,教師引導(dǎo)學(xué)生分析,讓學(xué)生學(xué)會(huì)由文字語(yǔ)言向幾何語(yǔ)言的過(guò)渡.
【設(shè)計(jì)意圖】進(jìn)一步加深學(xué)生對(duì)三角形中相關(guān)元素的認(rèn)知,并進(jìn)一步熟悉幾何語(yǔ)言在學(xué)習(xí)中的應(yīng)用.
3.概念辨析,應(yīng)用鞏固
如圖,不重復(fù),且不遺漏地識(shí)別所有三角形,并用符號(hào)語(yǔ)言表示出來(lái).
1.以AB為一邊的三角形有哪些?
2.以∠D為一個(gè)內(nèi)角的三角形有哪些?
3.以E為一個(gè)頂點(diǎn)的三角形有哪些?
4.說(shuō)出ΔBCD的三個(gè)角.
師生活動(dòng):引導(dǎo)學(xué)生從概念出發(fā)進(jìn)行思考,加深學(xué)生對(duì)三角形中相關(guān)元素概念的理解.
4.拓廣延伸,探究分類(lèi)
我們知道,按照三個(gè)內(nèi)角的大小,可以將三角形分為銳角三角形、直角三角形和鈍角三角形,如果要按照邊的大小關(guān)系對(duì)三角形進(jìn)行分類(lèi),又應(yīng)該如何分呢?小組之間同學(xué)進(jìn)行交流并說(shuō)說(shuō)你們的想法.
師生活動(dòng):通過(guò)討論,學(xué)生類(lèi)比按角的分類(lèi)方法按邊對(duì)三角形進(jìn)行分類(lèi),接著引出等腰三角形及等邊三角形的概念,引導(dǎo)學(xué)生了解等腰三角形與等邊三角形的聯(lián)系,強(qiáng)化學(xué)生對(duì)三角形按邊分類(lèi)的理解.
八年級(jí)數(shù)學(xué)上冊(cè)的教案8
一、教材分析教材的地位和作用:
本節(jié)內(nèi)容是第一課時(shí)《軸對(duì)稱(chēng)》,本節(jié)立足于學(xué)生已有的生活經(jīng)驗(yàn)和數(shù)學(xué)活動(dòng)經(jīng)歷,從觀(guān)察生活中的軸對(duì)稱(chēng)現(xiàn)象開(kāi)始,從整體的角度認(rèn)識(shí)軸對(duì)稱(chēng)的特征;同時(shí)本節(jié)內(nèi)容與圖形的三種變換操作(平移、翻折、旋轉(zhuǎn))之一的“翻折”有著不可分割的聯(lián)系,通過(guò)對(duì)這一節(jié)課的學(xué)習(xí),使學(xué)生從對(duì)圖形的感性認(rèn)識(shí)上升到對(duì)軸對(duì)稱(chēng)的理性認(rèn)識(shí),為進(jìn)一步學(xué)習(xí)軸對(duì)稱(chēng)性質(zhì)及后面學(xué)習(xí)等腰三角形和圓等有關(guān)知識(shí)奠定基礎(chǔ)。同時(shí)這一節(jié)也是聯(lián)系數(shù)學(xué)與生活的橋梁。
二、學(xué)情分析
八年級(jí)學(xué)生有一定的知識(shí)水平,已經(jīng)初步形成了一定觀(guān)察能力、語(yǔ)言表達(dá)能力,這節(jié)課是在學(xué)生學(xué)習(xí)了“全等三角形”相關(guān)內(nèi)容之后安排的一節(jié)課,學(xué)生已經(jīng)具備了一定的推理能力,因此,這節(jié)課通過(guò)觀(guān)察生活中的實(shí)例和動(dòng)手實(shí)踐,讓學(xué)生自己去發(fā)現(xiàn)和總結(jié)軸對(duì)稱(chēng)圖形和軸對(duì)稱(chēng)的概念及它們之間的區(qū)別與聯(lián)系是切實(shí)可行的。
三、教學(xué)目標(biāo)及重點(diǎn)、難點(diǎn)的確定
根據(jù)新課程標(biāo)準(zhǔn)、教材內(nèi)容特點(diǎn)、和學(xué)生已有的認(rèn)知結(jié)構(gòu)、心理特征,我確定本節(jié)教學(xué)目標(biāo)、重點(diǎn)、難點(diǎn)如下:
(一)教學(xué)目標(biāo):
1、知識(shí)技能
(1)理解并掌握軸對(duì)稱(chēng)圖形的概念,對(duì)稱(chēng)軸;能準(zhǔn)確判斷哪些事物是軸對(duì)稱(chēng)圖形;找出軸對(duì)稱(chēng)圖形的對(duì)稱(chēng)軸.
(2)理解并掌握軸對(duì)稱(chēng)的概念,對(duì)稱(chēng)軸;了解對(duì)稱(chēng)點(diǎn).
(3)了解軸對(duì)稱(chēng)圖形和軸對(duì)稱(chēng)的聯(lián)系與區(qū)別.
2、過(guò)程與方法目標(biāo)
經(jīng)歷“觀(guān)察——比較——操作——概括——總結(jié)一應(yīng)用”的學(xué)習(xí)過(guò)程,培養(yǎng)學(xué)生的動(dòng)手實(shí)踐能力、抽象思維和語(yǔ)言表達(dá)能力.
3、情感、態(tài)度與價(jià)值觀(guān)
通過(guò)對(duì)生活中數(shù)學(xué)問(wèn)題的探究,進(jìn)一步提高學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識(shí),在自主探究、合作交流的過(guò)程中,體會(huì)數(shù)學(xué)的重要作用,培養(yǎng)學(xué)生的學(xué)習(xí)興趣,熱愛(ài)生活的情感和欣賞圖形的對(duì)稱(chēng)美。
(二)教學(xué)重點(diǎn):軸對(duì)稱(chēng)圖形和軸對(duì)稱(chēng)的有關(guān)概念.
(三)教學(xué)難點(diǎn):軸對(duì)稱(chēng)圖形與軸對(duì)稱(chēng)的聯(lián)系、區(qū)別
.四、教法和學(xué)法設(shè)計(jì)
本節(jié)課根據(jù)教材內(nèi)容的特點(diǎn)和八年級(jí)學(xué)生的知識(shí)結(jié)構(gòu)和心理特征。我選擇的:
【教法策略】采用以直觀(guān)演示法和實(shí)驗(yàn)發(fā)現(xiàn)法為主,設(shè)疑誘導(dǎo)法為輔。教學(xué)中教學(xué)中通過(guò)豐富的圖片展示,創(chuàng)設(shè)出問(wèn)題情景,誘導(dǎo)學(xué)生思考、操作,教師適時(shí)地演示,并運(yùn)用多媒體化靜為動(dòng),激發(fā)學(xué)生探求知識(shí)的欲望,逐步推導(dǎo)歸納得出結(jié)論,使學(xué)生始終處于主動(dòng)探索問(wèn)題的積極狀態(tài),使不同層次學(xué)生的知識(shí)水平得到恰當(dāng)?shù)陌l(fā)展和提高。
【學(xué)法策略】:讓學(xué)生在“觀(guān)察----比較——操作——概括——檢驗(yàn)——應(yīng)用”的學(xué)習(xí)過(guò)程中,自主參與知識(shí)的發(fā)生、發(fā)展、形成的過(guò)程,使學(xué)生在自主探索和合作交流中理解和掌握本節(jié)課的有關(guān)內(nèi)容。
【輔助策略】我利用多媒體課件輔助教學(xué),適時(shí)呈現(xiàn)問(wèn)題情景,以豐富學(xué)生的感性認(rèn)識(shí),增強(qiáng)直觀(guān)效果,提高課堂效率
五、說(shuō)程序設(shè)計(jì):
新的課程標(biāo)準(zhǔn)指出學(xué)生的學(xué)習(xí)內(nèi)容應(yīng)該是現(xiàn)實(shí)的有意義的,有利于學(xué)生進(jìn)行觀(guān)察、試驗(yàn)、猜測(cè)、驗(yàn)證、推理與交流等數(shù)學(xué)活動(dòng)。為了達(dá)到預(yù)期的教學(xué)目標(biāo),我對(duì)整個(gè)教學(xué)過(guò)程進(jìn)行了設(shè)計(jì)。
(一)、觀(guān)圖激趣、設(shè)疑導(dǎo)入。
出示圖片,設(shè)計(jì)故事。一日,春光明媚,蝴蝶和蜜蜂來(lái)到花叢中游玩,這時(shí)蝴蝶對(duì)蜜蜂說(shuō):“咱們長(zhǎng)得真象”,蜜蜂百思不得其解。你能說(shuō)出為什么長(zhǎng)得象嗎?今天我們就來(lái)共同探討這一問(wèn)題――軸對(duì)稱(chēng)。
[設(shè)計(jì)意圖]以興趣為先導(dǎo),創(chuàng)設(shè)學(xué)生喜聞樂(lè)見(jiàn)的故事情景,激發(fā)了學(xué)生濃厚的學(xué)習(xí)興趣,
(二)、實(shí)踐探索、感悟特征.
《活動(dòng)一(課件演示)觀(guān)察這些圖形有什么特點(diǎn)?》在這個(gè)環(huán)節(jié)中我首先出示一組常見(jiàn)的具有代表性的典型的軸對(duì)稱(chēng)圖形,出示后先讓學(xué)生自己觀(guān)察,并引導(dǎo)學(xué)生感知,無(wú)論是隨風(fēng)起舞的風(fēng)箏,凌空翱翔的飛機(jī),還是古今中外各式風(fēng)格的典型建筑很多圖形都給我們以美得感受。然后,教師適時(shí)提出問(wèn)題:這些圖形有什么共同特征?是如何對(duì)稱(chēng)?怎樣才能使對(duì)稱(chēng)?部分重合呢?讓學(xué)生觀(guān)察、猜想、探究、討論,教師可以適當(dāng)?shù)匾龑?dǎo),讓學(xué)生發(fā)現(xiàn):把一個(gè)圖形的.某一部分沿著一條直線(xiàn)翻折180度后能與這個(gè)圖形另一部分完全重合。從而引出軸對(duì)稱(chēng)圖形和對(duì)稱(chēng)軸的概念。在得出概念之后再引導(dǎo)學(xué)生例舉生活中的事例。以便加深對(duì)軸對(duì)稱(chēng)圖形概念的理解。
為了進(jìn)一步認(rèn)識(shí)軸對(duì)稱(chēng)圖形的特點(diǎn)又出示了一組練習(xí)
(練習(xí)1)這是一組常見(jiàn)幾何圖形,要求學(xué)生判斷是否是對(duì)稱(chēng)圖形,若是對(duì)稱(chēng)圖形的,畫(huà)出它的對(duì)稱(chēng)軸
[設(shè)計(jì)意圖]通過(guò)這個(gè)練習(xí)題不僅讓學(xué)生鞏固了軸對(duì)稱(chēng)圖形的概念,而且讓學(xué)生認(rèn)識(shí)到我們常見(jiàn)的圖形,有些是軸對(duì)稱(chēng)圖形,有些不是軸對(duì)稱(chēng)圖形。并且還讓學(xué)生認(rèn)識(shí)軸對(duì)稱(chēng)圖形的對(duì)稱(chēng)軸不僅僅只一條,有可能有2條、3條、4條甚至無(wú)數(shù)條,對(duì)稱(chēng)軸的方向不僅僅是垂直的,有可能是水平的或傾斜的。
(練習(xí)2)國(guó)家的一個(gè)象征,觀(guān)察下面的國(guó)旗,哪些是軸對(duì)稱(chēng)圖形?試找出它們的對(duì)稱(chēng)軸。次題進(jìn)一步鞏固了軸對(duì)稱(chēng)圖形的概念,培養(yǎng)了學(xué)生的觀(guān)察能力、想象能力,同時(shí)通過(guò)展示各國(guó)的國(guó)旗,不僅激發(fā)了學(xué)生的學(xué)習(xí)興趣,而且也拓展了學(xué)生的知識(shí)面。
(三)、動(dòng)手操作、再度探索新知。
將一張紙對(duì)折,用筆尖扎出一個(gè)圖案,然后將紙展開(kāi)后,鋪平,觀(guān)察各自得到的圖案與軸對(duì)稱(chēng)圖形的不同。教學(xué)中注重學(xué)生活動(dòng),鼓勵(lì)學(xué)生親自實(shí)踐,積極思考,在樂(lè)學(xué)的氛圍中,培養(yǎng)學(xué)生的動(dòng)手能力,從而引出軸對(duì)稱(chēng)概念。
再次引導(dǎo)學(xué)生討論、歸納得出軸對(duì)稱(chēng)的概念……。之后再結(jié)合動(dòng)畫(huà)演示加深對(duì)軸對(duì)稱(chēng)概念的理解,進(jìn)而引出對(duì)稱(chēng)軸、對(duì)稱(chēng)點(diǎn)的概念.并結(jié)合圖形加以認(rèn)識(shí)。
(四)、鞏固練習(xí)、升華新知。
出示幾幅圖形,請(qǐng)同學(xué)們辨別哪幅圖形是軸對(duì)稱(chēng)圖形哪些圖形軸對(duì)稱(chēng),
在這組練習(xí)中讓學(xué)生動(dòng)手、動(dòng)口、動(dòng)眼、動(dòng)腦,充分調(diào)動(dòng)了學(xué)生的各種感官參與學(xué)習(xí),既加深了對(duì)兩個(gè)概念的理解,又鍛煉了同學(xué)的各方面能力。完成這組練習(xí)題后讓學(xué)生,歸納軸對(duì)稱(chēng)圖形及軸對(duì)稱(chēng)區(qū)別與聯(lián)系,先讓學(xué)生自己歸納,然后用多媒體展示。
(課件演示)軸對(duì)稱(chēng)圖形及兩個(gè)圖形成軸對(duì)稱(chēng)區(qū)別與聯(lián)系
(五)、綜合練習(xí)、發(fā)展思維。
1、搶答;觀(guān)察周?chē)男┦挛锏男螤钍禽S對(duì)稱(chēng)圖形。
2、判斷:
生活中不僅有些物體的形狀是軸對(duì)稱(chēng)圖形,我們所學(xué)的數(shù)字、字母和漢字中也有一些可以看成軸對(duì)稱(chēng)圖形。
(1)下面的數(shù)字或字母,哪些是軸對(duì)稱(chēng)圖形?它們各有幾條對(duì)稱(chēng)軸?
0123456789ABCDEFGH
3、像這樣寫(xiě)法的漢字哪些是軸對(duì)稱(chēng)圖形?
口工用中由日直水清甲
(這幾道題的練習(xí)做到了知識(shí)性、技能性、思想性和藝術(shù)性溶為一體。這樣設(shè)計(jì),不但活躍了課堂氣氛,又檢查了學(xué)生掌握新知的情況,而且激發(fā)了學(xué)生的學(xué)習(xí)興趣,又讓學(xué)生感到數(shù)學(xué)就在自己的身邊)
(六)歸納小結(jié)、布置作業(yè)
[設(shè)計(jì)意圖]培養(yǎng)學(xué)生歸納和語(yǔ)言表達(dá)能力,鼓勵(lì)學(xué)生從數(shù)學(xué)知識(shí)、數(shù)學(xué)方法和數(shù)學(xué)情感等方面進(jìn)行自我評(píng)價(jià)。作業(yè)布置要有層次,照顧學(xué)生個(gè)體差異使不同的人在數(shù)學(xué)上獲得不同的發(fā)展!
六、設(shè)計(jì)說(shuō)明
這節(jié)課,我依據(jù)課程標(biāo)準(zhǔn)、教材特點(diǎn)、遵循學(xué)生的認(rèn)知規(guī)律。通過(guò)六個(gè)環(huán)節(jié)的教學(xué)設(shè)計(jì),通過(guò)觀(guān)察生活中的一些圖案以及動(dòng)畫(huà)演示,由感性到理性,讓學(xué)生輕松掌握了軸對(duì)稱(chēng)圖形與關(guān)于直線(xiàn)成軸對(duì)稱(chēng)兩個(gè)概念,指導(dǎo)學(xué)生操作、觀(guān)察、引導(dǎo)概括,獲取新知;同時(shí)注重培養(yǎng)學(xué)生的形象思維和抽象思維。在教學(xué)過(guò)程中讓學(xué)生動(dòng)口、動(dòng)手、動(dòng)眼、動(dòng)腦,使學(xué)生學(xué)有興趣、學(xué)有所獲。這就是我對(duì)本節(jié)課的理解和說(shuō)明。
八年級(jí)數(shù)學(xué)上冊(cè)的教案9
一、教學(xué)目標(biāo)
。ㄒ唬⒅R(shí)與技能:
(1)使學(xué)生了解因式分解的意義,理解因式分解的概念。
(2)認(rèn)識(shí)因式分解與整式乘法的相互關(guān)系——互逆關(guān)系,并能運(yùn)用這種關(guān)系尋求因式分解的方法。
。ǘ、過(guò)程與方法:
。1)由學(xué)生自主探索解題途徑,在此過(guò)程中,通過(guò)觀(guān)察、類(lèi)比等手段,尋求因式分解與因數(shù)分解之間的關(guān)系,培養(yǎng)學(xué)生的觀(guān)察能力,進(jìn)一步發(fā)展學(xué)生的類(lèi)比思想。
。2)由整式乘法的逆運(yùn)算過(guò)渡到因式分解,發(fā)展學(xué)生的逆向思維能力。
。3)通過(guò)對(duì)分解因式與整式的乘法的觀(guān)察與比較,培養(yǎng)學(xué)生的分析問(wèn)題能力與綜合應(yīng)用能力。
。ㄈ、情感態(tài)度與價(jià)值觀(guān):讓學(xué)生初步感受對(duì)立統(tǒng)一的辨證觀(guān)點(diǎn)以及實(shí)事求是的科學(xué)態(tài)度。
二、教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):因式分解的概念及提公因式法。
難點(diǎn):正確找出多項(xiàng)式各項(xiàng)的公因式及分解因式與整式乘法的區(qū)別和聯(lián)系。
三、教學(xué)過(guò)程
教學(xué)環(huán)節(jié):
活動(dòng)1:復(fù)習(xí)引入
看誰(shuí)算得快:用簡(jiǎn)便方法計(jì)算:
。1)7/9 ×13-7/9 ×6+7/9 ×2= ;
(2)-2.67×132+25×2.67+7×2.67= ;
。3)992–1= 。
設(shè)計(jì)意圖:
如果說(shuō)學(xué)生對(duì)因式分解還相當(dāng)陌生的話(huà),相信學(xué)生對(duì)用簡(jiǎn)便方法進(jìn)行計(jì)算應(yīng)該相當(dāng)熟悉.引入這一步的目的旨在讓學(xué)生通過(guò)回顧用簡(jiǎn)便方法計(jì)算——因數(shù)分解這一特殊算法,使學(xué)生通過(guò)類(lèi)比很自然地過(guò)渡到正確理解因式分解的概念上,從而為因式分解的掌握掃清障礙,本環(huán)節(jié)設(shè)計(jì)的計(jì)算992–1的值是為了降低下一環(huán)節(jié)的難度,為下一環(huán)節(jié)的理解搭一個(gè)臺(tái)階.
注意事項(xiàng):學(xué)生對(duì)于(1)(2)兩小題逆向利用乘法的分配律進(jìn)行運(yùn)算的方法是很熟悉,對(duì)于第(3)小題的`逆向利用平方差公式的運(yùn)算則有一定的困難,因此,有必要引導(dǎo)學(xué)生復(fù)習(xí)七年級(jí)所學(xué)過(guò)的整式的乘法運(yùn)算中的平方差公式,幫助他們順利地逆向運(yùn)用平方差公式。
活動(dòng)2:導(dǎo)入課題
P165的探究(略);
2. 看誰(shuí)想得快:993–99能被哪些數(shù)整除?你是怎么得出來(lái)的?
設(shè)計(jì)意圖:
引導(dǎo)學(xué)生把這個(gè)式子分解成幾個(gè)數(shù)的積的形式,繼續(xù)強(qiáng)化學(xué)生對(duì)因數(shù)分解的理解,為學(xué)生類(lèi)比因式分解提供必要的精神準(zhǔn)備。
活動(dòng)3:探究新知
看誰(shuí)算得準(zhǔn):
計(jì)算下列式子:
。1)3x(x-1)= ;
。2)(a+b+c)= ;
。3)(+4)(-4)= ;
。4)(-3)2= ;
。5)a(a+1)(a-1)= ;
根據(jù)上面的算式填空:
。1)a+b+c= ;
(2)3x2-3x= ;
。3)2-16= ;
。4)a3-a= ;
(5)2-6+9= 。
在第一組的整式乘法的計(jì)算上,學(xué)生通過(guò)對(duì)第一組式子的觀(guān)察得出第二組式子的結(jié)果,然后通過(guò)對(duì)這兩組式子的結(jié)果的比較,使學(xué)生對(duì)因式分解有一個(gè)初步的意識(shí),由整式乘法的逆運(yùn)算逐步過(guò)渡到因式分解,發(fā)展學(xué)生的逆向思維能力。
活動(dòng)4:歸納、得出新知
比較以下兩種運(yùn)算的聯(lián)系與區(qū)別:
a(a+1)(a-1)= a3-a
a3-a= a(a+1)(a-1)
在第三環(huán)節(jié)的運(yùn)算中還有其它類(lèi)似的例子嗎?除此之外,你還能找到類(lèi)似的例子嗎?
八年級(jí)數(shù)學(xué)上冊(cè)的教案10
、.教學(xué)任務(wù)分析
教學(xué)目標(biāo)
知識(shí)與技能 使學(xué)生理解正比例函數(shù)的概念,會(huì)用描點(diǎn)法畫(huà)正比例函數(shù)圖象,掌握正比例函數(shù)的性質(zhì).
過(guò)程與能力 培養(yǎng)學(xué)生數(shù)學(xué)建模的能力.
情感與態(tài)度 實(shí)例引入,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.
教學(xué)重點(diǎn) 探索正比例函數(shù)的性質(zhì).
教學(xué)難點(diǎn) 從實(shí)際問(wèn)題情境中建立正比例函數(shù)的數(shù)學(xué)模型.
、.教學(xué)過(guò)程設(shè)計(jì)
問(wèn)題及師生行為 設(shè)計(jì)意圖
一、創(chuàng)設(shè)問(wèn)題,激發(fā)興趣
【問(wèn)題1】將下列問(wèn)題中的變量用函數(shù)表示出來(lái):
(1)小明騎自行車(chē)去郊游,速度為4km/h,其行駛路程y隨時(shí)間x變化而變化;
(2)三角形的底為10cm,其面積y隨高x的變化而變化;
(3)筆記本的單價(jià)為3元,買(mǎi)筆記本所要的錢(qián)數(shù)y隨作業(yè)本數(shù)量x的變化而變化.
解:(1)y=4x;(2)y=5x;(3)y=3x.
教師提出問(wèn)題,學(xué)生獨(dú)立思考并回答問(wèn)題.
教師點(diǎn)評(píng),并且提醒學(xué)生注意用x表示y. 問(wèn)題引入,為新知作好鋪墊.
二、誘導(dǎo)參與,探究新知
思考:觀(guān)察函數(shù)關(guān)系式:
、 y=4x; ② y=5x; ③ y=3x.
這些函數(shù)有什么特點(diǎn)?
都是y等于一個(gè)常量與x的乘積.
教師提出問(wèn)題,并引導(dǎo)學(xué)生觀(guān)察:
學(xué)生觀(guān)察思考并回答問(wèn)題.
三、引導(dǎo)歸納,提煉新知
(板書(shū))正比例函數(shù)的概念:
一般地,形如y=kx(k是常數(shù),k≠0)的函數(shù),叫做正比例函數(shù),其中k叫做比例系數(shù).
注意:x 的取值范圍是全體實(shí)數(shù).
由教師引導(dǎo),學(xué)生觀(guān)察得出結(jié)論.體現(xiàn)學(xué)生為主體,教師為主導(dǎo)的關(guān)系.
通過(guò)板書(shū),突出本節(jié)課的重點(diǎn).
四、指導(dǎo)應(yīng)用,發(fā)展能力
1.下列函數(shù)是否是正比例函數(shù)?比例系數(shù)是多少?
(1) 是,比例系數(shù)k=8. (2) 不是.
(3) 是,比例系數(shù)k= . (4) 不是.
填空
1.若函數(shù)y=(2m2+8)xm2-8+(m+3)是正比例函數(shù),則m的值是___-3____.
題 1請(qǐng)學(xué)生口答, 題2學(xué)生獨(dú)立完成,并到黑板板書(shū),教師評(píng)價(jià)書(shū)寫(xiě)規(guī)范.
在本次活動(dòng)中,教師要關(guān)注:
學(xué)生能否準(zhǔn)確地理解正比例函數(shù)的定義,注意二次項(xiàng)系數(shù)不能為0.
五、探究新知
例1 畫(huà)出正比例函數(shù)y=x的圖象.
解:(1)列表:
x --- -2 -1 0 1 2 ---
y --- -2 -1 0 1 2 ---
畫(huà)出函數(shù)y=x的圖象.
(1)列表: (2)描點(diǎn): (3)連線(xiàn):
想一想
除了用描點(diǎn)法外,還有其他簡(jiǎn)單的方法畫(huà)正比例函數(shù)圖象嗎?
根據(jù)兩點(diǎn)確定一條直線(xiàn),我們可以經(jīng)過(guò)原點(diǎn)與點(diǎn)(1,k)畫(huà)直線(xiàn),即兩點(diǎn)法.
同理,畫(huà)出y=-x的`圖象.
師生共同分析:兩個(gè)圖象的共同點(diǎn):都是經(jīng)過(guò)原點(diǎn)的直線(xiàn).不同點(diǎn):函數(shù)y=x的圖象從左向右呈上升狀態(tài),即隨著x的增大y也增大,經(jīng)過(guò)第一、三象限.
函數(shù)y=-x的圖象從左向右呈下降狀態(tài),即隨x增大y反而減小,經(jīng)過(guò)第二、四象限.
歸納:一般地,正比例函數(shù)y=kx(k是常數(shù),k≠ 0)的圖象是一條經(jīng)過(guò)原點(diǎn)的直線(xiàn).
當(dāng)k>0時(shí),圖象經(jīng)過(guò)一、三象限,從左向右上升,即隨x的增大y也增大;
當(dāng)k<0時(shí),圖象經(jīng)過(guò)二、四象限,從左向右下降,即隨x增大y反而減小.
由于正比例函數(shù)y=kx(k是常數(shù),k≠0)的圖象是一條直線(xiàn),我們可以稱(chēng)它為直線(xiàn)y=kx.
六、指導(dǎo)應(yīng)用,發(fā)展能力
例2 在同一直角坐標(biāo)系中畫(huà)出y=x,y=2x,y=3x的函數(shù)圖象,并比較它們的異同點(diǎn).
相同點(diǎn):圖象經(jīng)過(guò)一、三象限,從左向右上升;
不同點(diǎn):傾斜度不同, y=x,y=2x,y=3x的函數(shù)圖象離y軸越來(lái)越近.
例3 在同一直角坐標(biāo)系中畫(huà)出y=-x,y=-2x,y=-3x的函數(shù)圖象,并比較它們的異同點(diǎn).
相同點(diǎn):圖象經(jīng)過(guò)二、四象限,從左向右下降;
不同點(diǎn):傾斜度不同, y=-x,y=-2x,y=-3x的函數(shù)圖象離y軸越來(lái)越近.
在y=kx中,k的絕對(duì)值越大,函數(shù)圖象越靠近y軸.
八年級(jí)數(shù)學(xué)上冊(cè)的教案11
[教學(xué)目標(biāo)]
知識(shí)與技能:
1.會(huì)用多邊形公式進(jìn)行計(jì)算。
2.理解多邊形外角和公式。
過(guò)程與方法:
經(jīng)歷探究多邊形內(nèi)角和計(jì)算方法的過(guò)程,培養(yǎng)學(xué)生的合作交流意識(shí)力.
情感態(tài)度與價(jià)值觀(guān):
讓學(xué)生在觀(guān)察、合作、討論、交流中感受數(shù)學(xué)轉(zhuǎn)化思想和實(shí)際應(yīng)用價(jià)值,同時(shí)培養(yǎng)學(xué)生善于發(fā)現(xiàn)、積極思考、合作學(xué)習(xí)、勇于創(chuàng)新的學(xué)習(xí)態(tài)度。
[教學(xué)重點(diǎn)、難點(diǎn)與關(guān)鍵]
教學(xué)重點(diǎn):多邊形的內(nèi)角和.的應(yīng)用.
教學(xué)難點(diǎn):探索多邊形的內(nèi)角和與外角和公式過(guò)程.
教學(xué)關(guān)鍵:應(yīng)用化歸的數(shù)學(xué)方法,把多邊形問(wèn)題轉(zhuǎn)化為三角形問(wèn)題來(lái)解決.
[教學(xué)方法]
本節(jié)課采用“探究與互動(dòng)”的教學(xué)方式,并配以真的情境來(lái)引題。
[教學(xué)過(guò)程:]
(一)探索多邊形的內(nèi)角和
活動(dòng)1:判斷下列圖形,從多邊形上任取一點(diǎn)c,作對(duì)角線(xiàn),判斷分成三角形的個(gè)數(shù)。
活動(dòng)2:①?gòu)亩噙呅蔚囊粋(gè)頂點(diǎn)出發(fā),可以引多少條對(duì)角線(xiàn)?他們將多邊形分成多少個(gè)三角形?②總結(jié)多邊形內(nèi)角和,你會(huì)得到什么樣的結(jié)論?
多邊形邊數(shù)分成三角形的個(gè)數(shù)圖形
內(nèi)角和計(jì)算規(guī)律
三角形31180°(3-2)·180°
四邊形4
五邊形5
六邊形6
七邊形7
。。。。。。
n邊形n
活動(dòng)3:把一個(gè)五邊形分成幾個(gè)三角形,還有其他的分法嗎?
總結(jié)多邊形的內(nèi)角和公式
一般的,從n邊形的一個(gè)頂點(diǎn)出發(fā)可以引____條對(duì)角線(xiàn),他們將n邊形分為_(kāi)___個(gè)三角形,n邊形的.內(nèi)角和等于180×______。
鞏固練習(xí):看誰(shuí)求得又快又準(zhǔn)!(搶答)
例1:已知四邊形ABCD,∠A+∠C=180°,求∠B+∠D=?
(點(diǎn)評(píng):四邊形的一組對(duì)角互補(bǔ),另一組對(duì)角也互補(bǔ)。)
(二)探索多邊形的外角和
活動(dòng)4:例2如圖,在五邊形的每個(gè)頂點(diǎn)處各取一個(gè)外角,這些外角的和叫做五邊形的外角和.五邊形的外角和等于多少?
分析:(1)任何一個(gè)外角同于他相鄰的內(nèi)角有什系?
(2)五邊形的五個(gè)外角加上與他們相鄰的內(nèi)角所得總和是多少?
(3)上述總和與五邊形的內(nèi)角和、外角和有什么關(guān)系?
解:五邊形的外角和=______________-五邊形的內(nèi)角和
活動(dòng)5:探究如果將例2中五邊形換成n邊(n≥3),可以得到同樣的結(jié)果嗎?
也可以理解為:從多邊形的一個(gè)頂點(diǎn)A點(diǎn)出發(fā),沿多邊形的各邊走過(guò)各點(diǎn)之后回到點(diǎn)A.最后再轉(zhuǎn)回出發(fā)時(shí)的方向。由于在這個(gè)運(yùn)動(dòng)過(guò)程中身體共轉(zhuǎn)動(dòng)了一周,也就是說(shuō)所轉(zhuǎn)的各個(gè)角的和等于一個(gè)______角。所以多邊形的外角和等于_________。
結(jié)論:多邊形的外角和=___________。
練習(xí)1:如果一個(gè)多邊形的每一個(gè)外角等于30°,則這個(gè)多邊形的邊數(shù)是_____。
練習(xí)2:正五邊形的每一個(gè)外角等于________,每一個(gè)內(nèi)角等于_______。
練習(xí)3.已知一個(gè)多邊形,它的內(nèi)角和等于外角和,它是幾邊形?
(三)小結(jié):本節(jié)課你有哪些收獲?
(四)作業(yè):
課本P84:習(xí)題7.3的2、6題
附知識(shí)拓展—平面鑲嵌
(五)隨堂練習(xí)(練一練)
1、n邊形的內(nèi)角和等于__________,九邊形的內(nèi)角和等于___________。
2、一個(gè)多邊形當(dāng)邊數(shù)增加1時(shí),它的內(nèi)角和增加()。
3、已知多邊形的每個(gè)內(nèi)角都等于150°,求這個(gè)多邊形的邊數(shù)?
4、一個(gè)多邊形從一個(gè)頂點(diǎn)可引對(duì)角線(xiàn)3條,這個(gè)多邊形內(nèi)角和等于()
A:360°B:540°C:720°D:900°
5.已知一個(gè)多邊形,它的內(nèi)角和等于外角和的2倍,求這個(gè)多邊形的邊數(shù)?
八年級(jí)數(shù)學(xué)上冊(cè)的教案12
學(xué)習(xí)目標(biāo):
1.了解方差的定義和計(jì)算公式。
2.理解方差概念的產(chǎn)生和形成的過(guò)程。
3.會(huì)用方差計(jì)算公式來(lái)比較兩組數(shù)據(jù)的波動(dòng)大小。
重點(diǎn)、難點(diǎn):
1.重點(diǎn):方差產(chǎn)生的必要性和應(yīng)用方差公式解決實(shí)際問(wèn)題。
2.難點(diǎn):理解方差公式
一.學(xué)前準(zhǔn)備:
問(wèn)題農(nóng)科院計(jì)劃為某地選擇合適的甜玉米種子.選擇種子時(shí),甜玉米的產(chǎn)量和產(chǎn)量的穩(wěn)定性是農(nóng)科院所關(guān)心的問(wèn)題.為了解甲、乙兩種甜玉米種子的相關(guān)情況,農(nóng)科院各用10塊自然條件相同的試驗(yàn)田進(jìn)行試驗(yàn),得到各試驗(yàn)田每公頃的產(chǎn)量(單位:t)如表所示。
甲7.65 7.50 7.62 7.59 7.65 7.64 7.50 7.40 7.41 7.41
乙7.55 7.56 7.53 7.44 7.49 7.52 7.58 7.46 7.53 7.49
根據(jù)這些數(shù)據(jù)估計(jì),農(nóng)科院應(yīng)該選擇哪種甜玉米種子呢?
來(lái)衡量這組數(shù)據(jù)的波動(dòng)大小,并把它叫做這組數(shù)據(jù)的方差(variance),記作。
意義:用來(lái)衡量一批數(shù)據(jù)的波動(dòng)大小。
在樣本容量相同的情況下,方差越大,說(shuō)明數(shù)據(jù)的波動(dòng)越大,越不穩(wěn)定。
二、歸納:
(1)研究離散程度可用
(2)方差應(yīng)用更廣泛衡量一組數(shù)據(jù)的波動(dòng)大小
(3)方差主要應(yīng)用在平均數(shù)相等或接近時(shí)
(4)方差大波動(dòng)大,方差小波動(dòng)小,一般選波動(dòng)小的
例題:在一次芭蕾舞比賽中,甲乙兩個(gè)芭蕾舞團(tuán)都表演了舞劇《天鵝湖》,參加表演的女演員的身高(單位:cm)分別是:
甲163 164 164 165 165 166 166 167
乙163 165 165 166 166 167 168 168
哪個(gè)芭蕾舞團(tuán)的女演員的身高比較整齊?
三.自我檢查:
1.已知一組數(shù)據(jù)為2、0、-1、3、-4,則這組數(shù)據(jù)的方差為。
2.甲、乙兩名學(xué)生在相同的`條件下各射靶10次,命中的環(huán)數(shù)如下:
甲:7、8、6、8、6、5、9、10、7、4
乙:9、5、7、8、7、6、8、6、7、7
經(jīng)過(guò)計(jì)算,兩人射擊環(huán)數(shù)的平均數(shù)相同,但S,所以確定去參加比賽。
3.甲、乙兩臺(tái)機(jī)床生產(chǎn)同種零件,10天出的次品分別是( )
甲:0、1、0、2、2、0、3、1、2、4
乙:2、3、1、2、0、2、1、1、2、1
分別計(jì)算出兩個(gè)樣本的平均數(shù)和方差,根據(jù)你的計(jì)算判斷哪臺(tái)機(jī)床的性能較好?
八年級(jí)數(shù)學(xué)上冊(cè)的教案13
一、教學(xué)目標(biāo)
1、理解分式的基本性質(zhì)。
2、會(huì)用分式的基本性質(zhì)將分式變形。
二、重點(diǎn)、難點(diǎn)
1、重點(diǎn):理解分式的基本性質(zhì)。
2、難點(diǎn):靈活應(yīng)用分式的基本性質(zhì)將分式變形。
3、認(rèn)知難點(diǎn)與突破方法
教學(xué)難點(diǎn)是靈活應(yīng)用分式的基本性質(zhì)將分式變形。突破的方法是通過(guò)復(fù)習(xí)分?jǐn)?shù)的通分、約分總結(jié)出分?jǐn)?shù)的基本性質(zhì),再用類(lèi)比的方法得出分式的基本性質(zhì)。應(yīng)用分式的基本性質(zhì)導(dǎo)出通分、約分的概念,使學(xué)生在理解的基礎(chǔ)上靈活地將分式變形。
三、練習(xí)題的意圖分析
1.P7的例2是使學(xué)生觀(guān)察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應(yīng)用分式的基本性質(zhì),相應(yīng)地把分子(或分母)乘以或除以了這個(gè)整式,填到括號(hào)里作為答案,使分式的值不變。
2.P9的例3、例4地目的是進(jìn)一步運(yùn)用分式的基本性質(zhì)進(jìn)行約分、通分。值得注意的是:約分是要找準(zhǔn)分子和分母的公因式,最后的結(jié)果要是最簡(jiǎn)分式;通分是要正確地確定各個(gè)分母的最簡(jiǎn)公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡(jiǎn)公分母。
教師要講清方法,還要及時(shí)地糾正學(xué)生做題時(shí)出現(xiàn)的錯(cuò)誤,使學(xué)生在做提示加深對(duì)相應(yīng)概念及方法的理解。
3.P11習(xí)題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號(hào)。這一類(lèi)題教材里沒(méi)有例題,但它也是由分式的基本性質(zhì)得出分子、分母和分式本身的符號(hào),改變其中任何兩個(gè),分式的值不變。
“不改變分式的值,使分式的分子和分母都不含‘-’號(hào)”是分式的基本性質(zhì)的`應(yīng)用之一,所以補(bǔ)充例5。
四、課堂引入
1、請(qǐng)同學(xué)們考慮:與相等嗎?與相等嗎?為什么?
2、說(shuō)出與之間變形的過(guò)程,與之間變形的過(guò)程,并說(shuō)出變形依據(jù)?
3、提問(wèn)分?jǐn)?shù)的基本性質(zhì),讓學(xué)生類(lèi)比猜想出分式的基本性質(zhì)。
五、例題講解
P7例2.填空:
[分析]應(yīng)用分式的基本性質(zhì)把已知的分子、分母同乘以或除以同一個(gè)整式,使分式的值不變。
P11例3.約分:
[分析]約分是應(yīng)用分式的基本性質(zhì)把分式的分子、分母同除以同一個(gè)整式,使分式的值不變。所以要找準(zhǔn)分子和分母的公因式,約分的結(jié)果要是最簡(jiǎn)分式。
P11例4.通分:
[分析]通分要想確定各分式的公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡(jiǎn)公分母。
八年級(jí)數(shù)學(xué)上冊(cè)的教案14
一.教學(xué)目標(biāo):
1.了解方差的定義和計(jì)算公式。
2.理解方差概念的產(chǎn)生和形成的過(guò)程。
3.會(huì)用方差計(jì)算公式來(lái)比較兩組數(shù)據(jù)的波動(dòng)大小。
二.重點(diǎn)、難點(diǎn)和難點(diǎn)的突破方法:
1.重點(diǎn):方差產(chǎn)生的必要性和應(yīng)用方差公式解決實(shí)際問(wèn)題。
2.難點(diǎn):理解方差公式
3.難點(diǎn)的突破方法:
方差公式:S = [( - ) +( - ) +…+( - )]比較復(fù)雜,學(xué)生理解和記憶這個(gè)公式都會(huì)有一定困難,以致應(yīng)用時(shí)常常出現(xiàn)計(jì)算的錯(cuò)誤,為突破這一難點(diǎn),我安排了幾個(gè)環(huán)節(jié),將難點(diǎn)化解。
(1)首先應(yīng)使學(xué)生知道為什么要學(xué)習(xí)方差和方差公式,目的不明確學(xué)生很難對(duì)本節(jié)課內(nèi)容產(chǎn)生興趣和求知欲望。教師在授課過(guò)程中可以多舉幾個(gè)生活中的小例子,不如選擇儀仗隊(duì)隊(duì)員、選擇運(yùn)動(dòng)員、選擇質(zhì)量穩(wěn)定的電器等。學(xué)生從中可以體會(huì)到生活中為了更好的做出選擇判斷經(jīng)常要去了解一組數(shù)據(jù)的波動(dòng)程度,僅僅知道平均數(shù)是不夠的。
(2)波動(dòng)性可以通過(guò)什么方式表現(xiàn)出來(lái)?第一環(huán)節(jié)中點(diǎn)明了為什么去了解數(shù)據(jù)的波動(dòng)性,第二環(huán)節(jié)則主要使學(xué)生知道描述數(shù)據(jù),波動(dòng)性的方法?梢援(huà)折線(xiàn)圖方法來(lái)反映這種波動(dòng)大小,可是當(dāng)波動(dòng)大小區(qū)別不大時(shí),僅用畫(huà)折線(xiàn)圖方法去描述恐怕不會(huì)準(zhǔn)確,這自然希望可以出現(xiàn)一種數(shù)量來(lái)描述數(shù)據(jù)波動(dòng)大小,這就引出方差產(chǎn)生的必要性。
(3)第三環(huán)節(jié)教師可以直接對(duì)方差公式作分析和解釋?zhuān)▌?dòng)大小指的是與平均數(shù)之間差異,那么用每個(gè)數(shù)據(jù)與平均值的差完全平方后便可以反映出每個(gè)數(shù)據(jù)的波動(dòng)大小,整體的波動(dòng)大小可以通過(guò)對(duì)每個(gè)數(shù)據(jù)的波動(dòng)大小求平均值得到。所以方差公式是能夠反映一組數(shù)據(jù)的波動(dòng)大小的一個(gè)統(tǒng)計(jì)量,教師也可以根據(jù)學(xué)生程度和課堂時(shí)間決定是否介紹平均差等可以反映數(shù)據(jù)波動(dòng)大小的其他統(tǒng)計(jì)量。
三.例習(xí)題的意圖分析:
1.教材P125的討論問(wèn)題的意圖:
(1).創(chuàng)設(shè)問(wèn)題情境,引起學(xué)生的學(xué)習(xí)興趣和好奇心。
(2).為引入方差概念和方差計(jì)算公式作鋪墊。
(3).介紹了一種比較直觀(guān)的衡量數(shù)據(jù)波動(dòng)大小的方法——畫(huà)折線(xiàn)法。
(4).客觀(guān)上反映了在解決某些實(shí)際問(wèn)題時(shí),求平均數(shù)或求極差等方法的局限性,使學(xué)生體會(huì)到學(xué)習(xí)方差的意義和目的。
2.教材P154例1的設(shè)計(jì)意圖:
(1).例1放在方差計(jì)算公式和利用方差衡量數(shù)據(jù)波動(dòng)大小的規(guī)律之后,不言而喻其主要目的是及時(shí)復(fù)習(xí),鞏固對(duì)方差公式的掌握。
(2).例1的解題步驟也為學(xué)生做了一個(gè)示范,學(xué)生以后可以模仿例1的格式解決其他類(lèi)似的實(shí)際問(wèn)題。
四.課堂引入:
除采用教材中的引例外,可以選擇一些更時(shí)代氣息、更有現(xiàn)實(shí)意義的引例。例如,通過(guò)學(xué)生觀(guān)看2004年奧運(yùn)會(huì)劉翔勇奪110米欄冠軍的'錄像,進(jìn)而引導(dǎo)教練員根據(jù)平時(shí)比賽成績(jī)選擇參賽隊(duì)員這樣的實(shí)際問(wèn)題上,這樣引入自然而又真實(shí),學(xué)生也更感興趣一些。
五.例題的分析:
教材P154例1在分析過(guò)程中應(yīng)抓住以下幾點(diǎn):
1.題目中“整齊”的含義是什么?說(shuō)明在這個(gè)問(wèn)題中要研究一組數(shù)據(jù)的什么?學(xué)生通過(guò)思考可以回答出整齊即波動(dòng)小,所以要研究?jī)山M數(shù)據(jù)波動(dòng)大小,這一環(huán)節(jié)是明確題意。
2.在求方差之前先要求哪個(gè)統(tǒng)計(jì)量,為什么?學(xué)生也可以得出先求平均數(shù),因?yàn)楣街行枰骄,這個(gè)問(wèn)題可以使學(xué)生明確利用方差計(jì)算步驟。
3.方差怎樣去體現(xiàn)波動(dòng)大小?
這一問(wèn)題的提出主要復(fù)習(xí)鞏固方差,反映數(shù)據(jù)波動(dòng)大小的規(guī)律。
六.隨堂練習(xí):
1.從甲、乙兩種農(nóng)作物中各抽取1株苗,分別測(cè)得它的苗高如下:(單位:cm)
甲:9、10、11、12、7、13、10、8、12、8;
乙:8、13、12、11、10、12、7、7、9、11;
問(wèn):(1)哪種農(nóng)作物的苗長(zhǎng)的比較高?
(2)哪種農(nóng)作物的苗長(zhǎng)得比較整齊?
2.段巍和金志強(qiáng)兩人參加體育項(xiàng)目訓(xùn)練,近期的5次測(cè)試成績(jī)?nèi)缦卤硭,誰(shuí)的成績(jī)比較穩(wěn)定?為什么?
測(cè)試次數(shù)1 2 3 4 5
段巍13 14 13 12 13
金志強(qiáng)10 13 16 14 12
參考答案:1.(1)甲、乙兩種農(nóng)作物的苗平均高度相同;(2)甲整齊
2.段巍的成績(jī)比金志強(qiáng)的成績(jī)要穩(wěn)定。
七.課后練習(xí):
1.已知一組數(shù)據(jù)為2、0、-1、3、-4,則這組數(shù)據(jù)的方差為。
2.甲、乙兩名學(xué)生在相同的條件下各射靶10次,命中的環(huán)數(shù)如下:
甲:7、8、6、8、6、5、9、10、7、4
乙:9、5、7、8、7、6、8、6、7、7
經(jīng)過(guò)計(jì)算,兩人射擊環(huán)數(shù)的平均數(shù)相同,但S S,所以確定去參加比賽。
3.甲、乙兩臺(tái)機(jī)床生產(chǎn)同種零件,10天出的次品分別是( )
甲:0、1、0、2、2、0、3、1、2、4
乙:2、3、1、2、0、2、1、1、2、1
分別計(jì)算出兩個(gè)樣本的平均數(shù)和方差,根據(jù)你的計(jì)算判斷哪臺(tái)機(jī)床的性能較好?
4.小爽和小兵在10次百米跑步練習(xí)中成績(jī)?nèi)绫硭荆?單位:秒)
小爽10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9
小兵10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8
如果根據(jù)這幾次成績(jī)選拔一人參加比賽,你會(huì)選誰(shuí)呢?
答案:1. 6 2. >、乙;3. =1.5、S =0.975、 =1. 5、S =0.425,乙機(jī)床性能好
4. =10.9、S =0.02;
=10.9、S =0.008
選擇小兵參加比賽。
八年級(jí)數(shù)學(xué)上冊(cè)的教案15
教學(xué)內(nèi)容
本節(jié)課主要介紹全等三角形的概念和性質(zhì).
教學(xué)目標(biāo)
1.知識(shí)與技能
領(lǐng)會(huì)全等三角形對(duì)應(yīng)邊和對(duì)應(yīng)角相等的有關(guān)概念.
2.過(guò)程與方法
經(jīng)歷探索全等三角形性質(zhì)的過(guò)程,能在全等三角形中正確找出對(duì)應(yīng)邊、對(duì)應(yīng)角.
3.情感、態(tài)度與價(jià)值觀(guān)
培養(yǎng)觀(guān)察、操作、分析能力,體會(huì)全等三角形的應(yīng)用價(jià)值.
重、難點(diǎn)與關(guān)鍵
1.重點(diǎn):會(huì)確定全等三角形的對(duì)應(yīng)元素.
2.難點(diǎn):掌握找對(duì)應(yīng)邊、對(duì)應(yīng)角的方法.
3.關(guān)鍵:找對(duì)應(yīng)邊、對(duì)應(yīng)角有下面兩種方法:(1)全等三角形對(duì)應(yīng)角所對(duì)的.邊是對(duì)應(yīng)邊,兩個(gè)對(duì)應(yīng)角所夾的邊是對(duì)應(yīng)邊;(2)對(duì)應(yīng)邊所對(duì)的角是對(duì)應(yīng)角,?兩條對(duì)應(yīng)邊所夾的角是對(duì)應(yīng)角.教具準(zhǔn)備
四張大小一樣的紙片、直尺、剪刀.
教學(xué)方法
采用“直觀(guān)──感悟”的教學(xué)方法,讓學(xué)生自己舉出形狀、大小相同的實(shí)例,加深認(rèn)識(shí).教學(xué)過(guò)程
一、動(dòng)手操作,導(dǎo)入課題
1.先在其中一張紙上畫(huà)出任意一個(gè)多邊形,再用剪刀剪下,?思考得到的圖形有何特點(diǎn)?
2.重新在一張紙板上畫(huà)出任意一個(gè)三角形,再用剪刀剪下,?思考得到的圖形有何特點(diǎn)?
【學(xué)生活動(dòng)】動(dòng)手操作、用腦思考、與同伴討論,得出結(jié)論.
【教師活動(dòng)】指導(dǎo)學(xué)生用剪刀剪出重疊的兩個(gè)多邊形和三角形.
學(xué)生在操作過(guò)程中,教師要讓學(xué)生事先在紙上畫(huà)出三角形,然后固定重疊的兩張紙,注意整個(gè)過(guò)程要細(xì)心.
【互動(dòng)交流】剪出的多邊形和三角形,可以看出:形狀、大小相同,能夠完全重合.這樣的兩個(gè)圖形叫做全等形,用“≌”表示.
概念:能夠完全重合的兩個(gè)三角形叫做全等三角形.
【教師活動(dòng)】在紙版上任意剪下一個(gè)三角形,要求學(xué)生手拿一個(gè)三角形,做如下運(yùn)動(dòng):平移、翻折、旋轉(zhuǎn),觀(guān)察其運(yùn)動(dòng)前后的三角形會(huì)全等嗎?
【學(xué)生活動(dòng)】動(dòng)手操作,實(shí)踐感知,得出結(jié)論:兩個(gè)三角形全等.
【教師活動(dòng)】要求學(xué)生用字母表示出每個(gè)剪下的三角形,同時(shí)互相指出每個(gè)三角形的頂點(diǎn)、三個(gè)角、三條邊、每條邊的邊角、每個(gè)角的對(duì)邊.
【學(xué)生活動(dòng)】把兩個(gè)三角形按上述要求標(biāo)上字母,并任意放置,與同桌交流:(1)何時(shí)能完全重在一起?(2)此時(shí)它們的頂點(diǎn)、邊、角有何特點(diǎn)?
【交流討論】通過(guò)同桌交流,實(shí)驗(yàn)得出下面結(jié)論:
1.任意放置時(shí),并不一定完全重合,?只有當(dāng)把相同的角旋轉(zhuǎn)到一起時(shí)才能完全重合.
2.這時(shí)它們的三個(gè)頂點(diǎn)、三條邊和三個(gè)內(nèi)角分別重合了.
3.完全重合說(shuō)明三條邊對(duì)應(yīng)相等,三個(gè)內(nèi)角對(duì)應(yīng)相等,?對(duì)應(yīng)頂點(diǎn)在相對(duì)應(yīng)的位置.
【八年級(jí)數(shù)學(xué)上冊(cè)的教案】相關(guān)文章:
八年級(jí)上冊(cè)人教版數(shù)學(xué)教案02-27
八年級(jí)上冊(cè)數(shù)學(xué)教案11-09
八年級(jí)上冊(cè)數(shù)學(xué)教案12-11
八年級(jí)數(shù)學(xué)上冊(cè)教案06-08
八年級(jí)數(shù)學(xué)上冊(cè)的教案07-10
數(shù)學(xué)上冊(cè)教案01-15
[推薦]八年級(jí)上冊(cè)數(shù)學(xué)教案05-23
[精華]八年級(jí)上冊(cè)數(shù)學(xué)教案06-08