初二數(shù)學(xué)教案[大全15篇]
作為一名人民教師,總歸要編寫教案,教案是教學(xué)藍圖,可以有效提高教學(xué)效率。那么大家知道正規(guī)的教案是怎么寫的嗎?下面是小編幫大家整理的初二數(shù)學(xué)教案,僅供參考,希望能夠幫助到大家。
初二數(shù)學(xué)教案1
教學(xué)目標
1.知道梯形、等腰梯形、直角梯形的有關(guān)概念;能說出并證明等腰梯形的兩個性質(zhì);等腰梯形同一底上的兩個角相等;兩條對角線相等。
2.會運用梯形的有關(guān)概念和性質(zhì)進行有關(guān)問題的論證和計算。
3.通過添加輔助線,把梯形的問題轉(zhuǎn)化成平行四邊形或三角形問題,使學(xué)生體會圖形變換的方法和轉(zhuǎn)化的思想。
教學(xué)模式問題解決教學(xué)
教學(xué)過程
想一想:
什么樣的四邊形是平行四邊形?平行四邊形有哪些性質(zhì)?學(xué)生回答后,教師板書以下關(guān)系圖中的有關(guān)部分:
畫一畫:
畫一個梯形,并指出梯形的上、下底,畫出梯形的高。
問題教學(xué)
問題1:根據(jù)剛才的畫圖,請給梯形下一個定義,并說說梯形與平行四邊形的區(qū)別和聯(lián)系。(說明與建議:(l)讓學(xué)生自己給梯形下定義,有助于訓(xùn)練學(xué)生觀察、概括和語言表述的能力。如果學(xué)生定義時,遺漏了"另一組對邊不平行"教師可舉及例(2)對梯形的定義,還可以讓學(xué)生討論以下問題:一組對邊平行且這組對邊不相等的四邊形是梯形嗎?為什么?教師可用反證法的思想說理。然后,板書完成"想一想"中的關(guān)系圖,并結(jié)合圖表指出:梯形和平行四邊形的區(qū)別和聯(lián)系。(3)梯形的高是指夾在兩底間的公垂線段,在計算面積時高即為上下兩底(平行線)間的距離,也就是夾在兩底間的公垂線段的長度。畫高時可以從上底任一點向下底作垂線段,一般常從上底的兩端向下底作垂線段可方便地構(gòu)造直角三角形,便于計算。)
問題2:如圖4.9-1,在(1)中:四邊形ABCD的AD∥BC,ABCD,且CD⊥BC;在(2)中,四邊形ABCD的AD∥BC,ABCD,且AB=CD。請你給這兩種四邊形命名。(說明與建議:學(xué)生說出圖(l)的四邊形是直角梯形,圖(2)是等腰梯形,通常不會有困難;教師應(yīng)進一步引導(dǎo)學(xué)生討論,在圖(1)中CD⊥BC,那么CD⊥AD嗎?(CD⊥AD,且指出:CD就是直角梯形的高)當CD⊥BC時,另一腰AB可以垂直BC嗎?為什么?(若AB⊥BC,那么四邊形ABCD就成為矩形了,不再是梯形。)在圖(2)中,上底AD與下底BC能相等嗎?(不能,否則四邊形ABCD成為平行四邊形,不再是梯形。)
練一練:課本例1后練習(xí)第l、2題。
問題3:觀察圖4.9-2中的等腰梯形ABCD,猜想它還可能具有哪些特殊性質(zhì)。并能證明你的`猜想嗎?
說明與建議:(l)教師要用微笑、點頭、贊嘆、激勵的表情和話語來鼓勵學(xué)生大膽猜想。(2)學(xué)生可能提出以下猜想:∠B=∠C,∠A=∠D,∠A+∠B=,∠C+∠D=,是軸對稱圖形等等。教師要引導(dǎo)學(xué)生關(guān)注等腰梯形特有的性質(zhì)---等腰梯形的底角相等。(3)如何證明這個猜想,可讓學(xué)生自己思考、探索、交流,教師給以引導(dǎo),鼓勵證明多樣化,如課本第174頁的證法。教師可提醒學(xué)生證明過程中用到了"夾在平行線間的平行線段相等"這一性質(zhì)。并指出:這種證法的實質(zhì)是把一腰平移,從而構(gòu)造出等腰三角形;對于如圖4.9-2(作AE⊥BC,DF⊥BC)所示的證法,教師可指出:通過作梯形的兩條高,可以構(gòu)造出兩個全等的直三角形等。
問題4:如何證明等腰梯形是軸對稱圖形呢?(說明與建議:可讓學(xué)生用折紙的方法,確認等腰梯形是軸對稱圖形;教學(xué)中,還可引導(dǎo)學(xué)生借助等腰三角形的軸對稱性加以證明,如圖4.9-3,延長等腰梯形兩腰BA、CD相交于點E,易證△AED和△EBC都是等腰三角形。EF⊥BC,則EF⊥AD,EF所在的直線是兩個等腰三角形EAD、EBC的對稱軸。由軸對稱圖形可知,也是等腰梯形ABCD的對稱軸。因此,等腰梯形是軸對稱圖形,有一條對稱軸,是過兩底中點的直線。)
例題解析(課本例1)說明:本例的結(jié)論,為學(xué)生在討論"問題3"時已提及,則可由學(xué)生自已完成證明,并概括成為一個文字命題。如學(xué)生討論問題3時未提及,則可由教師引導(dǎo)學(xué)生猜想,然后再完成證明。
課堂練習(xí)1.課本例1后練習(xí)第3題。2.如圖4.9-4,已知等腰梯形ABCD的腰長為5cm,上、下底長分別是6cm和12cm,求梯形的面積。(方法一,過點C作CE∥AD,再作等腰三角形BCE的高CF,可知CF=4cm。然后用梯形面積公式求解;方法二,過點C和D分別作高CF、DG,可知,從而在Rt△AGD中求出高DG=4cm。)
初二數(shù)學(xué)教案2
初二上冊數(shù)學(xué)知識點總結(jié):等腰三角形
一、等腰三角形的性質(zhì):
1、等腰三角形兩腰相等.
2、等腰三角形兩底角相等(等邊對等角)。
3、等腰三角形的頂角角平分線、底邊上的中線,底邊上的高相互重合.
4、等腰三角形是軸對稱圖形,對稱軸是三線合一(1條)。
5、等邊三角形的性質(zhì):
、俚冗吶切稳叾枷嗟.
、诘冗吶切稳齻內(nèi)角都相等,都等于60°
、鄣冗吶切蚊織l邊上都存在三線合一.
、艿冗吶切问禽S對稱圖形,對稱軸是三線合一(3條).
6.基本判定:
、诺妊切蔚呐卸ǎ
、儆袃蓷l邊相等的三角形是等腰三角形.
②如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊).
、频冗吶切蔚'判定:
①三條邊都相等的三角形是等邊三角形.
、谌齻角都相等的三角形是等邊三角形.
、塾幸粋角是60°的等腰三角形是等邊三角形.
初二數(shù)學(xué)教案3
教學(xué)目標:
知識與技能
1、掌握直角三角形的判別條件,并能進行簡單應(yīng)用;
2、進一步發(fā)展數(shù)感,增加對勾股數(shù)的直觀體驗,培養(yǎng)從實際問題抽象出數(shù)學(xué)問題的能力,建立數(shù)學(xué)模型、
3、會通過邊長判斷一個三角形是否是直角三角形,并會辨析哪些問題應(yīng)用哪個結(jié)論、
情感態(tài)度與價值觀
敢于面對數(shù)學(xué)學(xué)習(xí)中的困難,并有獨立克服困難和運用知識解決問題的成功經(jīng)驗,進一步體會數(shù)學(xué)的應(yīng)用價值,發(fā)展運用數(shù)學(xué)的信心和能力,初步形成積極參與數(shù)學(xué)活動的意識、
教學(xué)重點
運用身邊熟悉的事物,從多種角度發(fā)展數(shù)感,會通過邊長判斷一個三角形是否是直角三角形,并會辨析哪些問題應(yīng)用哪個結(jié)論、
教學(xué)難點
會辨析哪些問題應(yīng)用哪個結(jié)論、
課前準備
標有單位長度的細繩、三角板、量角器、題篇
教學(xué)過程:
復(fù)習(xí)引入:
請學(xué)生復(fù)述勾股定理;使用勾股定理的前提條件是什么?
已知△ABC的兩邊AB=5,AC=12,則BC=13對嗎?
創(chuàng)設(shè)問題情景:由課前準備好的一組學(xué)生以小品的.形式演示教材第9頁古埃及造直角的方法、
這樣做得到的是一個直角三角形嗎?
提出課題:能得到直角三角形嗎
講授新課:
1、如何來判斷?(用直角三角板檢驗)
這個三角形的三邊分別是多少?(一份視為1)它們之間存在著怎樣的關(guān)系?
就是說,如果三角形的三邊為 , , ,請猜想在什么條件下,以這三邊組成的三角形是直角三角形?(當滿足較小兩邊的平方和等于較大邊的平方時)
2、繼續(xù)嘗試:下面的三組數(shù)分別是一個三角形的三邊長a,b,c:
5,12,13; 6, 8, 10; 8,15,17、
。1)這三組數(shù)都滿足a2 +b2=c2嗎?
。2)分別以每組數(shù)為三邊長作出三角形,用量角器量一量,它們都是直角三角形嗎?
3、直角三角形判定定理:如果三角形的三邊長a,b,c滿足a2 +b2=c2 ,那么這個三角形是直角三角形、
滿足a2 +b2=c2的三個正整數(shù),稱為勾股數(shù)、
4、例1 一個零件的形狀如左圖所示,按規(guī)定這個零件中 ∠A和∠DBC都應(yīng)為直角、工人師傅量得這個零件各邊尺寸如右圖所示,這個零件符合要求嗎?
隨堂練習(xí):
1、下列幾組數(shù)能否作為直角三角形的三邊長?說說你的理由、
、9,12,15; ⑵15,36,39;
、12,35,36; ⑷12,18,22、
2、已知ABC中BC=41, AC=40, AB=9, 則此三角形為_______三角形, ______是角、
3、四邊形ABCD中已知AB=3,BC=4,CD=12,DA=13,且∠ABC=900,求這個四邊形的面積、
4、習(xí)題1、3
課堂小結(jié):
1、直角三角形判定定理:如果三角形的三邊長a,b,c滿足a2 +b2=c2 ,那么這個三角形是直角三角形、
2、滿足a2 +b2=c2的三個正整數(shù),稱為勾股數(shù)、勾股數(shù)擴大相同倍數(shù)后,仍為勾股數(shù)、
初二數(shù)學(xué)教案4
教學(xué)目標:
1、了解什么是比例,能夠正確地表示比例關(guān)系。
2、掌握比例的性質(zhì),能夠靈活地運用比例的性質(zhì)進行解題。
3、通過練習(xí),提高解決實際問題的能力。
教學(xué)重點:
1、比例的'概念及表示方法。
2、比例的性質(zhì)。
3、比例的應(yīng)用。
教學(xué)難點:
1、比例的應(yīng)用。
2、解決實際問題的能力。
教學(xué)過程:
一、引入(5分鐘)
1、教師出示一張比例圖,讓學(xué)生猜測比例的含義。
2、學(xué)生回答后,教師講解比例的概念及表示方法。
二、講解(15分鐘)
1、教師講解比例的性質(zhì)。
2、教師通過例題讓學(xué)生掌握比例的應(yīng)用。
三、練習(xí)(30分鐘)
1、教師出示一些比例題目,讓學(xué)生在課堂上完成。
2、學(xué)生完成后,教師講解答案及解題方法。
四、鞏固(10分鐘)
1、教師出示一些實際問題,讓學(xué)生運用比例的知識進行解決。
2、學(xué)生完成后,教師講解答案及解題方法。
五、作業(yè)(5分鐘)
1、教師布置相關(guān)作業(yè)。
2、學(xué)生完成后,交給教師批改。
教學(xué)反思:
通過本節(jié)課的教學(xué),學(xué)生們對比例的概念及表示方法有了更深入的了解,掌握了比例的性質(zhì),并通過練習(xí)提高了解決實際問題的能力。但是,教學(xué)過程中還存在一些問題,比如有些學(xué)生對比例的應(yīng)用還不夠熟練,需要加強練習(xí)。因此,下一節(jié)課需要針對這些問題進行更加深入的講解和練習(xí)。
初二數(shù)學(xué)教案5
1、教材分析
(1)知識結(jié)構(gòu):
(2)重點和難點分析:
重點:四邊形的有關(guān)概念及內(nèi)角和定理。因為四邊形的有關(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識,對后繼知識的學(xué)習(xí)起著重要的作用。
難點:四邊形的概念及四邊形不穩(wěn)定性的理解和應(yīng)用。在前面講解三角形的概念時,因為三角形的三個頂點確定一個平面,所以三個頂點總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個頂點有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上在同一平面內(nèi)這個條件,這幾個字的意思學(xué)生不好理解,所以是難點。
2、教法建議
。1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個課件,使學(xué)生認識到這些四邊形都是常見圖形,研究它們具有實際應(yīng)用意義,從而激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
。2)本節(jié)的教學(xué),要以三角形為基礎(chǔ),可以仿照三角形,通過類比的方法建立四邊形的有關(guān)概念,如四邊形的邊、頂點、內(nèi)角、外角、內(nèi)角和、外角和、周長等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對比著指給學(xué)生看,讓學(xué)生明確這些概念。
。3)因為在三角形中沒有對角線,所以四邊形的對角線是一個新概念,它是解決四邊形問題時常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形問題來解決。結(jié)合圖形,讓學(xué)生自己動手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個三角形?兩條對角線呢?使學(xué)生加深對對角線的作用的認識。
。4)本節(jié)用到的數(shù)學(xué)思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識時要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對這兩種數(shù)學(xué)思想方法進行總結(jié),使學(xué)生明白碰到復(fù)雜的、未知的問題要轉(zhuǎn)化為簡單的、已知的問題。
一、素質(zhì)教育目標
。ㄒ唬┲R教學(xué)點
1、使學(xué)生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和外角和定理。
2、了解四邊形的不穩(wěn)定性及它在實際生產(chǎn),生活中的應(yīng)用。
。ǘ┠芰τ(xùn)練點
1、通過引導(dǎo)學(xué)生觀察氣象站的實例,培養(yǎng)學(xué)生從具體事物中抽象出幾何圖形的能力。
2、通過推導(dǎo)四邊形內(nèi)角和定理,對學(xué)生滲透化歸思想。
3、會根據(jù)比較簡單的條件畫出指定的四邊形。
4、講解四邊形外角概念和外角定理時,聯(lián)系三角形的有關(guān)概念對學(xué)生滲透類比思想。
(三)德育滲透點
使學(xué)生認識到這些四邊形都是常見的,研究他們都有實際應(yīng)用意義,從而激發(fā)學(xué)生學(xué)習(xí)新知識的興趣。
(四)美育滲透點
通過四邊形內(nèi)角和定理數(shù)學(xué),滲透統(tǒng)一美,應(yīng)用美。
二、學(xué)法引導(dǎo)
類比、觀察、引導(dǎo)、講解
三、重點難點疑點及解決辦法
1、教學(xué)重點:四邊形及其有關(guān)概念;熟練推導(dǎo)四邊形外角和這一結(jié)論,并用此結(jié)論解決與四邊形內(nèi)外角有關(guān)計算問題。
2、教學(xué)難點:理解四邊形的有關(guān)概念中的一些細節(jié)問題;四邊形不穩(wěn)定性的理解和應(yīng)用。
3、疑點及解決辦法:四邊形的定義中為什么要有在平面內(nèi),而三角形的定義中就沒有呢?根據(jù)指定條件畫四邊形,關(guān)鍵是要分析好作圖的順序,一般先作一個角。
四、課時安排
2課時
五、教具學(xué)具準備
投影儀、膠片、四邊形模型、常用畫圖工具
六、師生互動活動設(shè)計
教師引入新課,學(xué)生觀察圖形,類比三角形知識導(dǎo)出四邊形有關(guān)概念;師生共同推導(dǎo)四邊形內(nèi)角和的定理,學(xué)生鞏固內(nèi)角和定理和應(yīng)用;共同分析探索外角和定理,學(xué)生閱讀相關(guān)材料。
第一課時
七、教學(xué)步驟
【復(fù)習(xí)引入】
在小學(xué)里已經(jīng)對四邊形、長方形、平形四邊形的有關(guān)知識有所了解,但還很膚淺,這一
章我們將比較系統(tǒng)地學(xué)習(xí)各種四邊形的性質(zhì)和判定分析它們之間的關(guān)系,并運用有關(guān)四邊形的知識解決一些新問題。
【引入新課】
用投影儀打出課前畫好的教材中P119的圖。
師問:在上圖中你能把知道的長方形、正方形、平行四邊形、梯形找出來嗎?(啟發(fā)學(xué)生找上述圖形,最后教師用彩色筆勾出幾個圖形)。
【講解新課】
1、四邊形的有關(guān)概念
結(jié)合圖形講解四邊形,四邊形的邊、頂點、角,凸四邊形,四邊形的'對角線(同時學(xué)生在書上畫出上述概念),講解這些概念時:
。1)要結(jié)合圖形。
。2)要與三角形類比。
。3)講清定義中的關(guān)鍵詞語。如四邊形定義中要說明為什么加上同一平面內(nèi)而三角形的定義中為什么不加同一平面內(nèi)(三角形的三個頂點一定在同一平面內(nèi),而四個點有可能不在同一平面內(nèi),如圖42中的點。我們現(xiàn)在只研究平面圖形,故在定義中加上在同一平面內(nèi)的限制)。
。4)強調(diào)四邊形對角線的作用,作為四邊形的一種常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形來解(滲透化歸思想),并觀察圖4—3用對角線分成的這些三角形與原四邊形的關(guān)系。
。5)強調(diào)四邊形的表示方法,一定要按頂點順序書寫四邊形如圖41。
。6)在判斷一個四邊形是不是凸四邊形時,一定要按照定義的要求把每一邊都延長后再下結(jié)論如圖4—4,圖4—5。
2、四邊形內(nèi)角和定理
教師問:
。1)在圖4—3中對角線AC把四邊形ABCD分成幾個三角形?
。2)在圖4—6中兩條對角線AC和BD把四邊形分成幾個三角形?
。3)若在四邊形ABCD如圖4—7內(nèi)任取一點O,從O向四個頂點作連線,把四邊形分成幾個三角形。
我們知道,三角形內(nèi)角和等于180,那么四邊形的內(nèi)角和就等于:
、2180=360如圖4
、4180—360=360如圖4—7。
例1已知:如圖48,直線于B、于C。
求證:(1)(2)。
本例題是四邊形內(nèi)角和定理的應(yīng)用,實際上它證明了兩邊相互垂直的兩個角相等或互補的關(guān)系,何時用相等,何時用互補,如果需要應(yīng)用,作兩三步推理就可以證出。
【總結(jié)、擴展】
1、四邊形的有關(guān)概念。
2、四邊形對角線的作用。
3、四邊形內(nèi)角和定理。
八、布置作業(yè)
教材P128中1(1)、2、 3。
九、板書設(shè)計
初二數(shù)學(xué)教案6
一、教材分析:
勾股定理是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進行學(xué)習(xí)的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形中的計算問題,是解直角三角形的主要根據(jù)之一,在實際生活中用途很大。
教材在編寫時注意培養(yǎng)學(xué)生的動手操作能力和分析問題的能力,通過實際分析、拼圖等活動,使學(xué)生獲得較為直觀的印象;通過聯(lián)系和比較,理解勾股定理,以利于正確的進行運用。
據(jù)此,制定教學(xué)目標如下:
1、理解并掌握勾股定理及其證明。
2、能夠靈活地運用勾股定理及其計算。
3、培養(yǎng)學(xué)生觀察、比較、分析、推理的能力。
4、通過介紹中國古代勾股方面的成就,激發(fā)學(xué)生熱愛祖國與熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和鉆研精神。
二、教學(xué)重點:
勾股定理的證明和應(yīng)用。
三、教學(xué)難點:
勾股定理的證明。
四、教法和學(xué)法:
教法和學(xué)法是體現(xiàn)在整個教學(xué)過程中的,本課的教法和學(xué)法體現(xiàn)如下特點:以自學(xué)輔導(dǎo)為主,充分發(fā)揮教師的主導(dǎo)作用,運用各種手段激發(fā)學(xué)生學(xué)習(xí)欲望和興趣,組織學(xué)生活動,讓學(xué)生主動參與學(xué)習(xí)全過程。
切實體現(xiàn)學(xué)生的主體地位,讓學(xué)生通過觀察、分析、討論、操作、歸納,理解定理,提高學(xué)生動手操作能力,以及分析問題和解決問題的能力。
通過演示實物,引導(dǎo)學(xué)生觀察、操作、分析、證明,使學(xué)生得到獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知的欲望。
五、教學(xué)程序:
本節(jié)內(nèi)容的教學(xué)主要體現(xiàn)在學(xué)生動手、動腦方面,根據(jù)學(xué)生的認知規(guī)律和學(xué)習(xí)心理,教學(xué)程序設(shè)計如下:
(一)創(chuàng)設(shè)情境以古引新
1、由故事引入,3000多年前有個叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個直角三角形,如果勾是3,股是4,那么弦等于5。這樣引起學(xué)生學(xué)習(xí)興趣,激發(fā)學(xué)生求知欲。
2、是不是所有的直角三角形都有這個性質(zhì)呢?教師要善于激疑,使學(xué)生進入樂學(xué)狀態(tài)。
3、板書課題,出示學(xué)習(xí)目標。(二)初步感知理解教材
教師指導(dǎo)學(xué)生自學(xué)教材,通過自學(xué)感悟理解新知,體現(xiàn)了學(xué)生的自主學(xué)習(xí)意識,鍛煉學(xué)生主動探究知識,養(yǎng)成良好的自學(xué)習(xí)慣。
(三)質(zhì)疑解難討論歸納:1、教師設(shè)疑或?qū)W生提疑。如:怎樣證明勾股定理?學(xué)生通過自學(xué),中等以上的學(xué)生基本掌握,這時能激發(fā)學(xué)生的表現(xiàn)欲。2、教師引導(dǎo)學(xué)生按照要求進行拼圖,觀察并分析;(1)這兩個圖形有什么特點?(2)你能寫出這兩個圖形的面積嗎?
(3)如何運用勾股定理?是否還有其他形式?
這時教師組織學(xué)生分組討論,調(diào)動全體學(xué)生的積極性,達到人人參與的效果,接著全班交流。先有某一組代表發(fā)言,說明本組對問題的理解程度,其他各組作評價和補充。教師及時進行富有啟發(fā)性的點撥,最后,師生共同歸納,形成一致意見,最終解決疑難。
(四)鞏固練習(xí)強化提高
1、出示練習(xí),學(xué)生分組解答,并由學(xué)生總結(jié)解題規(guī)律。課堂教學(xué)中動靜結(jié)合,以免引起學(xué)生的疲勞。
2、出示例1學(xué)生試解,師生共同評價,以加深對例題的理解與運用。針對例題再次出現(xiàn)鞏固練習(xí),進一步提高學(xué)生運用知識的能力,對練習(xí)中出現(xiàn)的情況可采取互評、互議的形式,在互評互議中出現(xiàn)的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學(xué)重點。
(五)歸納總結(jié)練習(xí)反饋
引導(dǎo)學(xué)生對知識要點進行總結(jié),梳理學(xué)習(xí)思路。分發(fā)自我反饋練習(xí),學(xué)生獨立完成。
本課意在創(chuàng)設(shè)愉悅和諧的樂學(xué)氣氛,優(yōu)化教學(xué)手段,借助多媒體提高課堂教學(xué)效率,建立平等、民主、和諧的師生關(guān)系。加強師生間的合作,營造一種學(xué)生敢想、感說、感問的課堂氣氛,讓全體學(xué)生都能生動活潑、積極主動地教學(xué)活動,在學(xué)習(xí)中創(chuàng)新精神和實踐能力得到培養(yǎng)。
六、教學(xué)目標:
1.經(jīng)歷運用拼圖的方法說明勾股定理是正確的過程,在數(shù)學(xué)活動中發(fā)展學(xué)生的探究意識和合作交流的習(xí)慣。
2.掌握勾股定理和他的簡單應(yīng)用
重點難點:
重點:能熟練運用拼圖的方法證明勾股定理
難點:用面積證勾股定理
教學(xué)過程
七、創(chuàng)設(shè)問題的情境,激發(fā)學(xué)生的學(xué)習(xí)熱情,導(dǎo)入課題
我們已經(jīng)通過數(shù)格子的方法發(fā)現(xiàn)了直角三角形三邊的關(guān)系,究竟是幾個實例,是否具有普遍的意義,還需加以論證,下面就是今天所要研究的內(nèi)容,下邊請大家畫四個全等的直角三角形,并把它剪下來,用這四個直角三角形,拼一拼、擺一擺,看看能否得到一個含有以斜邊c為邊長的正方形,并與同學(xué)交流。在同學(xué)操作的過程中,教師展示投影1(書中p7圖1—7)接著提問:大正方形的面積可表示為什么?
(同學(xué)們回答有這幾種可能:(1) (2) )
在同學(xué)交流形成共識之后,教師把這兩種表示大正方形面積的'式子用等號連接起來。
=請同學(xué)們對上面的式子進行化簡,得到:即=
這就可以從理論上說明勾股定理存在。請同學(xué)們?nèi)ビ脛e的拼圖方法說明勾股定理。
八、講例
1.飛機在空中水平飛行,某一時刻剛好飛機飛到一個男孩頭頂正上方4000多米處,過20秒,飛機距離這個男孩頭頂5000米,飛機每時飛行多少千米?
分析:根據(jù)題意:可以先畫出符合題意的圖形。如右圖,圖中△ABC的米,AB=5000米,欲求飛機每小時飛行多少千米,就要知道飛機在20秒的時間里的飛行路程,即圖中的CB的長,由于直角△ABC的斜邊AB=5000米,AC=4000米,這樣的CB就可以通過勾股定理得出。這里一定要注意單位的換算。
解:由勾股定理得
即BC=3千米飛機20秒飛行3千米,那么它1小時飛行的距離為:
答:飛機每個小時飛行540千米。
九、議一議
展示投影2(書中的圖1—9)
觀察上圖,應(yīng)用數(shù)格子的方法判斷圖中的三角形的三邊長是否滿足
同學(xué)在議論交流形成共識之后,老師總結(jié)。
勾股定理存在于直角三角形中,不是直角三角形就不能使用勾股定理。
十、作業(yè)
1、 1、課文P11§1.2 1 、2
2、選用作業(yè)。
初二數(shù)學(xué)教案7
教學(xué)目標
1、初步掌握頻率分布直方圖的概念,能繪制有關(guān)連續(xù)型統(tǒng)計量的直方圖;
2、讓學(xué)生進一步經(jīng)歷數(shù)據(jù)的整理和表示的過程,掌握繪制頻率分布直方圖的方法;
教學(xué)重點
掌握頻率分布直方圖概念及其應(yīng)用;
教學(xué)難點
繪制連續(xù)統(tǒng)計量的直方圖
教學(xué)過程
Ⅰ.提出問題,創(chuàng)設(shè)情境,引入新課:
問題:我們班準備從63名同學(xué)中挑選出身高相差不多的40名同學(xué)參加比賽,那么這個想法可以實現(xiàn)嗎?應(yīng)該選擇身高在哪個范圍的學(xué)生參加?
63名學(xué)生的身高數(shù)據(jù)如下:
158158160168159159151158159
168158154158154169158158158
159167170153160160159159160
149163163162172161153156162
162163157162162161157157164
155156165166156154166164165
156157153165159157155164156
解:(確定組距)最大值為172,最小值為149,他們的差為23
。ㄉ砀選的.變化范圍在23厘米,)
。ǚ纸M劃記)頻數(shù)分布表:
身高(x)劃記頻數(shù)(學(xué)生人數(shù))
149≤x
152≤x
155≤x
158≤x
161≤
164≤x
167≤x
170≤x
從表中看,身高在155≤x
。ɡL制頻數(shù)分布直方圖如課本P72圖12.2-3)
探究:上面對數(shù)據(jù)分組時,組距取3,把數(shù)據(jù)分成8個組,如果組距取2或4,那么數(shù)據(jù)應(yīng)分成幾個組,這樣做能否選出身高比較整齊的隊員?
分析:如果組距取2,那么分成12組;如果組距取4,那么分成6組。都可以選出身高比較整齊的隊員。
歸納:組距和組數(shù)的確定沒有固定的標準,要憑借經(jīng)驗和研究的具體問題來決定,通常數(shù)據(jù)越多,分成的組數(shù)也越多,當數(shù)據(jù)在100個以內(nèi)時,根據(jù)數(shù)據(jù)的多少通常分為5~12個組。
我們還可以用頻數(shù)折線圖來描述頻數(shù)分布的情況。頻數(shù)折線圖可以在頻數(shù)分布直方圖的基礎(chǔ)上畫出來。
首先取直方圖中每一個長方形上邊的中草藥點,然后在橫軸上取兩個頻數(shù)為0的點,在上方圖的左邊。147、5,0),在直方圖的右邊取點(174、5,0),將這些點用線段依次連接起來,就得到頻數(shù)折線圖。
頻數(shù)折線圖也可以不通過直方圖直接畫出。
根據(jù)表12.2-2,求了各個小組兩個端點的平均數(shù),而這些平均數(shù)稱為組中值,用橫軸表示身高(組中值),用縱軸表示頻數(shù),以各小組的組中值為橫坐標,各小組對應(yīng)的頻數(shù)為縱坐標描點,另外再在橫軸上取兩個點,依次連接這些點,就得到頻數(shù)分布折線圖如課本P73圖。
II課堂小結(jié):
。1)怎樣制作頻數(shù)分布直方圖和頻數(shù)分布折線圖
(2)組距和組數(shù)沒有確定標準,當數(shù)據(jù)在1000個以內(nèi)時,通常分成5~12組
。3)如果取個長方形上邊的中點,可以得到頻數(shù)折線圖
。4)求各小組兩個斷點的平均數(shù),這些平均數(shù)叫組中值。
初二數(shù)學(xué)教案8
一、教材分析1、特點與地位:重點中的重點。本課是教材求兩結(jié)點之間的最短路徑問題是圖最常見的應(yīng)用的之一,在交通運輸、通訊網(wǎng)絡(luò)等方面具有一定的實用意義。
2、重點與難點:結(jié)合學(xué)生現(xiàn)有抽象思維能力水平,已掌握基本概念等學(xué)情,以及求解最短路徑問題的自身特點,確立本課的重點和難點如下:
(1)重點:如何將現(xiàn)實問題抽象成求解最短路徑問題,以及該問題的解決方案。(2)難點:求解最短路徑算法的程序?qū)崿F(xiàn)。3、教學(xué)安排:最短路徑問題包含兩種情況:一種是求從某個源點到其他各結(jié)點的最短路徑,另一種是求每一對結(jié)點之間的最短路徑。根據(jù)教學(xué)大綱安排,重點講解第一種情況問題的解決。安排一個課時講授。教材直接分析算法,考慮實際應(yīng)用需要,補充旅游景點線路選擇的實例,實例中問題解決與算法分析相結(jié)合,逐步推動教學(xué)過程。
二、教學(xué)目標分析1、知識目標:掌握最短路徑概念、能夠求解最短路徑。2、能力目標:(1)通過將旅游景點線路選擇問題抽象成求最短路徑問題,培養(yǎng)學(xué)生的'數(shù)據(jù)抽象能力。(2)通過旅游景點線路選擇問題的解決,培養(yǎng)學(xué)生的獨立思考、分析問題、解決問題的能力。3、素質(zhì)目標:培養(yǎng)學(xué)生講究工作方法、與他人合作,提高效率。
三、教法分析課前充分準備,研讀教材,查閱相關(guān)資料,制作多媒體課件。教學(xué)過程中除了使用傳統(tǒng)的“講授法”以外,主要采用“案例教學(xué)法”,同時輔以多媒體課件,以啟發(fā)的方式展開教學(xué)。由于本節(jié)課的內(nèi)容屬于圖這一章的難點,考慮學(xué)生的接受能力,注意與學(xué)生溝通,根據(jù)學(xué)生的反應(yīng)控制好教學(xué)進度是本節(jié)課成功的關(guān)鍵。
四、學(xué)法指導(dǎo)1、課前上次課結(jié)課時給學(xué)生布置任務(wù),使其有針對性的預(yù)習(xí)。2、課中指導(dǎo)學(xué)生討論任務(wù)解決方法,引導(dǎo)學(xué)生分析本節(jié)課知識點。3、課后給學(xué)生布置同類型任務(wù),加強練習(xí)。
五、教學(xué)過程分析(一)課前復(fù)習(xí)(3~5分鐘)回顧“路徑”的概念,為引出“最短路徑”做鋪墊。教學(xué)方法及注意事項:(1)采用提問方式,注意及時小結(jié),提問的目的是幫助學(xué)生回憶概念。(2)提示學(xué)生“溫故而知新”,養(yǎng)成良好的學(xué)習(xí)習(xí)慣。
(二)導(dǎo)入新課(3~5分鐘)以城市公路網(wǎng)為例,基于求兩個點間最短距離的實際需要,引出本課教學(xué)內(nèi)容“求最短路徑問題”。教學(xué)方法及注意事項:(1)先講實例,再指出概念,既可以吸引學(xué)生注意力,激發(fā)學(xué)習(xí)興趣,又可以實現(xiàn)教學(xué)內(nèi)容的自然過渡。(2)此處使用案例教學(xué)法,不在于問題的求解過程,只是為了說明問題的存在,所以這里的例子只需要概述,能夠說明問題即可。
(三)講授新課(25~30分鐘)1、求某一結(jié)點到其他各結(jié)點的最短路徑(重點)主要采用案例教學(xué)法,提出旅游景點選擇的例子,解決如何選擇代價小、景點多的路線。(1)將實際問題抽象成圖中求任一結(jié)點到其他結(jié)點最短路徑問題。(3~5分鐘)教學(xué)方法及注意事項:①主要采用講授法,將實際問題用圖形表示出來。語言描述轉(zhuǎn)換的方法(用圓圈加標號表示某一景點,用箭頭表示從某景點到其他景點是否存在旅游線路,并且將旅途費用寫在箭頭的旁邊。)一邊用語言描述,一邊在黑上畫圖。②注意示范畫圖只進行一部分,讓學(xué)生獨立思考、自主完成余下部分的轉(zhuǎn)化。③及時總結(jié),原型抽象(景點作為圖的結(jié)點,景點間的線路作為圖的邊,旅途費用作為邊的權(quán)值),將案例求解問題抽象成求圖中某一結(jié)點到其他各結(jié)點的最短路徑問題。④利用多媒體課件,向?qū)W生展示一張帶權(quán)有向圖,并略作解釋,為后續(xù)教學(xué)做準備。
教學(xué)方法及注意事項:①啟發(fā)式教學(xué),如何實現(xiàn)按路徑長度遞增產(chǎn)生最短路徑?②結(jié)合案例分析求解最短路徑過程中(重點)注意此處借助黑板,按照算法思想的步驟。同樣,也是只示范一部分,余下部分由學(xué)生獨立思考完成。
(四)課堂小結(jié)(3~5分鐘)1、明確本節(jié)課重點
2、提示學(xué)生,這種方式形成的圖又可以解決哪類實際問題呢?
(五)布置作業(yè)1、書面作業(yè):復(fù)習(xí)本次課內(nèi)容,準備一道備用習(xí)題,靈活把握時間安排。六、教學(xué)特色以旅游路線選擇為主線,靈活采用案例教學(xué)、示范教學(xué)、多媒體課件等多種手段輔助教學(xué),使枯燥的理論講解生動起來。在順利開展教學(xué)的同時,體現(xiàn)所講內(nèi)容的實用性,提高學(xué)生的學(xué)習(xí)興趣。
初二數(shù)學(xué)教案9
課型:
復(fù)習(xí)課
學(xué)習(xí)目標(學(xué)習(xí)重點):
1. 針對函數(shù)及其圖象一章,查漏補缺,答疑解惑;
2. 一次函數(shù)應(yīng)用的復(fù)習(xí).
補充例題:
例1.如圖,lA lB分別表示A步行與B騎車在同一路上行駛的路程S與時間t的關(guān)系
(1)B出發(fā)時與A相距 千米;
(2)走了一段路后,自行車發(fā)生故障,進行修理,所用的時間是 小時;
(3)B出發(fā)后 小時與A相遇;
(4)求出A行走的路程S與時間t的函數(shù)關(guān)系式;
(5)若B的自行車不發(fā)生故障,保持出發(fā)時的速度前進, 小時與A相遇,相遇點離B的出發(fā)點 千米,在圖中表示出這個相遇點C.
例2.在平面直角坐標系中,過一點分別作坐標軸的垂線,若與坐標軸圍成矩形的周長與面積相等,則這個點叫做和諧點.例如,圖中過點P分別作x軸, y的垂線,與坐標軸圍成矩形OAPB的周長與面積相等,則點P是和諧點.
(1)判斷點M(1,2),N(4,4)是否為和諧點,并說明理由;
(2)若和諧點P(a,3)在直線y=-x+b(b為常數(shù))上,求點a, b的值.
例3.在平面直角坐標系中,一動點P(x,y)從M(1,0)出發(fā),沿由A(-1,1),B(-1,-1),C(1,-1),D(1,1)四點組成的正方形邊線(如圖①)按一定方向運動.圖②是P點運動的路程s(個單位)與運動時間 (秒)之間的函數(shù)圖象,圖③是P點的縱坐標y與P點運動的路程s之間的函數(shù)圖象的一部分.
(1)求s與t之間的函數(shù)關(guān)系式.
(2)與圖③相對應(yīng)的P點的運動路徑是: ;P點出發(fā) 秒首次到達點B;
(3)寫出當38時,y與s之間的函數(shù)關(guān)系式,并在圖③中補全函數(shù)圖象.
課后續(xù)助:
1.某市自來水公司為限制單位用水,每月只給某單位計劃內(nèi)用水3000噸,計劃內(nèi)用水每噸收費0.5元,超計劃部分每噸按0.8元收費.
(1)寫出該單位水費y(元)與每月用水量x(噸)之間的函數(shù)關(guān)系式
、儆盟啃∮诘扔3000噸 ;②用水量大于3000噸 .
(2)某月該單位用水3200噸,水費是 元;若用水2800噸,水費 元.
(3)若某月該單位繳納水費1540元,則該單位用水多少噸?
2.某通訊公司推出①、②兩種通訊收費方式供用戶選擇,其中一種有月租費,另一種無月租費,且兩種收費方式的`通訊時間x(分鐘)與收費y(元)之間的函數(shù)關(guān)系如圖所示.
(1)有月租費的收費方式是 (填①或②),月租費是 元;
(2)分別求出①、②兩種收費方式中y與自變量x之間的函數(shù)關(guān)系式;
(3)請你根據(jù)用戶通訊時間的多少,給出經(jīng)濟實惠的選擇建議.
3.某氣象研究中心觀測一場沙塵暴從發(fā)生到結(jié)束全過程, 開始時風(fēng)暴平均每小時增加2千米/時,4小時后,沙塵暴經(jīng)過開闊荒漠地,風(fēng)速變?yōu)槠骄啃r增加4千米/時,一段時間,風(fēng)暴保持不變,當沙塵暴遇到綠色植被區(qū)時,其風(fēng)速平均每小時減小1千米/時,最終停止。 結(jié)合風(fēng)速與時間的圖像,回答下列問題:
(1)在y軸( )內(nèi)填入相應(yīng)的數(shù)值;
(2)沙塵暴從發(fā)生到結(jié)束,共經(jīng)過多少小時?
(3)求出當x25時,風(fēng)速y(千米/時)與時間x(小時)之間的函數(shù)關(guān)系式.
(4)若風(fēng)速達到或超過20千米/時,稱為強沙塵暴,則強沙塵暴持續(xù)多長時間?
初二數(shù)學(xué)教案10
教學(xué)目標
知識與技能目標
1.經(jīng)歷平行四邊形判別條件的探索過程,發(fā)現(xiàn)平行四邊形的常用判別條件。
2.掌握平行四邊形的判別條件;對角線互相平分的四邊形是平行四邊形;一組對邊平行且相等的四邊形是平行四邊形;兩組對邊分別相等的四邊形是平行四邊形。
3.逐步掌握說理的基本方法。
過程與方法目標
1.在探索平行四邊形的判別條件的過程中,發(fā)展學(xué)生的合情推理意識,主動探索的習(xí)慣。
2.鼓勵學(xué)生用多種方法進行說理。
情感與態(tài)度目標
1.培養(yǎng)學(xué)生探索創(chuàng)新的能力,開拓學(xué)生思路,發(fā)展學(xué)生的思維能力。
2.培養(yǎng)學(xué)生合作學(xué)習(xí),增強學(xué)生的自我評價意識。
教材分析
教材通過創(chuàng)設(shè)“釘制平行四邊形框架”這一情境,便于學(xué)生發(fā)現(xiàn)和探索平行四邊形的常用判別方法。如有條件可要求學(xué)生自己準備,由學(xué)生自我操作。也可由教師演示。
教學(xué)重點:平行四邊形的判別方法。
教學(xué)難點:利用平行四邊形的判別方法進行正確的說理。
學(xué)情分析
初二學(xué)生對平面圖形的認識能力正在形成,抽象思維還不夠,學(xué)習(xí)幾何知識處于現(xiàn)象描述和說理的'過渡時期。因此,對這部分內(nèi)容的學(xué)習(xí),要引導(dǎo)學(xué)生學(xué)會正確的說理,理清楚四邊形在什么條件下用判定定理,在什么條件下用性質(zhì)定理。
教學(xué)流程
一、創(chuàng)設(shè)情境,引入新課
師:請同學(xué)們拿出課前準備的小木條,幫助小明的爸爸釘制平行四邊形的框架。
學(xué)生活動:學(xué)生按小組進行探索。
初二數(shù)學(xué)教案11
一、教學(xué)目標
1. 掌握等腰梯形的判定方法.
2. 能夠運用等腰梯形的性質(zhì)和判定進行有關(guān)問題的論證和計算,進一步培養(yǎng)學(xué)生的分析能力和計算能力.
3. 通過添加輔助線,把梯形的問題轉(zhuǎn)化成平行四邊形或三角形問題,使學(xué)生體會圖形變換的方法和轉(zhuǎn)化的思想
二、教法設(shè)計
小組討論,引導(dǎo)發(fā)現(xiàn)、練習(xí)鞏固
三、重點、難點
1.教學(xué)重點:等腰梯形判定.
2.教學(xué)難點:解決梯形問題的基本方法(將梯形轉(zhuǎn)化為平行四邊形和三角形及正確運用輔助線).
四、課時安排
1課時
五、教具學(xué)具準備
多媒體,小黑板,常用畫圖工具
六、師生互動活動設(shè)計
教師復(fù)習(xí)引入,學(xué)生閱讀課本;學(xué)生在教師引導(dǎo)下探索等腰梯形的判定,歸納小結(jié)梯形轉(zhuǎn)化的常見的輔助線
七、教學(xué)步驟
【復(fù)習(xí)提問】
1.什么樣的四邊形叫梯形,什么樣的梯形是直角梯形、等腰梯形?
2.等腰梯形有哪些性質(zhì)?它的性質(zhì)定理是怎樣證明的?
3.在研究解決梯形問題時的基本思想和方法是什么?常用的輔助線有哪幾種?
我們已經(jīng)掌握了等腰梯形的性質(zhì),那么又如何來判定一個梯形是否是等腰梯形呢?今天我們就共同來研究這個問題.
【引人新課】
等腰梯形判定定理:在同一底上的兩個角相等的梯形是等腰梯形.
前面我們用等腰三角形的定理證明了等腰梯形的性質(zhì)定理,現(xiàn)在我們也可以用等腰三角形的判定定理來證明等腰梯形的判定定理.
例1已知:如圖,在梯形 中, , ,求證: .
分析:我們學(xué)過“如果一個三角形中有兩個角相等,那么它們所對的邊相等.”因此,我們只要能將等腰梯形同一底上的兩個角轉(zhuǎn)化為等腰三角形的兩個底角,定理就容易證明了.
(引導(dǎo)學(xué)生口述證明方法,然后利用投影儀出示三種證明方法)
(1)如圖,過點 作 、 ,交 于 ,得 ,所以得 .
又由 得 ,因此可得 .
(2)作高 、 ,通過證 推出 .
(3)分別延長 、 交于點 ,則 與 都是等腰三角形,所以可得 .
(證明過程略).
例3 求證:對角線相等的梯形是等腰梯形.
已知:如圖,在梯形 中, , .
求證: .
分析:證明本題的.關(guān)鍵是如何利用對角線相等的條件來構(gòu)造等腰三角形.
在 和 中,已有兩邊對應(yīng)相等,別人要能證 ,就可通過證 得到 .
(引導(dǎo)學(xué)生說出證明思路,教師板書證明過程)
證明:過點 作 ,交 延長線于 ,得 ,
∴ .
∵ , ∴
∴
∵ , ∴
又∵ 、 ,∴
∴ .
說明:如果 、 交于點 ,那么由 可得 , ,即等腰梯形對角線相交,可以得到以交點為頂點的兩個等腰三角形,這個結(jié)論雖不能直接引用,但可以為以后解題提供思路.
例4 畫一等腰梯形,使它上、下底長分別5cm,高為4cm,并計算這個等腰梯形的周長和面積.
分析:如圖,先算出 長,可畫等腰三角形 ,然后完成 的畫圖.
畫法:①畫 ,使 .
.
、谘娱L 到 使 .
、鄯謩e過 、 作 , , 、 交于點 .
四邊形 就是所求的等腰梯形.
解:梯形 周長 .
答:梯形周長為26cm,面積為 .
【總結(jié)、擴展】
小結(jié):(由學(xué)生總結(jié))
(l)等腰梯形的判定方法:①先判定它是梯形②再用“兩腰相等”“或同一底上的兩個角相等”來判定它是等腰梯形.
(2)梯形的畫圖:一般先畫出有關(guān)的三角形,在此基礎(chǔ)上再畫出有關(guān)的平行四邊形,最后得到所求圖形.(三角形奠基法)
八、布置作業(yè)
l.已知:如圖,梯形 中, , 、 分別為 、 中點,且 ,求證:梯形 為等腰梯形.
九、板書設(shè)計
十、隨堂練習(xí)
教材P177中l(wèi);P179中B組2
初二數(shù)學(xué)教案12
一、相交線:
性質(zhì):兩條直線相交,有且只有一個交點。
二、對頂角、鄰補角:
1.對頂角:如圖,直線AB和CD相交于點O,∠1與∠2有公共頂點O,它們的兩邊互為反向延長線,這樣的兩個角叫做對頂角。
說明:兩個角是對頂角必需滿足兩個條件:(1)有公共頂點;(2)兩邊互為反向延長線。
2.鄰補角:如圖,∠1和∠2有一條公共邊OC,它們的另一條邊OA、OB互為反向延長線,顯然它們互補。具有這種關(guān)系的兩個角叫做互為鄰補角。
3.性質(zhì):(1)對頂角相等;(2)互為鄰補角的兩個角的和等于。
三、有關(guān)垂線的概念和性質(zhì):1.概念:如果兩條直線相交所成的四個角中,有一角是直角,就說這兩條直線互相垂直,其中的一條叫做另一條直線的垂線,它們的交點叫做垂足。
說明:垂直是相交的一種特殊情況。
2.點到直線的距離:直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。
說明:垂線是直線,而垂線段是一條線段,點到直線的距離不是指垂線段,而是指垂線段的長度。
3.平行線間的距離:同時垂直于兩條平行線,并且夾在這兩條平行線間的線段的長度,叫做這兩條平行線間的距離。平行線間的距離處處相等。
4.性質(zhì):(1)互相垂直的兩條直線相交所成的四個角都是直角;(2)過直線上一點或直線外一點畫已知直線的垂線,并且只能畫出一條垂線;(3)連結(jié)直線外一點與直線上各點的所有線段中,垂線段最短。簡單地說:垂線段最短;(4)平行線間的距離處處相等。
四、同位角、內(nèi)錯角、同旁內(nèi)角:
如圖,直線AB、CD被第三條直線EF所截,構(gòu)成八個角,簡稱“三線八角”。
1.同位角:∠1與∠5,∠2與∠6,∠3與∠7,∠4與∠8,它們分別在AB、CD同側(cè),且在EF同側(cè)。同位角呈“F”形;
2.內(nèi)錯角:∠3與∠5,∠4與∠6,它們分夾在AB、CD之間,同時又各在EF兩側(cè)。內(nèi)錯角呈“Z”形;
3.同旁內(nèi)角:∠4與∠5,∠3與∠6,它們分別夾在AB、CD之間,同時又在EF同側(cè)。同旁內(nèi)角呈“U”形。
說明:(1)同位角、內(nèi)錯角、同旁內(nèi)角是指具有特殊位置關(guān)系的兩個角;
(2)這三類角都是由兩條直線被第三條直線所截形成的;
。3)同位角特征:截線同旁,被截兩線的同方向;內(nèi)錯角特征:截線兩旁,被截兩線段之間;同旁內(nèi)角特征:截線同旁,被截兩線段之間;
。4)兩條直線被第三條直線所截成的八個角中,同位角4對,內(nèi)錯角2對,同旁內(nèi)角2對。
常見考法
。1)對頂角、鄰補角、同位角、內(nèi)錯角和同旁內(nèi)角,在中考中必有所涉及,一般是綜合其它知識一起考查;(2)垂線段最短的性質(zhì)在生活中有廣泛應(yīng)用,在中考中一般以填空、作圖出現(xiàn),主是根據(jù)要求作出垂線段或用性質(zhì)解釋理由。
誤區(qū)提醒
(1)對頂角、鄰補角以及垂線的概念理解有誤;(2)在復(fù)雜圖形中辨認同位角、內(nèi)錯角、同旁內(nèi)角時產(chǎn)生遺漏或錯認。
【典型例題】如圖,∠BAC=90°,AD⊥BC,則下面的結(jié)論中,正確的個數(shù)是()個。
、冱cB到AC的垂線段是線段AB;
、诰段AC是點C到AB的垂線段;
、劬段AD是點D到BC的垂線段;
、芫段BD是點B到AD的垂線段;
A.1B.2C.3D.4
【解析】③是錯誤的,其余的均是正確的,故本題選C
一、目標與要求
1.理解對頂角和鄰補角的概念,能在圖形中辨認;
2.掌握對頂角相等的性質(zhì)和它的推證過程;
3.通過在圖形中辨認對頂角和鄰補角,培養(yǎng)學(xué)生的識圖能力。
二、重點
在較復(fù)雜的圖形中準確辨認對頂角和鄰補角;
兩條直線互相垂直的概念、性質(zhì)和畫法;
同位角、內(nèi)錯角、同旁內(nèi)角的概念與識別。
三、難點
在較復(fù)雜的圖形中準確辨認對頂角和鄰補角;
對點到直線的距離的概念的理解;
對平行線本質(zhì)屬性的理解,用幾何語言描述圖形的性質(zhì);
能區(qū)分平行線的性質(zhì)和判定,平行線的性質(zhì)與判定的混合應(yīng)用。
四、知識框架
五、知識點、概念總結(jié)
1.鄰補角:兩條直線相交所構(gòu)成的四個角中,有公共頂點且有一條公共邊的兩個角是鄰補角。
2.對頂角:一個角的兩邊分別是另一個叫的兩邊的反向延長線,像這樣的兩個角互為對頂角。
3.對頂角和鄰補角的關(guān)系
4.垂直:兩條直線、兩個平面相交,或一條直線與一個平面相交,如果交角成直角,叫做互相垂直。
5.垂線:兩條直線相交成直角時,叫做互相垂直,其中一條叫做另一條的垂線。
6.垂足:如果兩直線的.夾角為直角,那么就說這兩條直線互相垂直,它們的交點叫做垂足。
7.垂線性質(zhì)
(1)在同一平面內(nèi),過一點有且只有一條直線與已知直線垂直。
(2)連接直線外一點與直線上各點的所有線段中,垂線段最短。簡單說成:垂線段最短。
(3)點到直線的距離:直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。
8.同位角、內(nèi)錯角、同旁內(nèi)角:
同位角:∠1與∠5像這樣具有相同位置關(guān)系的一對角叫做同位角。
內(nèi)錯角:∠2與∠6像這樣的一對角叫做內(nèi)錯角。
同旁內(nèi)角:∠2與∠5像這樣的一對角叫做同旁內(nèi)角。
9.平行:在平面上兩條直線、空間的兩個平面或空間的一條直線與一平面之間沒有任何公共點時,稱它們平行。
10.平行線:在同一平面內(nèi),不相交的兩條直線叫做平行線。
11.命題:判斷一件事情的語句叫命題。
12.真命題:正確的命題,即如果命題的題設(shè)成立,那么結(jié)論一定成立。
13.假命題:條件和結(jié)果相矛盾的命題是假命題。
14.平移:在平面內(nèi),將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移平移變換,簡稱平移。
15.對應(yīng)點:平移后得到的新圖形中每一點,都是由原圖形中的某一點移動后得到的,這樣的兩個點叫做對應(yīng)點。
16.定理與性質(zhì)
對頂角的性質(zhì):對頂角相等。
17.垂線的性質(zhì):
性質(zhì)1:過一點有且只有一條直線與已知直線垂直。
性質(zhì)2:連接直線外一點與直線上各點的所有線段中,垂線段最短。
18.平行公理:經(jīng)過直線外一點有且只有一條直線與已知直線平行。
平行公理的推論:如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。
19.平行線的性質(zhì):
性質(zhì)1:兩直線平行,同位角相等。
性質(zhì)2:兩直線平行,內(nèi)錯角相等。
性質(zhì)3:兩直線平行,同旁內(nèi)角互補。
20.平行線的判定:
判定1:同位角相等,兩直線平行。
判定2:內(nèi)錯角相等,兩直線平行。
判定3:同旁內(nèi)角相等,兩直線平行。充要條件。
初二數(shù)學(xué)教案13
知識目標:
理解函數(shù)的概念,能準確識別出函數(shù)關(guān)系中的自變量和函數(shù)
能力目標:
會用變化的量描述事物
情感目標:
回用運動的觀點觀察事物,分析事物
重點:
函數(shù)的概念
難點:
函數(shù)的概念
教學(xué)媒體:
多媒體電腦,計算器
教學(xué)說明:
注意區(qū)分函數(shù)與非函數(shù)的關(guān)系,學(xué)會確定自變量的取值范圍
教學(xué)設(shè)計:
引入:
信息1:小明在14歲生日時,看到他爸爸為他記錄的以前各年周歲時體重數(shù)值表,你能看出小明各周歲時體重是如何變化的嗎?
新課:
問題:(1)如圖是某日的氣溫變化圖。
、龠@張圖告訴我們哪些信息?
、谶@張圖是怎樣來展示這天各時刻的溫度和刻畫這鐵的氣溫變化規(guī)律的?
。2)收音機上的刻度盤的波長和頻率分別是用米(m)和赫茲(KHz)為單位標刻的,下表中是一些對應(yīng)的數(shù):
、龠@表告訴我們哪些信息?
、谶@張表是怎樣刻畫波長和頻率之間的變化規(guī)律的,你能用一個表達式表示出來嗎?
一般的.,在一個變化過程中,如果有兩個變量x和y,并且對于x的每一個確定的值,y都有惟一確定的值與其對應(yīng),那么我們就說x是自變量,y是x的函數(shù)。如果當x=a時,y=b,那么b叫做當自變量的值為a時的函數(shù)值。
范例:例1判斷下列變量之間是不是函數(shù)關(guān)系:
。5)長方形的寬一定時,其長與面積;
。6)等腰三角形的底邊長與面積;
(7)某人的年齡與身高;
活動1:閱讀教材7頁觀察1。后完成教材8頁探究,利用計算器發(fā)現(xiàn)變量和函數(shù)的關(guān)系
思考:自變量是否可以任意取值
例2一輛汽車的油箱中現(xiàn)有汽油50L,如果不再加油,那么油箱中的油量y(單位:L)隨行駛里程x(單位:km)的增加而減少,平均耗油量為0.1L/km。
(1)寫出表示y與x的函數(shù)關(guān)系式。
(2)指出自變量x的取值范圍。
。3)汽車行駛200km時,油箱中還有多少汽油?
解:(1)y=50—0.1x
。2)0500
。3)x=200,y=30
活動2:練習(xí)教材9頁練習(xí)
小結(jié):
。1)函數(shù)概念
。2)自變量,函數(shù)值
。3)自變量的取值范圍確定
作業(yè):18頁:2,3,4題
初二數(shù)學(xué)教案14
教學(xué)設(shè)計思想:
本節(jié)主要學(xué)習(xí)了平行四邊形的幾種判定方法,以及平行四邊形性質(zhì)、判定的應(yīng)用——三角形的中位線定理。通過問題情境引入平行四邊形判定的研究,首先通過直觀猜測判定的方法,再次通過幾何證明來證明它的正確性。充分發(fā)揮學(xué)生的主觀能動性。
教學(xué)目標
知識與技能:
1.總結(jié)出平行四邊形的三種判定方法;
2.應(yīng)用平行四邊形的判定解決實際問題;
3.應(yīng)用平行四邊形的性質(zhì)與判定得出三角形中位線定理;
4.總結(jié)三角形與平行四邊形的'相互轉(zhuǎn)化,學(xué)會基本的添輔助線法。
過程與方法:
1.經(jīng)歷平行四邊形判別條件的探索過程,逐步掌握說理的基本方法。
2.經(jīng)歷探究三角形中位線定理的過程,體會轉(zhuǎn)化思想在數(shù)學(xué)中的重要性。
情感態(tài)度價值觀:
1.在探究活動中,發(fā)展合情推理意識,養(yǎng)成主動探究的習(xí)慣;
2.通過探索式證明法開拓思路,發(fā)展思維能力;
3.在解決平行四邊形問題的過程中,不斷滲透轉(zhuǎn)化思想。
教學(xué)重難點
重點:1.平行四邊形的判別條件;2.應(yīng)用平行四邊形的性質(zhì)和判定得出三角形中位線定理。
難點:1.靈活應(yīng)用平行四邊形的判別條件;2.合理添加輔助線;3.三角形與平行四邊形之間的合理轉(zhuǎn)化。
教學(xué)方法
小組討論、合作探究
課時安排
3課時
教學(xué)媒體
課件、
教學(xué)過程
第一課時
(一)引入
師:上節(jié)課我們已經(jīng)知道了平行四邊形的邊、角及對角線所具有的性質(zhì),請同學(xué)們回憶一下都有哪些?
初二數(shù)學(xué)教案15
教學(xué)目的
通過分析儲蓄中的數(shù)量關(guān)系、商品利潤等有關(guān)知識,經(jīng)歷運用方程解決實際問題的過程,進一步體會方程是刻畫現(xiàn)實世界的有效數(shù)學(xué)模型。
重點、難點
1.重點:探索這些實際問題中的等量關(guān)系,由此等量關(guān)系列出方程。
2.難點:找出能表示整個題意的等量關(guān)系。
教學(xué)過程
一、復(fù)習(xí)
1.儲蓄中的利息、本金、利率、本利和等含義,關(guān)系:利息=本金×年利率×年數(shù)
本利和=本金×利息×年數(shù)+本金
2.商品利潤等有關(guān)知識。
利潤=售價—成本; =商品利潤率
二、新授
問題4.小明爸爸前年存了年利率為2.43%的二年期定期儲蓄,今年到期后,扣除利息稅,所得利息正好為小明買了一只價值48.6元的計算器,問小明爸爸前年存了多少元?
利息—利息稅=48。6
可設(shè)小明爸爸前年存了x元,那么二年后共得利息為
2.43%×X×2,利息稅為2.43%X×2×20%
根據(jù)等量關(guān)系,得2.43%x·2—2.43%x×2×20%=48.6
問,扣除利息的20%,那么實際得到的'利息是多少?扣除利息的20%,實際得到利息的80%,因此可得
2.43%x·2.80%=48.6
解方程,得x=1250
例1.一家商店將某種服裝按成本價提高40%后標價,又以8折(即按標價的80%)優(yōu)惠賣出,結(jié)果每件仍獲利15元,那么這種服裝每件的成本是多少元?
大家想一想這15元的利潤是怎么來的?
標價的80%(即售價)-成本=15
若設(shè)這種服裝每件的成本是x元,那么
每件服裝的標價為:(1+40%)x
每件服裝的實際售價為:(1+40%)x·80%
每件服裝的利潤為:(1+40%)x·80%—x
由等量關(guān)系,列出方程:
。1+40%)x·80%—x=15
解方程,得x=125
答:每件服裝的成本是125元。
三、鞏固練習(xí)
教科書第15頁,練習(xí)1、2。
四、小結(jié)
當運用方程解決實際問題時,首先要弄清題意,從實際問題中抽象出數(shù)學(xué)問題,然后分析數(shù)學(xué)問題中的等量關(guān)系,并由此列出方程;求出所列方程的解;檢驗解的合理性。應(yīng)用一元一次方程解決實際問題的關(guān)鍵是:根據(jù)題意首先尋找“等量關(guān)系”。
五、作業(yè)
教科書第16頁,習(xí)題6.3.1,第4、5題。
【初二數(shù)學(xué)教案】相關(guān)文章:
初二數(shù)學(xué)教案11-02
初二數(shù)學(xué)教案12-12
初二數(shù)學(xué)教案《菱形》08-22
【熱】初二數(shù)學(xué)教案12-23
初二數(shù)學(xué)教案【精】12-20
初二數(shù)學(xué)教案【熱門】12-22
初二數(shù)學(xué)教案【推薦】12-18
【推薦】初二數(shù)學(xué)教案12-23