(通用)八年級(jí)數(shù)學(xué)下冊(cè)教案15篇
在教學(xué)工作者實(shí)際的教學(xué)活動(dòng)中,很有必要精心設(shè)計(jì)一份教案,編寫教案有利于我們科學(xué)、合理地支配課堂時(shí)間。教案要怎么寫呢?下面是小編精心整理的八年級(jí)數(shù)學(xué)下冊(cè)教案,歡迎閱讀,希望大家能夠喜歡。
八年級(jí)數(shù)學(xué)下冊(cè)教案1
一、學(xué)情分析
學(xué)生在學(xué)習(xí)直角三角形全等判定定理“HL”之前,已經(jīng)掌握了一般三角形全等的判定方法,在本章的前一階段的學(xué)習(xí)過(guò)程中接觸到了證明三角形全等的推論,在本節(jié)課要掌握這個(gè)定理的證明以及利用這個(gè)定理解決相關(guān)問(wèn)題還是一個(gè)較高的要求。
二、教學(xué)任務(wù)分析
本節(jié)課是三角形全等的最后一部分內(nèi)容,也是很重要的一部分內(nèi)容,凸顯直角三角形的特殊性質(zhì)。在探索證明直角三角形全等判定定理“HL”的同時(shí),進(jìn)一步鞏固命題的相關(guān)知識(shí)也是本節(jié)課的任務(wù)之一。因此本節(jié)課的教學(xué)目標(biāo)定位為:
1.知識(shí)目標(biāo):
、倌軌蜃C明直角三角形全等的.“HL”的判定定理,進(jìn)一步理解證明的必要性 ②利用“HL’’定理解決實(shí)際問(wèn)題
2.能力目標(biāo):
、龠M(jìn)一步掌握推理證明的方法,發(fā)展演繹推理能力
三、教學(xué)過(guò)程分析
本節(jié)課設(shè)計(jì)了六個(gè)教學(xué)環(huán)節(jié):第一環(huán)節(jié):復(fù)習(xí)提問(wèn);第二環(huán)節(jié):引入新課;第三環(huán)節(jié):做一做;第四環(huán)節(jié):議一議;第五環(huán)節(jié):課時(shí)小結(jié);第六環(huán)節(jié):課后作業(yè)。
1:復(fù)習(xí)提問(wèn)
1.判斷兩個(gè)三角形全等的方法有哪幾種?
2.已知一條邊和斜邊,求作一個(gè)直角三角形。想一想,怎么畫?同學(xué)們相互交流。
3、有兩邊及其中一邊的對(duì)角對(duì)應(yīng)相等的兩個(gè)三角形全等嗎?如果其中一個(gè)角是直角呢?請(qǐng)證明你的結(jié)論。
我們?cè)鴱恼奂埖倪^(guò)程中得到啟示,作了等腰三角形底邊上的中線或頂角的角平分線,運(yùn)用公理,證明三角形全等,從而得出“等邊對(duì)等角”。那么我們能否通
1 / 5
過(guò)作等腰三角形底邊的高來(lái)證明“等邊對(duì)等角”.
要求學(xué)生完成,一位學(xué)生的過(guò)程如下:
已知:在△ABC中, AB=AC.
求證:∠B=∠C.
證明:過(guò)A作AD⊥BC,垂足為C,∴∠ADB=∠ADC=90°
又∵AB=AC,AD=AD,∴△ABD≌△ACD.
∴∠B=∠C(全等三角形的對(duì)應(yīng)角相等)
在實(shí)際的教學(xué)過(guò)程中,有學(xué)生對(duì)上述證明方法產(chǎn)生了質(zhì)疑。質(zhì)疑點(diǎn)在于“在證明△ABD≌△ACD時(shí),用了“兩邊及其中一邊的對(duì)角對(duì)相等的兩個(gè)三角形全等”.而我們?cè)谇懊鎸W(xué)習(xí)全等的時(shí)候知道,兩個(gè)三角形,如果有兩邊及其一邊的對(duì)角相等,這兩個(gè)三角形是不一定全等的.可以畫圖說(shuō)明.(如圖所示在ABD和△ABC中,AB=AB,∠B=∠B,AC=AD,但△ABD與△ABC不全等)” .
也有學(xué)生認(rèn)同上述的證明。
教師順?biāo)浦,詢?wèn)能否證明:“在兩個(gè)直角三角形中,直角所對(duì)的邊即斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等.”,從而引入新課。
2:引入新課
。1).“HL”定理.由師生共析完成
已知:在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,AB=A′B′,BC=B′C′. 求證:Rt△ABC≌Rt△A′B′C′
證明:在Rt△ABC中,AC=AB一BC(勾股定理).
又∵在Rt△ A' B' C'中,A' C' =A'C'=A'B'2一B'C'2 (勾股
定理).
AB=A'B',BC=B'C',AC=A'C'.
∴Rt△ABC≌Rt△A'B'C' (SSS).
教師用多媒體演示:
定理 斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等.
這一定理可以簡(jiǎn)單地用“斜邊、直角邊”或“HL”表示.
2 / 5
22A'B'
從而肯定了第一位同學(xué)通過(guò)作底邊的高證明兩個(gè)三角形
全等,從而得到“等邊對(duì)等角”的證法是正確的.
練習(xí):判斷下列命題的真假,并說(shuō)明理由:
(1)兩個(gè)銳角對(duì)應(yīng)相等的兩個(gè)直角三角形全等;
(2)斜邊及一銳角對(duì)應(yīng)相等的兩個(gè)直角三角形全等;
(3)兩條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等;
(4)一條直角邊和另一條直角邊上的中線對(duì)應(yīng)相等的兩個(gè)直角三角形全等. 對(duì)于(1)、(2)、(3)一般可順利通過(guò),這里教師將講解的重心放在了問(wèn)題
。4),學(xué)生感覺(jué)是真命題,一時(shí)有無(wú)法直接利用已知的定理支持,教師引導(dǎo)學(xué)生證明.
已知:R△ABC和Rt△A'B ' C',∠C=∠C'=90°,BC=B'C',BD、B'D'分別是AC、A'C'邊上的中線且BD—B'D' (如圖).
求證:Rt△ABC≌Rt△A'B'C'.
證明:在Rt△BDC和Rt△B'D'C'中,∵BD=B'D',BC=B'C',∴Rt△BDC≌Rt△B 'D 'C ' (HL定理).
CD=C'D'.
又∵AC=2CD,A 'C '=2C 'D ',∴AC=A'C'.
∴在Rt△ABC和Rt△A 'B 'C '中,∵BC=B'C ',∠C=∠C '=90°,AC=A'C ',∴Rt△ABC≌CORt△A'B'C(SAS).
通過(guò)上述師生共同活動(dòng),學(xué)生板書推理過(guò)程之后可發(fā)動(dòng)學(xué)生去糾錯(cuò),教師最后再總結(jié)。
3:做一做
問(wèn)題 你能用三角尺平分一個(gè)已知角嗎? 請(qǐng)同學(xué)們用手中的三角尺操作完成,并在小組內(nèi)交流,用自己的語(yǔ)言清楚表達(dá)自己的想法.
。ㄔO(shè)計(jì)做一做的目的為了讓學(xué)生體會(huì)數(shù)學(xué)結(jié)論在實(shí)際中的應(yīng)用,教學(xué)中就要求學(xué)生能用數(shù)學(xué)的語(yǔ)言清楚地表達(dá)自己的想法,并能按要求將推理證明過(guò)程寫出來(lái)。)
4:議一議
3 / 5
BEADCDA'D'BB'
八年級(jí)數(shù)學(xué)下冊(cè)教案2
教學(xué)目標(biāo)
1.使學(xué)生正確理解不等式的解,不等式的解集,解不等式的概念,掌握在數(shù)軸上表示不等式的解的集合的方法;
2.培養(yǎng)學(xué)生觀察、分析、比較的能力,并初步掌握對(duì)比的思想方法;
3.在本節(jié)課的教學(xué)過(guò)程中,滲透數(shù)形結(jié)合的思想,并使學(xué)生初步學(xué)會(huì)運(yùn)用數(shù)形結(jié)合的觀點(diǎn)去分析問(wèn)題、解決問(wèn)題.
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):不等式的解集的概念及在數(shù)軸上表示不等式的解集的方法.
難點(diǎn):不等式的解集的概念.
課堂教學(xué)過(guò)程設(shè)計(jì)
一、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問(wèn)題
1.什么叫不等式?什么叫方程?什么叫方程的解?(請(qǐng)學(xué)生舉例說(shuō)明)
2.用不等式表示:
(1)x的3倍大于1; (2)y與5的差大于零;
(3)x與3的和小于6; (4)x的小于2.
(3)當(dāng)x取下列數(shù)值時(shí),不等式x+3<6是否成立?
-4,3.5,-2.5,3,0,2.9.
((2)、(3)兩題用投影儀打在屏幕上)
二、講授新課
1.引導(dǎo)學(xué)生運(yùn)用對(duì)比的方法,得出不等式的解的概念
2.不等式的解集及解不等式
首先,向?qū)W生提出如下問(wèn)題:
不等式x+3<6,除了上面提到的,-4,-2.5,0,2.9是它的解外,還有沒(méi)有其它的解?若有,解的個(gè)數(shù)是多少?它們的分布是有什么規(guī)律?
(啟發(fā)學(xué)生利用試驗(yàn)的方法,結(jié)合數(shù)軸直觀研究.具體作法是,在數(shù)軸上將是x+3<6的解的數(shù)值-4,-2.5,0,2.9用實(shí)心圓點(diǎn)畫出,將不是x+3<6的'解的數(shù)值3.5,4,3用空心圓圈畫出,好像是“挖去了”一樣.如下圖所示)
然后,啟發(fā)學(xué)生,通過(guò)觀察這些點(diǎn)在數(shù)軸上的分布情況,可看出尋求不等式x+3<6的解的關(guān)鍵值是“3”,用小于3的任何數(shù)替代x,不等式x+3<6均成立;用大于或等于3的任何數(shù)替代x,不等式x+3<6均不成立.即能使不等式x+3<6成立的未知數(shù)x的值是小于3的所有數(shù),用不等式表示為x<3.把能夠使不等式x+3<6成立的所有x值的集合叫做不等式x+3<6的集合.簡(jiǎn)稱不等式x+3<6的解集,記作x<3.
最后,請(qǐng)學(xué)生總結(jié)出不等式的解集及解不等式的概念.(若學(xué)生總結(jié)有困難,教師可作適當(dāng)?shù)膯l(fā)、補(bǔ)充)
一般地說(shuō),一個(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解的集合.簡(jiǎn)稱為這個(gè)不等式的解集.
不等式一般有無(wú)限多個(gè)解.
求不等式的解集的過(guò)程,叫做解不等式.
3.啟發(fā)學(xué)生如何在數(shù)軸上表示不等式的解集
我們知道解不等式不能只求個(gè)別解,而應(yīng)求它的解集,一般而言,不等式的解集不是由一個(gè)數(shù)或幾個(gè)數(shù)組成的,而是由無(wú)限多個(gè)數(shù)組成的,如x<3.那么如何在數(shù)軸上直觀地表示不等式x+3<6的解集x<3呢?(先讓學(xué)生想一想,然后請(qǐng)一名學(xué)生到黑板上試著用數(shù)軸表示一下,其余同學(xué)在下面自行完成,教師巡視,并針對(duì)黑板上板演的結(jié)果做講解)
在數(shù)軸上表示3的點(diǎn)的左邊部分,表示解集x<3.如下圖所示.
由于x=3不是不等式x+3<6的解,所以其中表示3的點(diǎn)用空心圓圈標(biāo)出來(lái).(表示挖去x=3這個(gè)點(diǎn))
記號(hào)“≥”讀作大于或等于,既不小于;記號(hào)“≤”讀作小于或等于,即不大于.
例如不等式x+5≥3的解集是x≥-2(想一想,為什么?并請(qǐng)一名學(xué)生回答)在數(shù)軸上表示如下圖.
即用數(shù)軸上表示-2的點(diǎn)和它的右邊部分表示出來(lái).由于解中包含x=-2,故其中表示-2的點(diǎn)用實(shí)心圓點(diǎn)表示.
此處,教師應(yīng)強(qiáng)調(diào),這里特別要注意區(qū)別是用空心圓圈“!边是用實(shí)心圓點(diǎn)“.”,是左邊部分,還是右邊部分.
三、應(yīng)用舉例,變式練習(xí)
例1 在數(shù)軸上表示下列不等式的解集:
(1)x≤-5; (2)x≥0; (3)x>-1;
(4)1≤X≤4; (5)-2<X≤3; (6)-2≤x<3.
解(1),(2),(3)略.
(4)在數(shù)軸上表示1≤x≤4,如下圖
(5)在數(shù)軸上表示-2<x≤3,如下圖
(此題在講解時(shí),教師要著重強(qiáng)調(diào):注意所給題目中的解集是否包含分界點(diǎn),是左邊部分還是右邊部分.本題應(yīng)分別讓6名學(xué)生板演,其余學(xué)生自行完成,教師巡視遇到問(wèn)題,及時(shí)糾正)
例2 用不等式表示下列數(shù)量關(guān)系,再用數(shù)軸表示出來(lái):
(1)x小于-1; (2)x不小于-1;
(3)a是正數(shù); (4)b是非負(fù)數(shù).
解:(1)x小于-1表示為x<-1;(用數(shù)軸表示略)
(2)x不小于-1表示為x≥-1;(用數(shù)軸表示略)
(3)a是正數(shù)表示為a>0;(用數(shù)軸表示略)
(4)b是非負(fù)數(shù)表示為b≥0.(用數(shù)軸表示略)
(以上各小題分別請(qǐng)四名學(xué)生生回答,教師板書,最后,請(qǐng)學(xué)生在筆記本上畫數(shù)軸表示)
例3 用不等式的解集表示出下列各數(shù)軸所表示的數(shù)的范圍.(投影,請(qǐng)學(xué)生口答,教師板演)
解:(1)x<2; (2)x≥-1.5; (3)-2≤x<1.
(本題從另一例面來(lái)揭示不等式的解集與數(shù)軸上表示數(shù)的范圍的一種對(duì)應(yīng)關(guān)系,從而進(jìn)一步加深學(xué)生對(duì)不等式解集的理解,以使學(xué)生進(jìn)一步領(lǐng)會(huì)到數(shù)形結(jié)合的方法具有形象,直觀,易于說(shuō)明問(wèn)題的優(yōu)點(diǎn))
練習(xí)(1)用簡(jiǎn)明語(yǔ)言敘述下列不等式表示什么數(shù):①x>0;②x<0;③x>-1;④x≤-1.
(2)在數(shù)軸上表示下列不等式的解集:
、賦>3; ②x≥-1; ③x≤-1.5;
、0≤x<5; ⑤-2<x≤2; ⑥-2<x<.
(3)用觀察法求不等式<1的解集,并用不等式和數(shù)軸分別表示出來(lái).
(4)觀察不等式<1的解集,并用不等式和數(shù)軸分別表示出來(lái),它的正數(shù)解是什么?
自然數(shù)解是什么?(*表示選作題)
四、師生共同小結(jié)
針對(duì)本節(jié)課所學(xué)內(nèi)容,請(qǐng)學(xué)生回答以下問(wèn)題:
1.如何區(qū)別不等式的解,不等式的解集及解不等式這幾個(gè)概念?
2.找出一元一次方程與不等式在“解”,“求解”等概念上的異同點(diǎn).
3.記號(hào)“≥”、“≤”各表示什么含義?
4.在數(shù)軸上表示不等式解集時(shí)應(yīng)注意什么?
結(jié)合學(xué)生的回答,教師再?gòu)?qiáng)調(diào)指出,不等式的解、不等式的解集及解不等式這三者的定義是區(qū)別它們的唯一標(biāo)準(zhǔn);在數(shù)軸上表示不等式解集時(shí),需特別注意解的范圍的分界點(diǎn),以便在數(shù)軸上正確使用空心圓圈“!焙蛯(shí)心圓點(diǎn)“·”.
五、作業(yè)
1.不等式x+3≤6的解集是什么?
2.在數(shù)軸上表示下列不等式的解集:
(1)x≤1; (2)x≤0; (3)-1<x≤5;
(4)-3≤x≤2; (5)-2<x<; (6)-≤x<.
3.求不等式x+2<5的正整數(shù)解.
課堂教學(xué)設(shè)計(jì)說(shuō)明由于本節(jié)課的知識(shí)點(diǎn)比較多,因此,在設(shè)計(jì)教學(xué)過(guò)程時(shí),緊緊抓住不等式的解集這一重點(diǎn)知識(shí).通過(guò)對(duì)方程的解的電義的回憶,對(duì)比學(xué)習(xí)不等式的解及解集.同時(shí),為了進(jìn)一步加深學(xué)生對(duì)不等式的解集的理解,教學(xué)中注意運(yùn)用以下幾種教學(xué)方法:(1)啟發(fā)學(xué)生用試驗(yàn)的方法,結(jié)合數(shù)軸直觀形象來(lái)研究不等式的解和解集;(2)比較方程與不等式的解的異同點(diǎn);(3)通過(guò)例題與練習(xí),加深理解.
在數(shù)軸上表示數(shù)是數(shù)形結(jié)合的具體體現(xiàn).而在數(shù)軸上表示不等式的解集則又進(jìn)了一步.因此,在設(shè)計(jì)教學(xué)過(guò)程時(shí),就充分考慮到應(yīng)使學(xué)生通過(guò)本節(jié)課的學(xué)習(xí),進(jìn)一步領(lǐng)會(huì)數(shù)形結(jié)合的思想方法具有形象、直觀、易于說(shuō)明問(wèn)題的優(yōu)點(diǎn),并初步學(xué)會(huì)用數(shù)形結(jié)合的觀念去處理問(wèn)題、解決問(wèn)題.
八年級(jí)數(shù)學(xué)下冊(cè)教案3
一、教學(xué)目標(biāo)
1.使學(xué)生根據(jù)分?jǐn)?shù)的通分法則及分式的基本性質(zhì),分析、歸納出分式的通分法則,并能熟練掌握通分運(yùn)算。
2.使學(xué)生理解和掌握分式和減法法則,并會(huì)應(yīng)用法則進(jìn)行分式加減的運(yùn)算。
3.使學(xué)生能夠靈活運(yùn)用分式的有關(guān)法則進(jìn)行分式的四則混合運(yùn)算。
4.引導(dǎo)學(xué)生不斷小結(jié)運(yùn)算方法和技巧,提高運(yùn)算能力。
二、教學(xué)重點(diǎn)和難點(diǎn)
1.重點(diǎn):分式的加減運(yùn)算。
2.難點(diǎn):異分母的分式加減法運(yùn)算。
三、教學(xué)方法
啟發(fā)式、分組討論。
四、教學(xué)手段
幻燈片。
五、教學(xué)過(guò)程
。ㄒ唬┮
1.如何計(jì)算:2.如何計(jì)算:3.若分母不同如何計(jì)算?如:
。ǘ┬抡n
1.類比分?jǐn)?shù)的'通分得到分式的通分:把幾個(gè)異分母的分式分別化成與原來(lái)的分式相等的同分母的分式,叫做分式的通分。
2.通分的依據(jù):分式的基本性質(zhì)。
3.通分的關(guān)鍵:確定幾個(gè)分式的公分母。
通常取各分母的所有因式的最高次冪的積作公分母,這樣的公分母叫做最簡(jiǎn)公分母。
例1通分:
(1)解:∵最簡(jiǎn)公分母是,
小結(jié):各分母的系數(shù)都是整數(shù)時(shí),通常取它們的系數(shù)的最小公倍數(shù)作為最簡(jiǎn)公分母的系數(shù)。
。2)解:
例2通分:
(1)解:∵最簡(jiǎn)公分母的是2x(x+1)(x—1),
小結(jié):當(dāng)分母是多項(xiàng)式時(shí),應(yīng)先分解因式。
。2)解:將分母分解因式:∴最簡(jiǎn)公分母為2(x+2)(x—2),
練習(xí):教材P,79中1、2、3。
(三)課堂小結(jié)
1.通分與約分雖都是針對(duì)分式而言,但卻是兩種相反的變形。約分是針對(duì)一個(gè)分式而言,而通分是針對(duì)多個(gè)分式而言;約分是把分式化簡(jiǎn),而通分是把分式化繁,從而把各分式的分母統(tǒng)一起來(lái)。
2.通分和約分都是依據(jù)分式的基本性質(zhì)進(jìn)行變形,其共同點(diǎn)是保持分式的值不變。
3.一般地,通分結(jié)果中,分母不展開(kāi)而寫成連乘積的形式,分子則乘出來(lái)寫成多項(xiàng)式,為進(jìn)一步運(yùn)算作準(zhǔn)備。
八年級(jí)數(shù)學(xué)下冊(cè)教案4
教學(xué)目標(biāo)
知識(shí)與技能:
1、能用描點(diǎn)法畫出正比例函數(shù)的圖象;
2、初步了解正比例函數(shù)圖象的性質(zhì)。
過(guò)程與方法:
通過(guò)畫正比例函數(shù)的圖象,探索正比例函數(shù)圖象的性質(zhì),培養(yǎng)觀察能力,體會(huì)用數(shù)形結(jié)合的方式思考問(wèn)題。
情感態(tài)度與價(jià)值觀:
通過(guò)動(dòng)手操作,培養(yǎng)嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,并養(yǎng)成善于觀察、善于歸納的學(xué)習(xí)習(xí)慣。
重點(diǎn):正確理解正比例函數(shù)的圖象及其性質(zhì)。
難點(diǎn):通過(guò)對(duì)正比例函數(shù)圖象的觀察,發(fā)現(xiàn)正比例函數(shù)圖象的性質(zhì)。
教學(xué)方法:
1、演示法———發(fā)展觀察力,想象力;
2、啟發(fā)法———培養(yǎng)學(xué)生主動(dòng)學(xué)習(xí)能力;
3、形成性學(xué)習(xí)法———培養(yǎng)觀察、歸納思維能力;
教學(xué)流程
教學(xué)環(huán)節(jié):
教師活動(dòng)——預(yù)設(shè)學(xué)生行為——學(xué)生活動(dòng)
復(fù)習(xí)概念
復(fù)習(xí)定義及畫函數(shù)圖像的步驟,學(xué)生快速回憶已學(xué)的概念及畫函數(shù)圖像的步驟(搶答),積極回答問(wèn)題。
例題演示
1、在同一坐標(biāo)系中畫出正比例函數(shù),y=x,y=2x的圖象
解:(1)列表
。2)描點(diǎn)
。3)連線
x … —3 —2 —1 0 1 2 3 …
y=x y=2x仔細(xì)觀察,認(rèn)真分析,各自說(shuō)出自己所發(fā)現(xiàn)的規(guī)律,最后達(dá)成共識(shí)。
計(jì)算出正比例函數(shù)的值,認(rèn)真觀察圖象。
發(fā)現(xiàn)規(guī)律
觀察思考:比較上面三個(gè)函數(shù)圖象的相同點(diǎn)與不同點(diǎn),三個(gè)函數(shù)圖像有怎樣的變化規(guī)律。
共同點(diǎn):
。1)都是比例系數(shù)k>0
。2)都是一條直線
。3)都過(guò)原點(diǎn)和點(diǎn)(1,k)
。4)都在一、三象限
。5)都是從左向右上升
不同點(diǎn):上升的幅度不一樣
歸納總結(jié):
一般地,正比例函數(shù)y=kx(k是常數(shù),k≠0)的圖象是一條經(jīng)過(guò)原點(diǎn)及(1,k)直線,我們稱它為直線y=kx。當(dāng)k>0時(shí),直線y=kx經(jīng)過(guò)第一、三象限,從左向右上升,即隨x的增大y也增大;
根據(jù)同學(xué)的發(fā)言與老師的歸納,修正自己的認(rèn)識(shí),逐漸理解正比例函數(shù)的性質(zhì)以及畫正比例函數(shù)圖象的簡(jiǎn)單方法。發(fā)現(xiàn)正比例函數(shù)的性質(zhì)。
規(guī)律應(yīng)用
應(yīng)用兩點(diǎn)法在同一坐標(biāo)系中畫出y=—1、5x,y=—4x的圖象,利用兩點(diǎn)法畫出函數(shù)圖象,能迅速找到兩個(gè)點(diǎn)。
發(fā)現(xiàn)規(guī)律
觀察思考:比較上面二個(gè)函數(shù)圖象的相同點(diǎn)與不同點(diǎn),二個(gè)函數(shù)圖像有怎樣的變化規(guī)律。
共同點(diǎn):
(1)都是比例系數(shù)k<0
。2)都是一條直線
。3)都過(guò)原點(diǎn)和點(diǎn)(1,k)
。4)都在二、四象限
。5)都是從左向右下降
不同點(diǎn):下降的幅度不一樣
歸納總結(jié):
一般地,正比例函數(shù)y=kx(k是常數(shù),k≠0)的圖象是一條經(jīng)過(guò)原點(diǎn)及(1,k)直線,我們稱它為直線y=kx。當(dāng)k<0時(shí),直線y=kx經(jīng)過(guò)第二、四象限,從左向右下降,即隨x的增大y反而減小;
知識(shí)的遷移:用同樣的辦法發(fā)現(xiàn)規(guī)律。
課堂檢測(cè)
1、用你認(rèn)為最簡(jiǎn)單的'方法畫出下列函數(shù)圖象。
(1)y=1、5x(2)y=-3x
2、正比例函數(shù)y=-4x的圖象是過(guò)()和()兩點(diǎn)的一條直線,圖象過(guò)象限,y隨x的。
3、正比例函數(shù)y=(m-1)x的圖象過(guò)一、三象限,則m的取值范圍是。
A、m=1
B、m>1
C、m<1
D、m≥1
4、下列函數(shù)①y=5x ② y=-3x ③y= x ④y=-x中,y隨x的增大而減小的是_____________。
(能根據(jù)正比例函數(shù)性質(zhì)解決問(wèn)題、認(rèn)真做題)
小結(jié)
名稱 解析式 圖象特征 圖象分布 函數(shù)變化情況 正比例函數(shù)
y=kx(k≠0)是經(jīng)過(guò)(0,0)和(1,k)的一條直線
k>0,k<0;一、三象限Y隨x的增大而增大
k>0,k<0二、四象限Y隨x的增大而減小
板書設(shè)計(jì)
復(fù)習(xí)引入 描點(diǎn)法 畫正比例函數(shù)圖象 正比例函數(shù)圖象性質(zhì)
規(guī)律應(yīng)用 總結(jié)規(guī)律 練習(xí)小結(jié)
八年級(jí)數(shù)學(xué)下冊(cè)教案5
例題講解
引入問(wèn)題:有甲乙兩種客車,甲種客車每車能拉30人,乙種客車每車能拉40人,現(xiàn)在有400人要乘車,
1、你有哪些乘車方案?
2、只租8輛車,能否一次把客人都運(yùn)送走?
問(wèn)題2;怎樣租車
某學(xué)校計(jì)劃在總費(fèi)用2300元的限額內(nèi),利用汽車送234名學(xué)生和6名教師集體外出活動(dòng),每輛汽車上至少有1名教師,F(xiàn)有甲、乙兩種大客車,它們的載客量和租金如表:
甲種客車乙種客車
載客量(單位:人/輛)4530
租金(單位:元/輛)400280
。1)共需租多少輛汽車?
。2)給出最節(jié)省費(fèi)用的`租車方案。
分析;
。1)要保證240名師生有車坐
。2)要使每輛汽車上至少要有1名教師
根據(jù)(1)可知,汽車總數(shù)不能小于____;根據(jù)(2)可知,汽車總數(shù)不能大于____。綜合起來(lái)可知汽車總數(shù)為_____。
設(shè)租用x輛甲種客車,則租車費(fèi)用y(單位:元)是x的函數(shù),即
y=400x+280(6-x)
化簡(jiǎn)為:y=120x+1680
討論:
根據(jù)問(wèn)題中的條件,自變量x的取值應(yīng)有幾種可能?
為使240名師生有車坐,x不能小于____;為使租車費(fèi)用不超過(guò)2300元,X不能超過(guò)____。綜合起來(lái)可知x的取值為____。
在考慮上述問(wèn)題的基礎(chǔ)上,你能得出幾種不同的租車方案?為節(jié)省費(fèi)用應(yīng)選擇其中的哪種方案?試說(shuō)明理由。
方案一:
4兩甲種客車,2兩乙種客車
y1=120×4+1680=2160
方案二:
5兩甲種客車,1輛乙種客車
八年級(jí)數(shù)學(xué)下冊(cè)教案6
活動(dòng)一、創(chuàng)設(shè)情境
引入:首先我們來(lái)看幾道練習(xí)題(幻燈片)
。◤(fù)習(xí):平行線及三角形全等的知識(shí))
下面我們一起來(lái)欣賞一組圖片(幻燈片)
[學(xué)生活動(dòng)]觀看后答問(wèn)題:你看到了哪些圖形?
。ǜ魇礁鳂拥膱D案裝點(diǎn)著我們的生活,使我們這個(gè)世界變得如此美麗,那么,請(qǐng)你用兩個(gè)相同的300的三角板,看能拼出哪些圖案?)
[學(xué)生活動(dòng)]小組合作交流,拼出圖案的類型。
同學(xué)們所拼的圖形中,除了有我們學(xué)過(guò)的三角形,還有很多四邊形,今天,我們一起來(lái)研究四邊形,探索四邊形的性質(zhì)。(幻燈片出示課題)
活動(dòng)二、合作交流,探求新知
問(wèn)題(1):為什么我們把(甲)圖叫平行四邊形,而(乙)圖不是平行四邊形呢?你怎么知道這些四邊形是平行四邊形?(拿一模型,幻燈片)
[學(xué)生活動(dòng)]認(rèn)真觀察、討論、思考、推理。
鼓勵(lì)學(xué)生交流,并是試著用自己的語(yǔ)言概括出平行四邊形的.定義。
學(xué)生交流,歸納:有兩組對(duì)邊分別平行的四邊形叫做平行四邊形。
并說(shuō)明:平行四邊形不相鄰的兩個(gè)頂點(diǎn)連成的線段叫它的對(duì)角線。
平行四邊形用“”表示,如圖平行四邊形ABCD記作“ABCD”讀作:平行四邊形ABCD。(幻燈片出示揭示課題)
問(wèn)題(2):由平行四邊形的定義,我們知道平行四邊形的兩組對(duì)邊分別平行,平行四邊形還有什么特征呢?
[學(xué)生活動(dòng)]動(dòng)手操作,小組演示交流。鼓勵(lì)學(xué)生用多種方法探究。
小結(jié)平行四邊形的性質(zhì):
平行四邊形的對(duì)邊相等
平行四邊形的對(duì)角相等(這里要弄清對(duì)角、對(duì)邊兩個(gè)名詞)
你能演示你的結(jié)論是如何得到的嗎?(學(xué)生演示)
你能證明嗎?(幻燈片出示證明題)
[學(xué)生活動(dòng)]先分析思路尤其是輔助線,請(qǐng)學(xué)生上黑板證明。
自己完成性質(zhì)2的證明。
活動(dòng)三、運(yùn)用新知
性質(zhì)掌握了嗎?一起來(lái)看一道題目:
嘗試練習(xí)(幻燈片)例1
[學(xué)生活動(dòng)]作嘗試性解答。
八年級(jí)數(shù)學(xué)下冊(cè)教案7
教學(xué)目標(biāo):
認(rèn)知目標(biāo):1.了解一次函數(shù)與一元一次不等式的關(guān)系,會(huì)根據(jù)一次函數(shù)的圖象解決一元一次不等式的求解問(wèn)題.
2.學(xué)習(xí)用函數(shù)的觀點(diǎn)看待不等式的方法,初步形成用全面的觀點(diǎn)處理局部問(wèn)題的.
能力情感目標(biāo):經(jīng)歷不等式與函數(shù)關(guān)系問(wèn)題的探究過(guò)程,學(xué)習(xí)用聯(lián)系的觀點(diǎn)看待數(shù)學(xué)問(wèn)題的辨證.
教學(xué)重點(diǎn):一次函數(shù)與一元一次不等式的關(guān)系的理解.
教學(xué)難點(diǎn):利用一次函數(shù)的圖象確定一元一次不等式的解集.
教學(xué)過(guò)程:
一、探究新知:
通過(guò)上節(jié)課的學(xué)習(xí),我們已經(jīng)知道“解一元一次方程ax+b=0”與“求自變量為何值時(shí),一次函數(shù)y=ax+b的值為0”是同一個(gè)問(wèn)題.現(xiàn)在我們來(lái)看看:
。ǎ保┮韵聝蓚(gè)問(wèn)題是否為同一個(gè)問(wèn)題?
①解不等式:2x-4>0
、诋(dāng)x為何值時(shí),函數(shù)y=2x-4的`值大于0?
。ǎ玻┠闳绾卫煤瘮(shù)的圖象來(lái)說(shuō)明②?
。ǎ常敖獠坏仁剑玻-4<0”可以與怎樣的一次函數(shù)問(wèn)題是同一的?怎樣在圖象上加以說(shuō)明?
歸納:解一元一次不等式ax+b>0(或ax+b<0)可以看作:當(dāng)一次函數(shù)y=ax+b的值大(。┯0時(shí),求自變量響應(yīng)的取值范圍.
二、應(yīng)用新知:
。.練習(xí):P42練習(xí)1(3)(4)
。.例2 用畫函數(shù)圖象的方法解不等式5x+4>2x+10.
思考:我們應(yīng)該畫出什么函數(shù)的圖象來(lái)解?
思路1:將不等式化為3x-6>0,然后畫出函數(shù)y=3x-6的圖象.
思路2:將不等式5x+4>2x+10的兩邊分別看作兩個(gè)一次函數(shù),畫出直線y=5x+4和直線y=2x+10,對(duì)于同一個(gè)x,直線y=5x+4上的點(diǎn)在直線y=2x+10上相應(yīng)點(diǎn)的下方,這時(shí)
。担+4>2x+10.
三、鞏固練習(xí)
1.P42練習(xí)2(2)
2.P45習(xí)題11.3第3、4題
四、
五、布置作業(yè)
八年級(jí)數(shù)學(xué)下冊(cè)教案8
教學(xué)目標(biāo):
1、進(jìn)一步熟練運(yùn)用平行四邊形、矩形、菱形、正方形的性質(zhì)和判定方法解決有關(guān)問(wèn)題,清楚平行四邊形、特殊平行四邊形的特征以及彼此之間的關(guān)系。
2、能利用它們的性質(zhì)和判定進(jìn)行推理和計(jì)算。
3、使學(xué)生明確知識(shí)體系,提高空間想象能力,掌握基本的推理能力。
教學(xué)重點(diǎn)、難點(diǎn):
重點(diǎn):掌握特殊平行四邊形性質(zhì)與判定。
難點(diǎn):能用特殊平行四邊形的判定定理和性質(zhì)定理進(jìn)行幾何證明和計(jì)算。
教學(xué)過(guò)程:
一、梳理知識(shí):
1.特殊平行四邊形的性質(zhì).
1)如圖所示:在矩形ABCD中,對(duì)角線AC、BD相交于O點(diǎn),已知AB=3cm,AC=5cm
則BC=_____cm,△BOC的周長(zhǎng)=_____cm
2)如圖所示:在菱形ABCD中,對(duì)角線AC、BD相交于O點(diǎn),已知AB=5cm,AC=6cm,
則你能求出哪些線段的`長(zhǎng)度?
3)如圖所示:在正方形ABCD中,對(duì)角線AC、BD相交于O點(diǎn),已知OA=3cm,
則AB=_____cm,△BOC的周長(zhǎng)=_______cm.
小結(jié):特殊平行四邊形的性質(zhì)(PPT呈現(xiàn))
2.特殊平行四邊形的判定.
要使平行四邊形ABCD成為矩形,需要增加的條件________.
要使平行四邊形ABCD成為菱形,需要增加的條件________.
要使矩形ABCD成為正方形,需要增加的條件________.
要使菱形ABCD成為正方形,需要增加的條件________.
小結(jié):特殊平行四邊形的判定(PPT呈現(xiàn))
二、深化提高:
1.已知:如圖,在△ABC中,AB=AC,AD⊥BC,垂足為點(diǎn)D,AN是△ABC外角∠CAM的平分線,CE⊥AN,垂足為點(diǎn)E,
。1)求證:四邊形ADCE為矩形;
。2)當(dāng)△ABC滿足什么條件時(shí),
四邊形ADCE是一個(gè)正方形?并給出證明.
2.如圖,矩形ABCD的對(duì)角線AC、BD交于點(diǎn)O,
過(guò)點(diǎn)D作DP∥OC,過(guò)C點(diǎn)作CP∥DO,交DP于點(diǎn)P,
試判斷四邊形CODP的形狀.
變式1:如果題目中的矩形變?yōu)榱庑危?圖一)結(jié)論應(yīng)變?yōu)槭裁矗?/p>
變式2:如果題目中的矩形變?yōu)檎叫危?圖二)結(jié)論又應(yīng)變?yōu)槭裁矗?/p>
3.如圖,在中,是邊的中點(diǎn),分別是及其延長(zhǎng)線上的點(diǎn),.
。1)求證:.
(2)請(qǐng)連結(jié),試判斷四邊形的形狀,并說(shuō)明理由.
(3)若四邊形是菱形,判斷的形狀。
三、拓展提高
1.如圖,以△ABC的三邊為邊在BC的同側(cè)分別作三個(gè)等邊三角形,即△ABD、
△BCE、△ACF,
。1)四邊形ADEF是什么四邊形?并說(shuō)明理由
。2)當(dāng)△ABC滿足什么條件時(shí),四邊形ADEF是菱形?
(3)當(dāng)△ABC滿足什么條件時(shí),以A、D、E、F為頂點(diǎn)的四邊形不存在.
2.如圖,已知⊿ABC是等腰三角形,頂角∠BAC=,(<60°)D是BC邊上的一點(diǎn),連接AD,線段AD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到AE,過(guò)點(diǎn)E作BC的平行線,交AB于點(diǎn)F,連接DE,BE,DF.
。1)求證:BE=CD;
。2)若AD⊥BC,試判斷四邊形BDFE的形狀,并給出證明,
四、課堂小結(jié)
五、作業(yè)
1.如圖,在正方形ABCD中,P為對(duì)角線BD上一點(diǎn),
PE⊥BC,垂足為E,PF⊥CD,垂足為F。
求證:EF=AP
2.如圖,正方形ABCD中,E是對(duì)角線BD上的點(diǎn),且BE=AB,
EF⊥BD,交CD于點(diǎn)F,DE=2.5cm,求CF的長(zhǎng)。
3.如圖,四邊形ABCD是菱形,對(duì)角線AC=8cm,BD=6cm,
DH⊥AB于H,求:DH的長(zhǎng)。
八年級(jí)數(shù)學(xué)下冊(cè)教案9
一、教學(xué)目標(biāo)
1.使學(xué)生理解并掌握反比例函數(shù)的概念
2.能判斷一個(gè)給定的函數(shù)是否為反比例函數(shù),并會(huì)用待定系數(shù)法求函數(shù)解析式
3.能根據(jù)實(shí)際問(wèn)題中的條件確定反比例函數(shù)的解析式,體會(huì)函數(shù)的模型思想
二、重、難點(diǎn)
1.重點(diǎn):理解反比例函數(shù)的概念,能根據(jù)已知條件寫出函數(shù)解析式
2.難點(diǎn):理解反比例函數(shù)的概念
3.難點(diǎn)的突破方法:
。1)在引入反比例函數(shù)的概念時(shí),可適當(dāng)復(fù)習(xí)一下第11章的正比例函數(shù)、一次函數(shù)等相關(guān)知識(shí),這樣以舊帶新,相互對(duì)比,能加深對(duì)反比例函數(shù)概念的理解
。2)注意引導(dǎo)學(xué)生對(duì)反比例函數(shù)概念的理解,看形式,等號(hào)左邊是函數(shù)y,等號(hào)右邊是一個(gè)分式,自變量x在分母上,且x的指數(shù)是1,分子是不為0的常數(shù)k;看自變量x的取值范圍,由于x在分母上,故取x≠0的一切實(shí)數(shù);看函數(shù)y的取值范圍,因?yàn)閗≠0,且x≠0,所以函數(shù)值y也不可能為0。講解時(shí)可對(duì)照正比例函數(shù)y=kx(k≠0),比較二者解析式的相同點(diǎn)和不同點(diǎn)。
。3)(k≠0)還可以寫成(k≠0)或xy=k(k≠0)的形式
三、例題的意圖分析
教材第46頁(yè)的思考題是為引入反比例函數(shù)的概念而設(shè)置的,目的.是讓學(xué)生從實(shí)際問(wèn)題出發(fā),探索其中的數(shù)量關(guān)系和變化規(guī)律,通過(guò)觀察、討論、歸納,最后得出反比例函數(shù)的概念,體會(huì)函數(shù)的模型思想。
教材第47頁(yè)的例1是一道用待定系數(shù)法求反比例函數(shù)解析式的題,此題的目的一是要加深學(xué)生對(duì)反比例函數(shù)概念的理解,掌握求函數(shù)解析式的方法;二是讓學(xué)生進(jìn)一步體會(huì)函數(shù)所蘊(yùn)含的“變化與對(duì)應(yīng)”的思想,特別是函數(shù)與自變量之間的單值對(duì)應(yīng)關(guān)系。
補(bǔ)充例1、例2都是常見(jiàn)的題型,能幫助學(xué)生更好地理解反比例函數(shù)的概念。補(bǔ)充例3是一道綜合題,此題是用待定系數(shù)法確定由兩個(gè)函數(shù)組合而成的新的函數(shù)關(guān)系式,有一定難度,但能提高學(xué)生分析、解決問(wèn)題的能力。
四、課堂引入
1.回憶一下什么是正比例函數(shù)、一次函數(shù)?它們的一般形式是怎樣的?
2.體育課上,老師測(cè)試了百米賽跑,那么,時(shí)間與平均速度的關(guān)系是怎樣的?
五、例習(xí)題分析
例1.見(jiàn)教材P47
分析:因?yàn)閥是x的反比例函數(shù),所以先設(shè),再把x=2和y=6代入上式求出常數(shù)k,即利用了待定系數(shù)法確定函數(shù)解析式。
例1.(補(bǔ)充)下列等式中,哪些是反比例函數(shù)
。1)(2)(3)xy=21(4)(5)(6)(7)y=x-4
分析:根據(jù)反比例函數(shù)的定義,關(guān)鍵看上面各式能否改寫成(k為常數(shù),k≠0)的形式,這里(1)、(7)是整式,(4)的分母不是只單獨(dú)含x,(6)改寫后是,分子不是常數(shù),只有(2)、(3)、(5)能寫成定義的形式
例2.(補(bǔ)充)當(dāng)m取什么值時(shí),函數(shù)是反比例函數(shù)?
分析:反比例函數(shù)(k≠0)的另一種表達(dá)式是(k≠0),后一種寫法中x的次數(shù)是-1,因此m的取值必須滿足兩個(gè)條件,即m-2≠0且3-m2=-1,特別注意不要遺漏k≠0這一條件,也要防止出現(xiàn)3-m2=1的錯(cuò)誤
八年級(jí)數(shù)學(xué)下冊(cè)教案10
活動(dòng)1、提出問(wèn)題
一個(gè)運(yùn)動(dòng)場(chǎng)要修兩塊長(zhǎng)方形草坪,第一塊草坪的長(zhǎng)是10米,寬是米,第二塊草坪的長(zhǎng)是20米,寬也是米。你能告訴運(yùn)動(dòng)場(chǎng)的負(fù)責(zé)人要準(zhǔn)備多少面積的草皮嗎?
問(wèn)題:10+20是什么運(yùn)算?
活動(dòng)2、探究活動(dòng)
下列3個(gè)小題怎樣計(jì)算?
問(wèn)題:1)-還能繼續(xù)往下合并嗎?
2)看來(lái)二次根式有的能合并,有的不能合并,通過(guò)對(duì)以上幾個(gè)題的觀察,你能說(shuō)說(shuō)什么樣的二次根式能合并,什么樣的不能合并嗎?
二次根式加減時(shí),先將二次根式化簡(jiǎn)成最簡(jiǎn)二次根式后,再將被開(kāi)方數(shù)相同的進(jìn)行合并。
活動(dòng)3
練習(xí)1指出下列每組的二次根式中,哪些是可以合并的.二次根式?(字母均為正數(shù))
創(chuàng)設(shè)問(wèn)題情景,引起學(xué)生思考。
學(xué)生回答:這個(gè)運(yùn)動(dòng)場(chǎng)要準(zhǔn)備(10+20)平方米的草皮。
教師提問(wèn):學(xué)生思考并回答教師出示課題并說(shuō)明今天我們就共同來(lái)研究該如何進(jìn)行二次根式的加減法運(yùn)算。
我們可以利用已學(xué)知識(shí)或已有經(jīng)驗(yàn)來(lái)分組討論、交流,看看+到底等于什么?小組展示討論結(jié)果。
教師引導(dǎo)驗(yàn)證:
、僭O(shè)=,類比合并同類項(xiàng)或面積法;
、趯W(xué)生思考,得出先化簡(jiǎn),再合并的解題思路
、巯然(jiǎn),再合并
學(xué)生觀察并歸納:二次根式化為最簡(jiǎn)二次根式后,被開(kāi)方數(shù)相同的能合并。
教師巡視、指導(dǎo),學(xué)生完成、交流,師生評(píng)價(jià)。
提醒學(xué)生注意先化簡(jiǎn)成最簡(jiǎn)二次根式后再判斷。
八年級(jí)數(shù)學(xué)下冊(cè)教案11
教學(xué)目標(biāo)
。ㄒ唬┙虒W(xué)知識(shí)點(diǎn)
1.用分式表示生活中的一些量.
2.分式的基本性質(zhì)及分式的有關(guān)運(yùn)算法則.
3.分式方程的概念及其解法.
4.列分式方程,建立現(xiàn)實(shí)情境中的數(shù)學(xué)模型.
。ǘ┠芰τ(xùn)練要求
1.使學(xué)生有目的的梳理知識(shí),形成這一章完整的知識(shí)體系.
2.進(jìn)一步體驗(yàn)“類比”與“轉(zhuǎn)化”在學(xué)習(xí)分式的基本性質(zhì)、分式的運(yùn)算法則及其分式方程解法過(guò)程中的重要作用.
3.提高學(xué)生的歸納和概括能力,形成反思自己學(xué)習(xí)過(guò)程的意識(shí).
。ㄈ┣楦信c價(jià)值觀要求
使學(xué)生在總結(jié)學(xué)習(xí)經(jīng)驗(yàn)和活動(dòng)經(jīng)驗(yàn)的過(guò)程中,體驗(yàn)因?qū)W習(xí)方法的大力改進(jìn)而帶來(lái)的快樂(lè),成為一個(gè)樂(lè)于學(xué)習(xí)的人.
●教學(xué)重點(diǎn)
1.分式的概念及其基本性質(zhì).
2.分式的運(yùn)算法則.
3.分式方程的概念及其解法.
4.分式方程的應(yīng)用.
●教學(xué)難點(diǎn)
1.分式的運(yùn)算及分式方程的解法.
2.分式方程的應(yīng)用.
●教學(xué)方法
討論——交流法
討論交流本章學(xué)習(xí)過(guò)程中的經(jīng)驗(yàn)和收獲,在反思過(guò)程中建立知識(shí)體系.
●教具準(zhǔn)備
投影片兩張,實(shí)物投影儀
第一張:?jiǎn)栴}串,(記作§3.5A)
第二張:例題分析,(記作§3.5B)
●教學(xué)過(guò)程
Ⅰ.提出問(wèn)題,回顧本章的知識(shí).
出示投影片(§3.5A)
問(wèn)題串:
1.實(shí)際生活中的`一些量可以用分式表示,一些問(wèn)題可以通過(guò)列分式方程解決,請(qǐng)舉一例.
2.分式的性質(zhì)及有關(guān)運(yùn)算法則與分?jǐn)?shù)有什么異同?
3.如何解分式方程?它與解一元一次方程有何聯(lián)系與區(qū)別?
[師]同學(xué)們可針對(duì)以上問(wèn)題,以小組為單位討論、交流,然后在全班進(jìn)行交流.
(教師可參與于學(xué)生的討論中,注意掃除他們學(xué)習(xí)中常犯的錯(cuò)誤)
。凵輰(shí)際生活中的一些量可以用分式表示,例如(用實(shí)物投影)
某人在外面晨練,有m分鐘,他每分鐘走a米;有n分鐘,他每分鐘跑b米.求此人晨練平均每分鐘行多少米?
[生]我們組來(lái)回答此問(wèn)題,此人晨練時(shí)平均每分鐘行米.
我們組也舉出一個(gè)例子:長(zhǎng)方形的面積為8m2,長(zhǎng)為pm,寬為_(kāi)___________m.
[生]應(yīng)為m.
[師]同學(xué)們舉的例子都很有特色,誰(shuí)還能舉.
[生]如果某商品降價(jià)x%后的售價(jià)為a元,那么該商品的原價(jià)為多少元?
。凵菰瓋r(jià)為元.……
。蹘煟荻际欠质.分式有什么特點(diǎn)?和整式有何區(qū)別?
[生]整式A除以整式B,可表示成的形式,如果除式B中含有字母,則稱是分式.而整式分母中不含字母.
。凵輰(shí)際生活中的一些問(wèn)題可用分式方程來(lái)解決.例如(用實(shí)物投影儀)
某車間加工1200個(gè)零件后,采用了新工藝,工效是原來(lái)的1.5倍,這樣加工同樣多的零件就少用10h,采用新工藝前、后每時(shí)分別加工多少個(gè)零件?
解:設(shè)采用新工藝前、后每時(shí)分別加工x個(gè),1.5x個(gè),根據(jù)題意,得
八年級(jí)數(shù)學(xué)下冊(cè)教案12
一、內(nèi)容和內(nèi)容解析
1.內(nèi)容
二次根式的性質(zhì)。
2.內(nèi)容解析
本節(jié)教材是在學(xué)生學(xué)習(xí)二次根式概念的基礎(chǔ)上,結(jié)合二次根式的概念和算術(shù)平方根的概念,通過(guò)觀察、歸納和思考得到二次根式的兩個(gè)基本性質(zhì).
對(duì)于二次根式的性質(zhì),教材沒(méi)有直接從算術(shù)平方根的意義得到,而是考慮學(xué)生的年齡特征,先通過(guò) “探究”欄目中給出四個(gè)具體問(wèn)題,讓學(xué)生學(xué)生根據(jù)算術(shù)平方根的意義,就具體數(shù)字進(jìn)行分析得出結(jié)果,再分析這些結(jié)果的共同特征,由特殊到一般地歸納出結(jié)論.基于以上分析,確定本節(jié)課的教學(xué)重點(diǎn)為:理解二次根式的性質(zhì).
二、目標(biāo)和目標(biāo)解析
1.教學(xué)目標(biāo)
。1)經(jīng)歷探索二次根式的性質(zhì)的過(guò)程,并理解其意義;
(2)會(huì)運(yùn)用二次根式的性質(zhì)進(jìn)行二次根式的化簡(jiǎn);
(3)了解代數(shù)式的概念.
2.目標(biāo)解析
。1)學(xué)生能根據(jù)具體數(shù)字分析和算術(shù)平方根的意義,由特殊到一般地歸納出二次根式的性質(zhì),會(huì)用符號(hào)表述這一性質(zhì);
。2)學(xué)生能靈活運(yùn)用二次根式的性質(zhì)進(jìn)行二次根式的化簡(jiǎn);
(3)學(xué)生能從已學(xué)過(guò)的各種式子中,體會(huì)其共同特點(diǎn),得出代數(shù)式的概念.
三、教學(xué)問(wèn)題診斷分析
二次根式的性質(zhì)是二次根式化簡(jiǎn)和運(yùn)算的重要基礎(chǔ).學(xué)生根據(jù)二次根式的概念和算術(shù)平方根的意義,由特殊到一般地得出二次根式的'性質(zhì)后,重在能靈活運(yùn)用二次根式的性質(zhì)進(jìn)行二次根式的化簡(jiǎn)和解決一些綜合性較強(qiáng)的問(wèn)題.由于學(xué)生初次學(xué)習(xí)二次根式的性質(zhì),對(duì)二次根式性質(zhì)的靈活運(yùn)用存在一定的困難,突破這一難點(diǎn)需要教師精心設(shè)計(jì)好每一道習(xí)題,讓學(xué)生在練習(xí)中進(jìn)一步掌握二次根式的性質(zhì),培養(yǎng)其靈活運(yùn)用的能力.
本節(jié)課的教學(xué)難點(diǎn)為:二次根式性質(zhì)的靈活運(yùn)用.
四、教學(xué)過(guò)程設(shè)計(jì)
1.探究性質(zhì)1
問(wèn)題1 你能解釋下列式子的含義嗎?
師生活動(dòng):教師引導(dǎo)學(xué)生說(shuō)出每一個(gè)式子的含義.
【設(shè)計(jì)意圖】讓學(xué)生初步感知,這些式子都表示一個(gè)非負(fù)數(shù)的算術(shù)平方根的平方.
問(wèn)題2 根據(jù)算術(shù)平方根的意義填空,并說(shuō)出得到結(jié)論的依據(jù).
師生活動(dòng) 學(xué)生獨(dú)立完成填空后,讓學(xué)生展示其思維過(guò)程,說(shuō)出得到結(jié)論的依據(jù).
【設(shè)計(jì)意圖】學(xué)生通過(guò)計(jì)算或根據(jù)算術(shù)平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)1作鋪墊.
問(wèn)題3 從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個(gè)式子表示這個(gè)規(guī)律嗎?
師生活動(dòng):引導(dǎo)學(xué)生歸納得出二次根式的性質(zhì): ( ≥0).
【設(shè)計(jì)意圖】讓學(xué)生經(jīng)歷從特殊到一般的過(guò)程,概括出二次根式的性質(zhì)1,培養(yǎng)學(xué)生抽象概括的能力.
例2 計(jì)算
。1) ;(2) .
師生活動(dòng):學(xué)生獨(dú)立完成,集體訂正.
【設(shè)計(jì)意圖】鞏固二次根式的性質(zhì)1,學(xué)會(huì)靈活運(yùn)用.
2.探究性質(zhì)2
問(wèn)題4 你能解釋下列式子的含義嗎?
師生活動(dòng):教師引導(dǎo)學(xué)生說(shuō)出每一個(gè)式子的含義.
【設(shè)計(jì)意圖】讓學(xué)生初步感知,這些式子都表示一個(gè)數(shù)的平方的算術(shù)平方根.
問(wèn)題5 根據(jù)算術(shù)平方根的意義填空,并說(shuō)出得到結(jié)論的依據(jù).
師生活動(dòng) 學(xué)生獨(dú)立完成填空后,讓學(xué)生展示其思維過(guò)程,說(shuō)出得到結(jié)論的依據(jù).
【設(shè)計(jì)意圖】學(xué)生通過(guò)計(jì)算或根據(jù)算術(shù)平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)2作鋪墊.
問(wèn)題6 從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個(gè)式子表示這個(gè)規(guī)律嗎?
師生活動(dòng):引導(dǎo)學(xué)生歸納得出二次根式的性質(zhì): ( ≥0)
【設(shè)計(jì)意圖】讓學(xué)生經(jīng)歷從特殊到一般的過(guò)程,概括出二次根式的性質(zhì)2,培養(yǎng)學(xué)生抽象概括的能力.
例3 計(jì)算
。1) ;(2) .
師生活動(dòng):學(xué)生獨(dú)立完成,集體訂正.
【設(shè)計(jì)意圖】鞏固二次根式的性質(zhì)2,學(xué)會(huì)靈活運(yùn)用.
3.歸納代數(shù)式的概念
問(wèn)題7 回顧我們學(xué)過(guò)的式子,如, ( ≥0),這些式子有哪些共同特征?
師生活動(dòng):學(xué)生概括式子的共同特征,得出代數(shù)式的概念.
【設(shè)計(jì)意圖】學(xué)生通過(guò)觀察式子的共同特征,形成代數(shù)式的概念,培養(yǎng)學(xué)生的概括能力.
4.綜合運(yùn)用
。1)算一算:
【設(shè)計(jì)意圖】設(shè)計(jì)有一定綜合性的題目,考查學(xué)生的靈活運(yùn)用的能力,第(2)、(3)、(4)小題要特別注意結(jié)果的符號(hào).
。2)想一想: 中, 的取值范圍是什么?當(dāng) ≥0時(shí), 等于多少?當(dāng) 時(shí), 又等于多少?
【設(shè)計(jì)意圖】通過(guò)此問(wèn)題的設(shè)計(jì),加深學(xué)生對(duì) 的理解,開(kāi)闊學(xué)生的視野,訓(xùn)練學(xué)生的思維.
(3)談一談你對(duì) 與 的認(rèn)識(shí).
【設(shè)計(jì)意圖】加深學(xué)生對(duì)二次根式性質(zhì)的理解.
5.總結(jié)反思
。1)你知道了二次根式的哪些性質(zhì)?
。2)運(yùn)用二次根式性質(zhì)進(jìn)行化簡(jiǎn)需要注意什么?
(3)請(qǐng)談?wù)劙l(fā)現(xiàn)二次根式性質(zhì)的思考過(guò)程?
。4)想一想,到現(xiàn)在為止,你學(xué)習(xí)了哪幾類字母表示數(shù)得到的式子?說(shuō)說(shuō)你對(duì)代數(shù)式的認(rèn)識(shí).
6.布置作業(yè):教科書習(xí)題16.1第2,4題.
五、目標(biāo)檢測(cè)設(shè)計(jì)
1. ; ; .
【設(shè)計(jì)意圖】考查對(duì)二次根式性質(zhì)的理解.
2.下列運(yùn)算正確的是( )
A. B. C. D.
【設(shè)計(jì)意圖】考查學(xué)生運(yùn)用二次根式的性質(zhì)進(jìn)行化簡(jiǎn)的能力.
3.若 ,則 的取值范圍是 .
【設(shè)計(jì)意圖】考查學(xué)生對(duì)一個(gè)數(shù)非負(fù)數(shù)的算術(shù)平方根的理解.
4.計(jì)算: .
【設(shè)計(jì)意圖】考查二次根式性質(zhì)的靈活運(yùn)用.
八年級(jí)數(shù)學(xué)下冊(cè)教案13
第一步;理解體驗(yàn):
1、復(fù)習(xí)平均數(shù)、中位數(shù)和眾數(shù)定義
2、引入課本P146R的例子
思路點(diǎn)撥:商場(chǎng)統(tǒng)計(jì)每位營(yíng)業(yè)員在某月的銷售額組成一個(gè)樣本,從樣本數(shù)據(jù)中的平均數(shù)、中位數(shù)、眾數(shù)中得到信息估計(jì)總體的趨勢(shì),達(dá)到問(wèn)題的解決。
由例題中(2)問(wèn)和(3)問(wèn)的不同,導(dǎo)致結(jié)果的不同,其目的是告訴學(xué)生應(yīng)該根據(jù)題目具體要求來(lái)靈活運(yùn)用三個(gè)數(shù)據(jù)代表解決問(wèn)題。
本例題也客觀的反映了數(shù)學(xué)知識(shí)對(duì)生活實(shí)踐的指導(dǎo)有重要的`意義,也體現(xiàn)了統(tǒng)計(jì)知識(shí)與生活實(shí)踐是緊密聯(lián)系的。
第二步:總結(jié)提升:
平均數(shù)、眾數(shù)和中位數(shù)這三個(gè)數(shù)據(jù)代表的異同:
平均數(shù)、中位數(shù)和眾數(shù)都可以作為一組數(shù)據(jù)的代表,主要描述一組數(shù)據(jù)集中趨勢(shì)的量。平均數(shù)是應(yīng)用較多的一種量
平均數(shù)計(jì)算要用到所有的數(shù)據(jù),它能夠充分利用所有的數(shù)據(jù)信息,但它受極端值的影響較大.
眾數(shù)是當(dāng)一組數(shù)據(jù)中某一數(shù)據(jù)重復(fù)出現(xiàn)較多時(shí),人們往往關(guān)心的一個(gè)量,眾數(shù)不受極端值的影響,這是它的一個(gè)優(yōu)勢(shì),中位數(shù)的計(jì)算很少也不受極端值的影響.
平均數(shù)的大小與一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)均有關(guān)系,任何一個(gè)數(shù)據(jù)的變動(dòng)都會(huì)相應(yīng)引起平均數(shù)的變動(dòng).
中位數(shù)僅與數(shù)據(jù)的排列位置有關(guān),某些數(shù)據(jù)的移動(dòng)對(duì)中位數(shù)沒(méi)有影響,中位數(shù)可能出現(xiàn)在所給數(shù)據(jù)中也可能不在所給的數(shù)據(jù)中,當(dāng)一組數(shù)據(jù)中的個(gè)別數(shù)據(jù)變動(dòng)較大時(shí),可用中位數(shù)描述其趨勢(shì).
實(shí)際問(wèn)題中求得的平均數(shù),眾數(shù),中位數(shù)應(yīng)帶上單位.
第三步:隨堂練習(xí):
1、在一次環(huán)保知識(shí)競(jìng)賽中,某班50名學(xué)生成績(jī)?nèi)缦卤硭荆?/p>
得分5060708090100110120
人數(shù)2361415541
分別求出這些學(xué)生成績(jī)的眾數(shù)、中位數(shù)和平均數(shù).
2、公園里有甲、乙兩群游客正在做團(tuán)體游戲,兩群游客的年齡如下:(單位:歲)
甲群:13、13、14、15、15、15、16、17、17。
乙群:3、4、4、5、5、6、6、54、57。
。1)、甲群游客的平均年齡是歲,中位數(shù)是歲,眾數(shù)是歲,其中能較好反映甲群游客年齡特征的是。
。2)、乙群游客的平均年齡是歲,中位數(shù)是歲,眾數(shù)是歲。其中能較好反映乙群游客年齡特征的是。
答案:1.眾數(shù)90中位數(shù)85平均數(shù)84.6
2.(1)15、15、15、眾數(shù)(2).15、5.5、6、中位數(shù)
第四步:課后練習(xí):
1、某公司的33名職工的月工資(以元為單位)如下:
職員董事長(zhǎng)副董事長(zhǎng)董事總經(jīng)理經(jīng)理管理員職員
人數(shù)11215320
工資5500500035003000250020001500
。1)、求該公司職員月工資的平均數(shù)、中位數(shù)、眾數(shù)?
。2)、假設(shè)副董事長(zhǎng)的工資從5000元提升到20000元,董事長(zhǎng)的工資從5500元提升到30000元,那么新的平均數(shù)、中位數(shù)、眾數(shù)又是什么?(精確到元)
。3)、你認(rèn)為應(yīng)該使用平均數(shù)和中位數(shù)中哪一個(gè)來(lái)描述該公司職工的工資水平?
2、某公司有15名員工,它們所在的部門及相應(yīng)每人所創(chuàng)的年利潤(rùn)如下表示
八年級(jí)數(shù)學(xué)下冊(cè)教案14
一、教學(xué)目標(biāo)
1、理解分式的基本性質(zhì)。
2、會(huì)用分式的基本性質(zhì)將分式變形。
二、重點(diǎn)、難點(diǎn)
1、重點(diǎn):理解分式的基本性質(zhì)。
2、難點(diǎn):靈活應(yīng)用分式的基本性質(zhì)將分式變形。
3、認(rèn)知難點(diǎn)與突破方法
教學(xué)難點(diǎn)是靈活應(yīng)用分式的基本性質(zhì)將分式變形。突破的方法是通過(guò)復(fù)習(xí)分?jǐn)?shù)的通分、約分總結(jié)出分?jǐn)?shù)的基本性質(zhì),再用類比的方法得出分式的基本性質(zhì)。應(yīng)用分式的基本性質(zhì)導(dǎo)出通分、約分的概念,使學(xué)生在理解的基礎(chǔ)上靈活地將分式變形。
三、練習(xí)題的意圖分析
1、P7的例2是使學(xué)生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應(yīng)用分式的基本性質(zhì),相應(yīng)地把分子(或分母)乘以或除以了這個(gè)整式,填到括號(hào)里作為答案,使分式的值不變。
2、P9的例3、例4地目的是進(jìn)一步運(yùn)用分式的基本性質(zhì)進(jìn)行約分、通分。值得注意的是:約分是要找準(zhǔn)分子和分母的公因式,最后的結(jié)果要是最簡(jiǎn)分式;通分是要正確地確定各個(gè)分母的最簡(jiǎn)公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡(jiǎn)公分母。
教師要講清方法,還要及時(shí)地糾正學(xué)生做題時(shí)出現(xiàn)的錯(cuò)誤,使學(xué)生在做提示加深對(duì)相應(yīng)概念及方法的理解。
3。P11習(xí)題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“—”號(hào)。這一類題教材里沒(méi)有例題,但它也是由分式的基本性質(zhì)得出分子、分母和分式本身的符號(hào),改變其中任何兩個(gè),分式的值不變。
“不改變分式的值,使分式的分子和分母都不含‘—’號(hào)”是分式的基本性質(zhì)的應(yīng)用之一,所以補(bǔ)充例5。
四、課堂引入
1、請(qǐng)同學(xué)們考慮:與相等嗎?與相等嗎?為什么?
2、說(shuō)出與之間變形的過(guò)程,與之間變形的過(guò)程,并說(shuō)出變形依據(jù)?
3、提問(wèn)分?jǐn)?shù)的基本性質(zhì),讓學(xué)生類比猜想出分式的基本性質(zhì)。
五、例題講解
P7例2。填空:
[分析]應(yīng)用分式的基本性質(zhì)把已知的.分子、分母同乘以或除以同一個(gè)整式,使分式的值不變。
P11例3。約分:
[分析]約分是應(yīng)用分式的基本性質(zhì)把分式的分子、分母同除以同一個(gè)整式,使分式的值不變。所以要找準(zhǔn)分子和分母的公因式,約分的結(jié)果要是最簡(jiǎn)分式。
P11例4。通分:
[分析]通分要想確定各分式的公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡(jiǎn)公分母。
八年級(jí)數(shù)學(xué)下冊(cè)教案15
一、目標(biāo)要求
1.理解掌握分式的四則混合運(yùn)算的順序。
2.能正確熟練地進(jìn)行分式的加、減、乘、除混合運(yùn)算。
二、重點(diǎn)難點(diǎn)
重點(diǎn):分式的加、減、乘、除混合運(yùn)算的順序。
難點(diǎn):分式的`加、減、乘、除混合運(yùn)算。
分式的加、減、乘、除混合運(yùn)算的順序是先進(jìn)行乘、除運(yùn)算,再進(jìn)行加、減運(yùn)算,遇有括號(hào),先算括號(hào)內(nèi)的。
三、解題方法指導(dǎo)
【例1】計(jì)算:(1)[++(+)]·;
。2)(x-y-)(x+y-)÷[3(x+y)-]。
分析:分式的四則混合運(yùn)算要注意運(yùn)算順序及括號(hào)的關(guān)系。
解:(1)原式=[++]·=[++]·=·==。
。2)原式=·÷=··=y-x。
【例2】計(jì)算:(1)(-+)·(a3-b3);
(2)(-)÷。
解:(1)原式=-+=-+ab
=a2+ab+b2-(a2-b2)-ab
=a2+ab+b2-a2+b2-ab=2b2。
。2)原式=[-]·=-=-====。
說(shuō)明:分式的加、減、乘、除混合運(yùn)算注意以下幾點(diǎn):
。1)一般按分式的運(yùn)算順序法則進(jìn)行計(jì)算,但恰當(dāng)?shù)厥褂眠\(yùn)算律會(huì)使運(yùn)算簡(jiǎn)便。
。2)要隨時(shí)注意分子、分母可進(jìn)行因式分解的式子,以備約分或通分時(shí)備用,可避免運(yùn)算煩瑣。
。3)注意括號(hào)的“添”或“去”、“變大”與“變小”。
。4)結(jié)果要化為最簡(jiǎn)分式。
四、激活思維訓(xùn)練
▲知識(shí)點(diǎn):求分式的值
【例】已知x+=3,求下列各式的值:
【八年級(jí)數(shù)學(xué)下冊(cè)教案】相關(guān)文章:
八年級(jí)數(shù)學(xué)下冊(cè)教案05-16
八年級(jí)數(shù)學(xué)下冊(cè)教案01-10
數(shù)學(xué)下冊(cè)教案03-16
人教版八年級(jí)數(shù)學(xué)下冊(cè)教案04-27
八年級(jí)下冊(cè)數(shù)學(xué)教案01-01
八年級(jí)數(shù)學(xué)下冊(cè)教案(15篇)02-20
八年級(jí)數(shù)學(xué)下冊(cè)教案15篇01-10