丁香婷婷网,黄色av网站裸体无码www,亚洲午夜无码精品一级毛片,国产一区二区免费播放

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>高中數(shù)學(xué)并集教案

高中數(shù)學(xué)并集教案

時(shí)間:2024-01-21 07:32:46 數(shù)學(xué)教案 我要投稿
  • 相關(guān)推薦

高中數(shù)學(xué)并集教案模板

  作為一位杰出的教職工,總歸要編寫教案,編寫教案有利于我們準(zhǔn)確把握教材的重點(diǎn)與難點(diǎn),進(jìn)而選擇恰當(dāng)?shù)慕虒W(xué)方法?靵韰⒖冀贪甘窃趺磳懙陌!下面是小編為大家整理的高中數(shù)學(xué)并集教案模板,歡迎閱讀,希望大家能夠喜歡。

高中數(shù)學(xué)并集教案模板

高中數(shù)學(xué)并集教案模板1

  一、教學(xué)目標(biāo)

  知識(shí)與技能:

  理解任意角的概念(包括正角、負(fù)角、零角)與區(qū)間角的概念。

  過程與方法:

  會(huì)建立直角坐標(biāo)系討論任意角,能判斷象限角,會(huì)書寫終邊相同角的集合;掌握區(qū)間角的集合的書寫。

  情感態(tài)度與價(jià)值觀:

  1、提高學(xué)生的推理能力;

  2、培養(yǎng)學(xué)生應(yīng)用意識(shí)。

  二、教學(xué)重點(diǎn)、難點(diǎn):

  教學(xué)重點(diǎn):

  任意角概念的理解;區(qū)間角的集合的書寫。

  教學(xué)難點(diǎn):

  終邊相同角的.集合的表示;區(qū)間角的集合的書寫。

  三、教學(xué)過程

  (一)導(dǎo)入新課

  1、回顧角的定義

  ①角的第一種定義是有公共端點(diǎn)的兩條射線組成的圖形叫做角。

  ②角的第二種定義是角可以看成平面內(nèi)一條射線繞著端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形。

  (二)教學(xué)新課

  1、角的有關(guān)概念:

  ①角的定義:

  角可以看成平面內(nèi)一條射線繞著端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形。

 、诮堑拿Q:

  注意:

  ⑴在不引起混淆的情況下,“角α ”或“∠α ”可以簡(jiǎn)化成“α ”;

 、屏憬堑慕K邊與始邊重合,如果α是零角α =0°;

 、墙堑母拍罱(jīng)過推廣后,已包括正角、負(fù)角和零角。

 、菥毩(xí):請(qǐng)說出角α、β、γ各是多少度?

  2、象限角的概念:

 、俣x:若將角頂點(diǎn)與原點(diǎn)重合,角的始邊與x軸的非負(fù)半軸重合,那么角的終邊(端點(diǎn)除外)在第幾象限,我們就說這個(gè)角是第幾象限角。

  例1、如圖⑴⑵中的角分別屬于第幾象限角?

高中數(shù)學(xué)并集教案模板2

  教學(xué)目標(biāo)

  1、理解等比數(shù)列的概念,掌握等比數(shù)列的通項(xiàng)公式,并能運(yùn)用公式解決簡(jiǎn)單的問題。

 。1)正確理解等比數(shù)列的定義,了解公比的概念,明確一個(gè)數(shù)列是等比數(shù)列的限定條件,能根據(jù)定義判斷一個(gè)數(shù)列是等比數(shù)列,了解等比中項(xiàng)的概念;

 。2)正確認(rèn)識(shí)使用等比數(shù)列的表示法,能靈活運(yùn)用通項(xiàng)公式求等比數(shù)列的首項(xiàng)、公比、項(xiàng)數(shù)及指定的項(xiàng);

  (3)通過通項(xiàng)公式認(rèn)識(shí)等比數(shù)列的性質(zhì),能解決某些實(shí)際問題。

  2、通過對(duì)等比數(shù)列的研究,逐步培養(yǎng)學(xué)生觀察、類比、歸納、猜想等思維品質(zhì)。

  3、通過對(duì)等比數(shù)列概念的歸納,進(jìn)一步培養(yǎng)學(xué)生嚴(yán)密的思維習(xí)慣,以及實(shí)事求是的科學(xué)態(tài)度。

  教學(xué)建議

  教材分析

 。1)知識(shí)結(jié)構(gòu)

  等比數(shù)列是另一個(gè)簡(jiǎn)單常見的數(shù)列,研究?jī)?nèi)容可與等差數(shù)列類比,首先歸納出等比數(shù)列的定義,導(dǎo)出通項(xiàng)公式,進(jìn)而研究圖像,又給出等比中項(xiàng)的概念,最后是通項(xiàng)公式的應(yīng)用。

 。2)重點(diǎn)、難點(diǎn)分析

  教學(xué)重點(diǎn)是等比數(shù)列的定義和對(duì)通項(xiàng)公式的認(rèn)識(shí)與應(yīng)用,教學(xué)難點(diǎn)在于等比數(shù)列通項(xiàng)公式的推導(dǎo)和運(yùn)用。

 、倥c等差數(shù)列一樣,等比數(shù)列也是特殊的數(shù)列,二者有許多相同的性質(zhì),但也有明顯的區(qū)別,可根據(jù)定義與通項(xiàng)公式得出等比數(shù)列的特性,這些是教學(xué)的重點(diǎn)。

  ②雖然在等差數(shù)列的學(xué)習(xí)中曾接觸過不完全歸納法,但對(duì)學(xué)生來說仍然不熟悉;在推導(dǎo)過程中,需要學(xué)生有一定的.觀察分析猜想能力;第一項(xiàng)是否成立又須補(bǔ)充說明,所以通項(xiàng)公式的推導(dǎo)是難點(diǎn)。

 、蹖(duì)等差數(shù)列、等比數(shù)列的綜合研究離不開通項(xiàng)公式,因而通項(xiàng)公式的靈活運(yùn)用既是重點(diǎn)又是難點(diǎn)。

  教學(xué)建議

 。1)建議本節(jié)課分兩課時(shí),一節(jié)課為等比數(shù)列的概念,一節(jié)課為等比數(shù)列通項(xiàng)公式的應(yīng)用。

  (2)等比數(shù)列概念的引入,可給出幾個(gè)具體的例子,由學(xué)生概括這些數(shù)列的相同特征,從而得到等比數(shù)列的定義。也可將幾個(gè)等差數(shù)列和幾個(gè)等比數(shù)列混在一起給出,由學(xué)生將這些數(shù)列進(jìn)行分類,有一種是按等差、等比來分的,由此對(duì)比地概括等比數(shù)列的定義。

 。3)根據(jù)定義讓學(xué)生分析等比數(shù)列的公比不為0,以及每一項(xiàng)均不為0的特性,加深對(duì)概念的理解。

 。4)對(duì)比等差數(shù)列的表示法,由學(xué)生歸納等比數(shù)列的各種表示法。啟發(fā)學(xué)生用函數(shù)觀點(diǎn)認(rèn)識(shí)通項(xiàng)公式,由通項(xiàng)公式的結(jié)構(gòu)特征畫數(shù)列的圖象。

 。5)由于有了等差數(shù)列的研究經(jīng)驗(yàn),等比數(shù)列的研究完全可以放手讓學(xué)生自己解決,教師只需把握課堂的節(jié)奏,作為一節(jié)課的組織者出現(xiàn)。

 。6)可讓學(xué)生相互出題,解題,講題,充分發(fā)揮學(xué)生的主體作用。

高中數(shù)學(xué)并集教案模板3

  一、知識(shí)與技能

  1、了解公差的概念,明確一個(gè)數(shù)列是等差數(shù)列的限定條件,能根據(jù)定義判斷一個(gè)數(shù)列是等差數(shù)列;

  2、正確認(rèn)識(shí)使用等差數(shù)列的各種表示法,能靈活運(yùn)用通項(xiàng)公式求等差數(shù)列的首項(xiàng)、公差、項(xiàng)數(shù)、指定的項(xiàng)。

  二、過程與方法

  1、通過對(duì)等差數(shù)列通項(xiàng)公式的推導(dǎo)培養(yǎng)學(xué)生:的觀察力及歸納推理能力;

  2、通過等差數(shù)列變形公式的教學(xué)培養(yǎng)學(xué)生:思維的深刻性和靈活性。

  三、情感態(tài)度與價(jià)值觀

  通過等差數(shù)列概念的歸納概括,培養(yǎng)學(xué)生:的觀察、分析資料的能力,積極思維,追求新知的創(chuàng)新意識(shí)。

  教學(xué)過程

  導(dǎo)入新課

  師:上兩節(jié)課我們學(xué)習(xí)了數(shù)列的定義以及給出數(shù)列和表示數(shù)列的幾種方法——列舉法、通項(xiàng)公式、遞推公式、圖象法。這些方法從不同的角度反映數(shù)列的特點(diǎn)。下面我們看這樣一些數(shù)列的例子:(課本p41頁(yè)的4個(gè)例子)

  (1)0,5,10,15,20,25,…;

  (2)48,53,58,63,…;

  (3)18,15、5,13,10、5,8,5、5…;

  (4)10 072,10 144,10 216,10 288,10 366,…、

  請(qǐng)你們來寫出上述四個(gè)數(shù)列的第7項(xiàng)。

  生:第一個(gè)數(shù)列的第7項(xiàng)為30,第二個(gè)數(shù)列的第7項(xiàng)為78,第三個(gè)數(shù)列的第7項(xiàng)為3,第四個(gè)數(shù)列的第7項(xiàng)為10 510、

  師:我來問一下,你依據(jù)什么寫出了這四個(gè)數(shù)列的第7項(xiàng)呢?以第二個(gè)數(shù)列為例來說一說。

  生:這是由第二個(gè)數(shù)列的后一項(xiàng)總比前一項(xiàng)多5,依據(jù)這個(gè)規(guī)律性我得到了這個(gè)數(shù)列的第7項(xiàng)為78、

  師:說得很有道理!我再請(qǐng)同學(xué)們仔細(xì)觀察一下,看看以上四個(gè)數(shù)列有什么共同特征?我說的是共同特征。

  生:1每相鄰兩項(xiàng)的差相等,都等于同一個(gè)常數(shù)。

  師:作差是否有順序,誰與誰相減?

  生:1作差的順序是后項(xiàng)減前項(xiàng),不能顛倒。

  師:以上四個(gè)數(shù)列的共同特征:從第二項(xiàng)起,每一項(xiàng)與它前面一項(xiàng)的差等于同一個(gè)常數(shù)(即等差);我們給具有這種特征的數(shù)列起一個(gè)名字叫——等差數(shù)列。

  這就是我們這節(jié)課要研究的內(nèi)容。

  推進(jìn)新課

  等差數(shù)列的定義:一般地,如果一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)與它前一項(xiàng)的差等于同一個(gè)常數(shù),這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)就叫做等差數(shù)列的公差(常用字母“d”表示)、

  (1)公差d一定是由后項(xiàng)減前項(xiàng)所得,而不能用前項(xiàng)減后項(xiàng)來求;

 。2)對(duì)于數(shù)列{an},若an-a n-1=d(與n無關(guān)的數(shù)或字母),n≥2,n∈n*,則此數(shù)列是等差數(shù)列,d叫做公差。

  師:定義中的關(guān)鍵字是什么?(學(xué)生:在學(xué)習(xí)中經(jīng)常遇到一些概念,能否抓住定義中的關(guān)鍵字,是能否正確地、深入的理解和掌握概念的重要條件,更是學(xué)好數(shù)學(xué)及其他學(xué)科的重要一環(huán)。因此教師:應(yīng)該教會(huì)學(xué)生:如何深入理解一個(gè)概念,以培養(yǎng)學(xué)生:分析問題、認(rèn)識(shí)問題的能力)

  生:從“第二項(xiàng)起”和“同一個(gè)常數(shù)”。

  師:很好!

  師:請(qǐng)同學(xué)們思考:數(shù)列(1)、(2)、(3)、(4)的通項(xiàng)公式存在嗎?如果存在,分別是什么?

  生:數(shù)列(1)通項(xiàng)公式為5n-5,數(shù)列(2)通項(xiàng)公式為5n+43,數(shù)列(3)通項(xiàng)公式為2、5n-15、5,…、

  師:好,這位同學(xué)用上節(jié)課學(xué)到的`知識(shí)求出了這幾個(gè)數(shù)列的通項(xiàng)公式,實(shí)質(zhì)上這幾個(gè)通項(xiàng)公式有共同的特點(diǎn),無論是在求解方法上,還是在所求的結(jié)果方面都存在許多共性,下面我們來共同思考。

  [合作探究]

  等差數(shù)列的通項(xiàng)公式

  師:等差數(shù)列定義是由一數(shù)列相鄰兩項(xiàng)之間關(guān)系而得到的,若一個(gè)等差數(shù)列{an}的首項(xiàng)是a1,公差是d,則據(jù)其定義可得什么?

  生:a2-a1=d,即a2=a1+d、

  師:對(duì),繼續(xù)說下去!

  生:a3-a2=d,即a3=a2+d=a1+2d;

  a4-a3=d,即a4=a3+d=a1+3d;

  ……

  師:好!規(guī)律性的東西讓你找出來了,你能由此歸納出等差數(shù)列的通項(xiàng)公式嗎?

  生:由上述各式可以歸納出等差數(shù)列的通項(xiàng)公式是an=a1+(n-1)d、

  師:很好!這樣說來,若已知一數(shù)列為等差數(shù)列,則只要知其首項(xiàng)a1和公差d,便可求得其通項(xiàng)an了。需要說明的是:此公式只是等差數(shù)列通項(xiàng)公式的猜想,你能證明它嗎?

  生:前面已學(xué)過一種方法叫迭加法,我認(rèn)為可以用。證明過程是這樣的:

  因?yàn)閍2-a1=d,a3-a2=d,a4-a3=d,…,an-an-1=d、將它們相加便可以得到:an=a1+(n-1)d、

  師:太好了!真是活學(xué)活用。∵@樣一來我們通過證明就可以放心使用這個(gè)通項(xiàng)公式了。

 。劢處煟壕v]

  由上述關(guān)系還可得:am=a1+(m-1)d,即a1=am-(m-1)d、

  則an=a1+(n-1)d=am-(m-1)d+(n-1)d=am+(n-m)d,即等差數(shù)列的第二通項(xiàng)公式an=am+(n-m)d、(這是變通的通項(xiàng)公式)

  由此我們還可以得到。

 。劾}剖析]

  ?例1】(1)求等差數(shù)列8,5,2,…的第20項(xiàng);

 。2)-401是不是等差數(shù)列-5,-9,-13…的項(xiàng)?如果是,是第幾項(xiàng)?

  師:這個(gè)等差數(shù)列的首項(xiàng)和公差分別是什么?你能求出它的第20項(xiàng)嗎?

  生:1這題太簡(jiǎn)單了!首項(xiàng)和公差分別是a1=8,d=5-8=2-5=-3、又因?yàn)閚=20,所以由等差數(shù)列的通項(xiàng)公式,得a20=8+(20-1)×(-3)=-49、

  師:好!下面我們來看看第(2)小題怎么做。

  生:2由a1=-5,d=-9-(-5)=-4得數(shù)列通項(xiàng)公式為an=-5-4(n-1)、

  由題意可知,本題是要回答是否存在正整數(shù)n,使得-401=-5-4(n-1)成立,解之,得n=100,即-401是這個(gè)數(shù)列的第100項(xiàng)。

  師:剛才兩個(gè)同學(xué)將問題解決得很好,我們做本例的目的是為了熟悉公式,實(shí)質(zhì)上通項(xiàng)公式就是an,a1,d,n組成的方程(獨(dú)立的量有三個(gè))、

  說明:(1)強(qiáng)調(diào)當(dāng)數(shù)列{an}的項(xiàng)數(shù)n已知時(shí),下標(biāo)應(yīng)是確切的數(shù)字;(2)實(shí)際上是求一個(gè)方程的正整數(shù)解的問題。這類問題學(xué)生:以前見得較少,可向?qū)W生:著重點(diǎn)出本問題的實(shí)質(zhì):要判斷-401是不是數(shù)列的項(xiàng),關(guān)鍵是求出數(shù)列的通項(xiàng)公式an,判斷是否存在正整數(shù)n,使得an=-401成立。

  ?例2】已知數(shù)列{an}的通項(xiàng)公式an=pn+q,其中p、q是常數(shù),那么這個(gè)數(shù)列是否一定是等差數(shù)列?若是,首項(xiàng)與公差分別是什么?

  例題分析:

  師:由等差數(shù)列的定義,要判定{an}是不是等差數(shù)列,只要根據(jù)什么?

  生:只要看差an-an-1(n≥2)是不是一個(gè)與n無關(guān)的常數(shù)。

  師:說得對(duì),請(qǐng)你來求解。

  生:當(dāng)n≥2時(shí),〔取數(shù)列{an}中的任意相鄰兩項(xiàng)an-1與an(n≥2)〕

  an-an-1=(pn+1)-[p(n-1)+q]=pn+q-(pn-p+q)=p為常數(shù),所以我們說{an}是等差數(shù)列,首項(xiàng)a1=p+q,公差為p、

  師:這里要重點(diǎn)說明的是:

  (1)若p=0,則{an}是公差為0的等差數(shù)列,即為常數(shù)列q,q,q,…、

  (2)若p≠0,則an是關(guān)于n的一次式,從圖象上看,表示數(shù)列的各點(diǎn)(n,an)均在一次函數(shù)y=px+q的圖象上,一次項(xiàng)的系數(shù)是公差p,直線在y軸上的截距為q、

  (3)數(shù)列{an}為等差數(shù)列的充要條件是其通項(xiàng)an=pn+q(p、q是常數(shù)),稱其為第3通項(xiàng)公式。課堂練習(xí)

  (1)求等差數(shù)列3,7,11,…的第4項(xiàng)與第10項(xiàng)。

  分析:根據(jù)所給數(shù)列的前3項(xiàng)求得首項(xiàng)和公差,寫出該數(shù)列的通項(xiàng)公式,從而求出所┣笙。

  解:根據(jù)題意可知a1=3,d=7-3=4、∴該數(shù)列的通項(xiàng)公式為an=3+(n-1)×4,即an=4n-1(n≥1,n∈n*)、∴a4=4×4-1=15,a 10=4×10-1=39、

  評(píng)述:關(guān)鍵是求出通項(xiàng)公式。

  (2)求等差數(shù)列10,8,6,…的第20項(xiàng)。

  解:根據(jù)題意可知a1=10,d=8-10=-2、

  所以該數(shù)列的通項(xiàng)公式為an=10+(n-1)×(-2),即an=-2n+12,所以a20=-2×20+12=-28、

  評(píng)述:要求學(xué)生:注意解題步驟的規(guī)范性與準(zhǔn)確性。

  (3)100是不是等差數(shù)列2,9,16,…的項(xiàng)?如果是,是第幾項(xiàng)?如果不是,請(qǐng)說明理由。

  分析:要想判斷一個(gè)數(shù)是否為某一個(gè)數(shù)列的其中一項(xiàng),其關(guān)鍵是要看是否存在一個(gè)正整數(shù)n值,使得an等于這個(gè)數(shù)。

  解:根據(jù)題意可得a1=2,d=9-2=7、因而此數(shù)列通項(xiàng)公式為an=2+(n-1)×7=7n-5、

  令7n-5=100,解得n=15、所以100是這個(gè)數(shù)列的第15項(xiàng)。

  (4)-20是不是等差數(shù)列0,-7,…的項(xiàng)?如果是,是第幾項(xiàng)?如果不是,請(qǐng)說明理由。

  解:由題意可知a1=0,,因而此數(shù)列的通項(xiàng)公式為。

  令,解得。因?yàn)闆]有正整數(shù)解,所以-20不是這個(gè)數(shù)列的項(xiàng)。

  課堂小結(jié)

  師:(1)本節(jié)課你們學(xué)了什么?(2)要注意什么?(3)在生:活中能否運(yùn)用?(讓學(xué)生:反思、歸納、總結(jié),這樣來培養(yǎng)學(xué)生:的概括能力、表達(dá)能力)

  生:通過本課時(shí)的學(xué)習(xí),首先要理解和掌握等差數(shù)列的定義及數(shù)學(xué)表達(dá)式a n-a n-1=d(n≥2);其次要會(huì)推導(dǎo)等差數(shù)列的通項(xiàng)公式an=a1+(n-1)d(n≥1)、

高中數(shù)學(xué)并集教案模板4

  教學(xué)目標(biāo):

  1.結(jié)合實(shí)際問題情景,理解分層抽樣的必要性和重要性;

  2.學(xué)會(huì)用分層抽樣的方法從總體中抽取樣本;

  3.并對(duì)簡(jiǎn)單隨機(jī)抽樣、系統(tǒng)抽樣及分層抽樣方法進(jìn)行比較,揭示其相互關(guān)系.

  教學(xué)重點(diǎn):

  通過實(shí)例理解分層抽樣的方法.

  教學(xué)難點(diǎn):

  分層抽樣的步驟.

  教學(xué)過程:

  一、問題情境

  1.復(fù)習(xí)簡(jiǎn)單隨機(jī)抽樣、系統(tǒng)抽樣的概念、特征以及適用范圍.

  2.實(shí)例:某校高一、高二和高三年級(jí)分別有學(xué)生名,為了了解全校學(xué)生的視力情況,從中抽取容量為的樣本,怎樣抽取較為合理?

  二、學(xué)生活動(dòng)

  能否用簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)抽樣進(jìn)行抽樣,為什么?

  指出由于不同年級(jí)的學(xué)生視力狀況有一定的差異,用簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)抽樣進(jìn)行抽樣不能準(zhǔn)確反映客觀實(shí)際,在抽樣時(shí)不僅要使每個(gè)個(gè)體被抽到的機(jī)會(huì)相等,還要注意總體中個(gè)體的層次性.

  由于樣本的容量與總體的個(gè)體數(shù)的比為100∶2500=1∶25,所以在各年級(jí)抽取的個(gè)體數(shù)依次是,即40,32,28.

  三、建構(gòu)數(shù)學(xué)

  1.分層抽樣:當(dāng)已知總體由差異明顯的幾部分組成時(shí),為了使樣本更客觀地反映總體的情況,常將總體按不同的特點(diǎn)分成層次比較分明的幾部分,然后按各部分在總體中所占的比進(jìn)行抽樣,這種抽樣叫做分層抽樣,其中所分成的各部分叫“層”.

  說明:①分層抽樣時(shí),由于各部分抽取的個(gè)體數(shù)與這一部分個(gè)體數(shù)的比等于樣本容量與總體的個(gè)體數(shù)的比,每一個(gè)個(gè)體被抽到的可能性都是相等的;

 、谟捎诜謱映闃映浞掷昧宋覀兯莆盏男畔,使樣本具有較好的代表性,而且在各層抽樣時(shí)可以根據(jù)具體情況采取不同的抽樣方法,所以分層抽樣在實(shí)踐中有著非常廣泛的應(yīng)用.

  2.三種抽樣方法對(duì)照表:

  類別

  共同點(diǎn)

  各自特點(diǎn)

  相互聯(lián)系

  適用范圍

  簡(jiǎn)單隨機(jī)抽樣

  抽樣過程中每個(gè)個(gè)體被抽取的概率是相同的

  從總體中逐個(gè)抽取

  總體中的個(gè)體數(shù)較少

  系統(tǒng)抽樣

  將總體均分成幾個(gè)部分,按事先確定的規(guī)則在各部分抽取

  在第一部分抽樣時(shí)采用簡(jiǎn)單隨機(jī)抽樣

  總體中的個(gè)體數(shù)較多

  分層抽樣

  將總體分成幾層,分層進(jìn)行抽取

  各層抽樣時(shí)采用簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)

  總體由差異明顯的幾部分組成

  3.分層抽樣的步驟:

 。1)分層:將總體按某種特征分成若干部分.

  (2)確定比例:計(jì)算各層的'個(gè)體數(shù)與總體的個(gè)體數(shù)的比.

 。3)確定各層應(yīng)抽取的樣本容量.

  (4)在每一層進(jìn)行抽樣(各層分別按簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)抽樣的方法抽。,綜合每層抽樣,組成樣本.

  四、數(shù)學(xué)運(yùn)用

  1.例題.

  例1(1)分層抽樣中,在每一層進(jìn)行抽樣可用_________________.

 。2)①教育局督學(xué)組到學(xué)校檢查工作,臨時(shí)在每個(gè)班各抽調(diào)2人參加座談;

  ②某班期中考試有15人在85分以上,40人在60-84分,1人不及格.現(xiàn)欲從中抽出8人研討進(jìn)一步改進(jìn)教和學(xué);

  ③某班元旦聚會(huì),要產(chǎn)生兩名“幸運(yùn)者”.

  對(duì)這三件事,合適的抽樣方法為()

  a.分層抽樣,分層抽樣,簡(jiǎn)單隨機(jī)抽樣

  b.系統(tǒng)抽樣,系統(tǒng)抽樣,簡(jiǎn)單隨機(jī)抽樣

  c.分層抽樣,簡(jiǎn)單隨機(jī)抽樣,簡(jiǎn)單隨機(jī)抽樣

  d.系統(tǒng)抽樣,分層抽樣,簡(jiǎn)單隨機(jī)抽樣

  例2某電視臺(tái)在因特網(wǎng)上就觀眾對(duì)某一節(jié)目的喜愛程度進(jìn)行調(diào)查,參加調(diào)查的總?cè)藬?shù)為12000人,其中持各種態(tài)度的人數(shù)如表中所示:

  很喜愛

  喜愛

  一般

  不喜愛

  2435

  4567

  3926

  1072

  電視臺(tái)為進(jìn)一步了解觀眾的具體想法和意見,打算從中抽取60人進(jìn)行更為詳細(xì)的調(diào)查,應(yīng)怎樣進(jìn)行抽樣?

  解:抽取人數(shù)與總的比是60∶12000=1∶200,則各層抽取的人數(shù)依次是12、175,22、835,19、63,5、36,取近似值得各層人數(shù)分別是12,23,20,5.

  然后在各層用簡(jiǎn)單隨機(jī)抽樣方法抽。

  答用分層抽樣的方法抽取,抽取“很喜愛”、“喜愛”、“一般”、“不喜愛”的人

  數(shù)分別為12,23,20,5.

  說明:各層的抽取數(shù)之和應(yīng)等于樣本容量,對(duì)于不能取整數(shù)的情況,取其近似值.

 。3)某學(xué)校有160名教職工,其中教師120名,行政人員16名,后勤人員24名.為了了解教職工對(duì)學(xué)校在校務(wù)公開方面的某意見,擬抽取一個(gè)容量為20的樣本.

  分析:(1)總體容量較小,用抽簽法或隨機(jī)數(shù)表法都很方便.

 。2)總體容量較大,用抽簽法或隨機(jī)數(shù)表法都比較麻煩,由于人員沒有明顯差異,且剛好32排,每排人數(shù)相同,可用系統(tǒng)抽樣.

 。3)由于學(xué)校各類人員對(duì)這一問題的看法可能差異較大,所以應(yīng)采用分層抽樣方法.

  五、要點(diǎn)歸納與方法小結(jié)

  本節(jié)課學(xué)習(xí)了以下內(nèi)容:

  1.分層抽樣的概念與特征;

  2.三種抽樣方法相互之間的區(qū)別與聯(lián)系.

高中數(shù)學(xué)并集教案模板5

  一、教材分析

  1、教材地位和作用:二面角是我們?nèi)粘I钪薪?jīng)常見到的、很普通的一個(gè)空間圖形!岸娼恰笔侨私贪妗稊(shù)學(xué)》第二冊(cè)(下b)中9、7的內(nèi)容。它是在學(xué)生學(xué)過兩條異面直線所成的角、直線和平面所成角、又要重點(diǎn)研究的一種空間的角,它是為了研究?jī)蓚(gè)平面的垂直而提出的一個(gè)概念,也是學(xué)生進(jìn)一步研究多面體的基礎(chǔ)。因此,它起著承上啟下的作用。通過本節(jié)課的學(xué)習(xí)還對(duì)學(xué)生系統(tǒng)地掌握直線和平面的知識(shí)乃至于創(chuàng)新能力的培養(yǎng)都具有十分重要的意義。

  2、教學(xué)目標(biāo):

  知識(shí)目標(biāo):(1)正確理解二面角及其平面角的概念,并能初步運(yùn)用它們解決實(shí)際問題。

  (2)進(jìn)一步培養(yǎng)學(xué)生把空間問題轉(zhuǎn)化為平面問題的化歸思想。

  能力目標(biāo):(1)突出對(duì)類比、直覺、發(fā)散等探索性思維的培養(yǎng),從而提高學(xué)生的創(chuàng)新能力。(2)通過對(duì)圖形的觀察、分析、比較和操作來強(qiáng)化學(xué)生的動(dòng)手操作能力。

  德育目標(biāo):(1)使學(xué)生認(rèn)識(shí)到數(shù)學(xué)知識(shí)來自實(shí)踐,并服務(wù)于實(shí)踐,增強(qiáng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)(2)通過揭示線線、線面、面面之間的內(nèi)在聯(lián)系,進(jìn)一步培養(yǎng)學(xué)生聯(lián)系的辯證唯物主義觀點(diǎn)。

  情感目標(biāo):在平等的教學(xué)氛圍中,通過學(xué)生之間、師生之間的交流、合作和評(píng)價(jià),拉近學(xué)生之間、師生之間的情感距離。

  3、重點(diǎn)、難點(diǎn):

  重點(diǎn):“二面角”和“二面角的平面角”的概念

  難點(diǎn):“二面角的平面角”概念的形成過程

  二、教法分析

  1、教學(xué)方法:在引入課題時(shí),我采用多媒體、實(shí)物演示法,在新課探究中采用問題啟導(dǎo)、活動(dòng)探究和類比發(fā)現(xiàn)法,在形成技能時(shí)以訓(xùn)練法、探究研討法為主。

 。病⒔虒W(xué)控制與調(diào)節(jié)的措施:本節(jié)課由于充分運(yùn)用了多媒體和實(shí)物教具,預(yù)計(jì)學(xué)生對(duì)二面角及二面角平面角的概念能夠理解,根據(jù)學(xué)生及教學(xué)的實(shí)際情況,估計(jì)二面角的具體求法一節(jié)課內(nèi)完成有一定的困難,所以將其放在下節(jié)課。

  3、教學(xué)手段:教學(xué)手段的現(xiàn)代化有利于提高課堂效益,有利于創(chuàng)新人才的培養(yǎng),根據(jù)本節(jié)課的教學(xué)需要,確定利用多媒體課件來輔助教學(xué);此外,為加強(qiáng)直觀教學(xué),還要預(yù)先做好一些二面角的模型。

  三、學(xué)法指導(dǎo)

  1、樂學(xué):在整個(gè)學(xué)習(xí)過程中學(xué)生要保持強(qiáng)烈的好奇心和求知欲,不斷強(qiáng)化自己的創(chuàng)新意識(shí),全身心地投入到學(xué)習(xí)中去,成為學(xué)習(xí)的主人。

  2、學(xué)會(huì):在掌握基礎(chǔ)知識(shí)的同時(shí),學(xué)生要注意領(lǐng)會(huì)化歸、類比聯(lián)想等數(shù)學(xué)思想方法的運(yùn)用,學(xué)會(huì)建立完善的認(rèn)知結(jié)構(gòu)。

  3、會(huì)學(xué):通過自己親身參與,學(xué)生要領(lǐng)會(huì)復(fù)習(xí)類比和深入研究這兩種知識(shí)創(chuàng)新的方法,從而既學(xué)到知識(shí),又學(xué)會(huì)創(chuàng)新,既能解決問題,更能發(fā)現(xiàn)問題。

  四、教學(xué)過程

  心理學(xué)研究表明,當(dāng)學(xué)生明確數(shù)學(xué)概念的學(xué)習(xí)目的和意義時(shí),就會(huì)對(duì)概念的學(xué)習(xí)產(chǎn)生濃厚的興趣。創(chuàng)設(shè)問題情境,激發(fā)了學(xué)生的創(chuàng)新意識(shí),營(yíng)造了創(chuàng)新思維的氛圍。

  (一)、二面角

  1、揭示概念產(chǎn)生背景。

  問題情境1、在平面幾何中“角”是怎樣定義的?

  問題情境2、在立體幾何中我們還學(xué)習(xí)了哪些角?

  問題情境3、運(yùn)用多媒體和身邊的實(shí)例,展示我們遇到的另一種空間的角——二面角(板書課題)。

  通過這三個(gè)問題,打開了學(xué)生的原有認(rèn)知結(jié)構(gòu),為知識(shí)的創(chuàng)新做好了準(zhǔn)備;同時(shí)也讓學(xué)生領(lǐng)會(huì)到,二面角這一概念的產(chǎn)生是因?yàn)樗c我們的生活密不可分,激發(fā)學(xué)生的求知欲。2、展現(xiàn)概念形成過程。

  問題情境4、那么,應(yīng)該如何定義二面角呢?

  創(chuàng)設(shè)這個(gè)問題情境,為學(xué)生創(chuàng)新思維的展開提供了空間。引導(dǎo)學(xué)生回憶平面幾何中“角”這一概念的引入過程。教師應(yīng)注意多讓學(xué)生說,對(duì)于學(xué)生的創(chuàng)新意識(shí)和創(chuàng)新結(jié)果,教師要給與積極的評(píng)價(jià)。

  問題情境5、同學(xué)們能舉出一些二面角的實(shí)例嗎?通過實(shí)際運(yùn)用,可以促使學(xué)生更加深刻地理解概念。

  (二)、二面角的平面角

  1、揭示概念產(chǎn)生背景。平面幾何中可以把角理解為是一個(gè)旋轉(zhuǎn)量,同樣一個(gè)二面角也可以看作是一個(gè)半平面以其棱為軸旋轉(zhuǎn)而成的,也是一個(gè)旋轉(zhuǎn)量。說明二面角不僅有大小,而且其大小是唯一確定的。平面

  與平面的位置關(guān)系,總的說來只有相交或平行兩種情況,為了對(duì)相交平面的相互位置作進(jìn)一步的探討,我們有必要來研究二面角的度量問題。

  問題情境6、二面角的大小應(yīng)該怎么度量?能否轉(zhuǎn)化為平面角來處理?這樣就從度量二面角大小的需要上揭示了二面角的平面角概念產(chǎn)生的背景。

  2、展現(xiàn)概念形成過程

 。1)、類比。教師啟發(fā),尋找類比聯(lián)想的對(duì)象。

  問題情境7、我們以前碰到過類似的問題嗎?引導(dǎo)學(xué)生回憶前面所學(xué)過的兩種空間角的定義,電腦演示以提高效率。

  問題情境8、兩定義的共同點(diǎn)是什么?生:空間角總是轉(zhuǎn)化為平面的角,并且這個(gè)角是唯一確定的。

  問題情境9、這個(gè)平面的角的頂點(diǎn)及兩邊是如何確定的?

  (2)、提出猜想:二面角的大小也可通過平面的角來定義。對(duì)學(xué)生提出的猜想,教師應(yīng)該給予充分的肯定,以培養(yǎng)他們大膽猜想的意識(shí)和習(xí)慣,這對(duì)強(qiáng)化他們的創(chuàng)新意識(shí)大有幫助。

  問題情境10、那么,這個(gè)角的頂點(diǎn)及兩邊應(yīng)如何確定呢?生:頂點(diǎn)放在棱上,兩邊分別放在兩個(gè)面內(nèi)。這也是學(xué)生直覺思維的結(jié)果。

 。3)、探索實(shí)驗(yàn)。通過實(shí)驗(yàn),激發(fā)了學(xué)生的學(xué)習(xí)興趣,培養(yǎng)了學(xué)生的動(dòng)手操作能力。

 。4)、繼續(xù)探索,得到定義。

  問題情境11、那么,怎樣使這個(gè)角的大小唯一確定呢?師生共同探討后發(fā)現(xiàn),角的頂點(diǎn)確定后,要使此角的大小唯一確定,只須使它的兩條邊在平面內(nèi)唯一確定,聯(lián)想到平面內(nèi)過直線上一點(diǎn)的垂線的唯一性,由此發(fā)現(xiàn)二面角的大小的一種描述方法。

 。5)、自我驗(yàn)證:要求學(xué)生閱讀課本上的定義。并說明定義的`合理性,教師作適當(dāng)?shù)囊龑?dǎo),并加以理論證明。

  (三)、二面角及其平面角的畫法

  主要分為直立式和平臥式兩種,用電腦《幾何畫板》作圖。

 。ㄋ模、范例分析

  為鞏固學(xué)生所學(xué)知識(shí),由于時(shí)間的關(guān)系設(shè)置了一道例題。來源于實(shí)際生活,不但培養(yǎng)了學(xué)生分析問題和解決問題的能力,也讓學(xué)生領(lǐng)會(huì)到數(shù)學(xué)概念來自生活實(shí)際,并服務(wù)于生活實(shí)際,從而增強(qiáng)他們應(yīng)用數(shù)學(xué)的意識(shí)。

  例:一張邊長(zhǎng)為10厘米的正三角形紙片abc,以它的高ad為折痕,折成一個(gè)1200二面角,求此時(shí)b、c兩點(diǎn)間的距離。

  分析:涉及二面角的計(jì)算問題,關(guān)鍵是找出(或作出)該二面角的平面角。引導(dǎo)學(xué)生充分利用已知圖形的性質(zhì),最后發(fā)現(xiàn)可由定義找出該二面角的平面角?勺寣W(xué)生先做,為調(diào)動(dòng)學(xué)生的積極性,并增加學(xué)生的參與感,活躍課堂的氣氛,教師可給學(xué)生板演的機(jī)會(huì)。教師講評(píng)時(shí)強(qiáng)調(diào)解題規(guī)范即必須證明∠bdc是二面角b—ad—c的平面角。

  變式訓(xùn)練:圖中共有幾個(gè)二面角?能求出它們的大小嗎?根據(jù)課堂實(shí)際情況,本題的變式訓(xùn)練也可作為課后思考題。

  題后反思:(1)解題過程中必須證明∠bdc是二面角b—ad—c的平面角。

 。2)求二面角的平面角的方法是:先找(或作)——后證——再解(三角形)

 。ㄎ澹、練習(xí)、小結(jié)與作業(yè)

  練習(xí):習(xí)題9.7的第3題

  小結(jié)在復(fù)習(xí)完二面角及其平面角的概念后,要求學(xué)生對(duì)空間中三種角加以比較、歸納,以促成學(xué)生建立起空間中角這一概念系統(tǒng)。同時(shí)要求學(xué)生對(duì)本節(jié)課的學(xué)習(xí)方法進(jìn)行總結(jié),領(lǐng)會(huì)復(fù)習(xí)類比和深入研究這兩種知識(shí)創(chuàng)新的方法。

  作業(yè):習(xí)題9.7的第4題

  思考題:見例題

  五、板書設(shè)計(jì)(見課件)

  以上是我對(duì)《二面角》授課的初步設(shè)想,不足之處,懇請(qǐng)大家批評(píng)指正,謝謝!

高中數(shù)學(xué)并集教案模板6

  教學(xué)目標(biāo)

 。1)使學(xué)生正確理解組合的意義,正確區(qū)分排列、組合問題;

 。2)使學(xué)生掌握組合數(shù)的計(jì)算公式;

  (3)通過學(xué)習(xí)組合知識(shí),讓學(xué)生掌握類比的學(xué)習(xí)方法,并提高學(xué)生分析問題和解決問題的能力;

  教學(xué)重點(diǎn)難點(diǎn)

  重點(diǎn)是組合的定義、組合數(shù)及組合數(shù)的公式;

  難點(diǎn)是解組合的應(yīng)用題.

  教學(xué)過程設(shè)計(jì)

 。ǎ⿲(dǎo)入新課

 。ń處熁顒(dòng))提出下列思考問題,打出字幕.

 。圩帜唬菀粭l鐵路線上有6個(gè)火車站,(1)需準(zhǔn)備多少種不同的普通客車票?(2)有多少種不同票價(jià)的普通客車票?上面問題中,哪一問是排列問題?哪一問是組合問題?

  (學(xué)生活動(dòng))討論并回答.

  答案提示:(1)排列;(2)組合.

 。墼u(píng)述]問題(1)是從6個(gè)火車站中任選兩個(gè),并按一定的順序排列,要求出排法的種數(shù),屬于排列問題;(2)是從6個(gè)火車站中任選兩個(gè)并成一組,兩站無順序關(guān)系,要求出不同的組數(shù),屬于組合問題.這節(jié)課著重研究組合問題.

  設(shè)計(jì)意圖:組合與排列所研究的問題幾乎是平行的.上面設(shè)計(jì)的問題目的是從排列知識(shí)中發(fā)現(xiàn)并提出新的問題.

 。ǘ┬抡n講授

 。厶岢鰡栴}創(chuàng)設(shè)情境]

  (教師活動(dòng))指導(dǎo)學(xué)生帶著問題閱讀課文.

 。圩帜唬1.排列的定義是什么?

  2.舉例說明一個(gè)組合是什么?

  3.一個(gè)組合與一個(gè)排列有何區(qū)別?

 。▽W(xué)生活動(dòng))閱讀回答.

 。ń處熁顒(dòng))對(duì)照課文,逐一評(píng)析.

  設(shè)計(jì)意圖:激活學(xué)生的思維,使其將所學(xué)的知識(shí)遷移過渡,并盡快適應(yīng)新的環(huán)境.

  ?歸納概括建立新知】

 。ń處熁顒(dòng))承接上述問題的回答,展示下面知識(shí).

 。圩帜唬菽P停簭膫(gè)不同元素中取出個(gè)元素并成一組,叫做從個(gè)不同元素中取出個(gè)元素的一個(gè)組合.如前面思考題:6個(gè)火車站中甲站→乙站和乙站→甲站是票價(jià)相同的車票,是從6個(gè)元素中取出2個(gè)元素的一個(gè)組合.

  組合數(shù):從個(gè)不同元素中取出個(gè)元素的所有組合的個(gè)數(shù),稱之,用符號(hào)表示,如從6個(gè)元素中取出2個(gè)元素的組合數(shù)為、

 。墼u(píng)述]區(qū)分一個(gè)排列與一個(gè)組合的關(guān)鍵是:該問題是否與順序有關(guān),當(dāng)取出元素后,若改變一下順序,就得到一種新的取法,則是排列問題;若改變順序,仍得原來的`取法,就是組合問題.

 。▽W(xué)生活動(dòng))傾聽、思索、記錄.

 。ń處熁顒(dòng))提出思考問題.

 。弁队埃菖c的關(guān)系如何?

 。◣熒顒(dòng))共同探討.求從個(gè)不同元素中取出個(gè)元素的排列數(shù),可分為以下兩步:

  第1步,先求出從這個(gè)不同元素中取出個(gè)元素的組合數(shù)為;

  第2步,求每一個(gè)組合中個(gè)元素的全排列數(shù)為.

  根據(jù)分步計(jì)數(shù)原理,得到

 。圩帜唬莨1:

  公式2:

 。▽W(xué)生活動(dòng))驗(yàn)算,即一條鐵路上6個(gè)火車站有15種不同的票價(jià)的普通客車票.

  設(shè)計(jì)意圖:本著以認(rèn)識(shí)概念為起點(diǎn),以問題為主線,以培養(yǎng)能力為核心的宗旨,逐步展示知識(shí)的形成過程,使學(xué)生思維層層被激活、逐漸深入到問題當(dāng)中去.

 。ㄈ┬〗Y(jié)

 。◣熒顒(dòng))共同小結(jié).

  本節(jié)主要內(nèi)容有

  1.組合概念.

  2.組合數(shù)計(jì)算的兩個(gè)公式.

  (四)布置作業(yè)

  1.課本作業(yè):習(xí)題10 3第1(1)、(4),3題.

  2.思考題:某學(xué)習(xí)小組有8個(gè)同學(xué),從男生中選2人,女生中選1人參加數(shù)學(xué)、物理、化學(xué)三種學(xué)科競(jìng)賽,要求每科均有1人參加,共有180種不同的選法,那么該小組中,男、女同學(xué)各有多少人?

  3.研究性題:

  在的邊上除頂點(diǎn)外有5個(gè)點(diǎn),在邊上有4個(gè)點(diǎn),由這些點(diǎn)(包括)能組成多少個(gè)四邊形?能組成多少個(gè)三角形?

 。ㄎ澹┱n后點(diǎn)評(píng)

  在學(xué)習(xí)了排列知識(shí)的基礎(chǔ)上,本節(jié)課引進(jìn)了組合概念,并推導(dǎo)出組合數(shù)公式,同時(shí)調(diào)控進(jìn)行訓(xùn)練,從而培養(yǎng)學(xué)生分析問題、解決問題的能力.

  作業(yè)參考答案

  2.解;設(shè)有男同學(xué)人,則有女同學(xué)人,依題意有,由此解得或或2.即男同學(xué)有5人或6人,女同學(xué)相應(yīng)為3人或2人.

  3.能組成(注意不能用點(diǎn)為頂點(diǎn))個(gè)四邊形,個(gè)三角形.

  探究活動(dòng)

  同室四人各寫一張賀年卡,先集中起來,然后每人從中拿一張別人送出的賀年卡,那么四張不同的分配萬式可有多少種?

  解設(shè)四人分別為甲、乙、丙、丁,可從多種角度來解.

  解法一可將拿賀卡的情況,按甲分別拿乙、丙、丁制作的賀卡的情形分為三類,即:

  甲拿乙制作的賀卡時(shí),則賀卡有3種分配方法.

  甲拿丙制作的賀卡時(shí),則賀卡有3種分配方法.

  甲拿丁制作的賀卡時(shí),則賀卡有3種分配方法.

  由加法原理得,賀卡分配方法有3+3+3=9種.

  解法二可從利用排列數(shù)和組合數(shù)公式角度來考慮.這時(shí)還存在正向與逆向兩種思考途徑.

  正向思考,即從滿足題設(shè)條件出發(fā),分步完成分配.先可由甲從乙、丙、丁制作的賀卡中選取1張,有種取法,剩下的乙、丙、丁中所制作賀卡被甲取走后可在剩下的3張賀卡中選取1張,也有種,最后剩下2人可選取的賀卡即是這2人所制作的賀卡,其取法只有互取對(duì)方制作賀卡1種取法.根據(jù)乘法原理,賀卡的分配方法有(種).

  逆向思考,即從4人取4張不同賀卡的所有取法中排除不滿足題設(shè)條件的取法.不滿足題設(shè)條件的取法為,其中只有1人取自己制作的賀卡,其中有2人取自己制作的賀卡,其中有3人取自己制作的賀卡(此時(shí)即為4人均拿自己制作的賀卡).其取法分別為1.故符合題設(shè)要求的取法共有(種).