丁香婷婷网,黄色av网站裸体无码www,亚洲午夜无码精品一级毛片,国产一区二区免费播放

高一數(shù)學教案

時間:2023-11-08 07:28:06 高一數(shù)學教案 我要投稿

高一數(shù)學教案模板

  作為一名無私奉獻的老師,時常需要用到教案,借助教案可以更好地組織教學活動。那么應(yīng)當如何寫教案呢?以下是小編整理的高一數(shù)學教案模板,希望對大家有所幫助。

高一數(shù)學教案模板

高一數(shù)學教案模板1

  一、教學過程

  1、復(fù)習

  反函數(shù)的概念、反函數(shù)求法、互為反函數(shù)的函數(shù)定義域值域的關(guān)系。

  求出函數(shù)y=x3的反函數(shù)。

  2、新課

  先讓學生用幾何畫板畫出y=x3的圖象,學生紛紛動手,很快畫出了函數(shù)的圖象。有部分學生發(fā)出了“咦”的一聲,因為他們得到了如下的圖象:

  教師在畫出上述圖象的學生中選定生1,將他的屏幕內(nèi)容通過教學系統(tǒng)放到其他同學的屏幕上,很快有學生作出反應(yīng)。

  生2:這是y=x3的反函數(shù)y=的圖象。

  師:對,但是怎么會得到這個圖象,請大家討論。

 。▽W生展開討論,但找不出原因。)

  師:我們請生1再給大家演示一下,大家?guī)退艺以颉?/p>

 。ㄉ1將他的制作過程重新重復(fù)了一次。)

  生3:問題出在他選擇的次序不對。

  師:哪個次序?

  生3:作點B前,選擇xA和xA3為B的坐標時,他先選擇xA3,后選擇xA,作出來的點的坐標為(xA3,xA),而不是(xA,xA3)。

  師:是這樣嗎?我們請生1再做一次。

 。ㄟ@次生1在做的過程當中,按xA、xA3的次序選擇,果然得到函數(shù)y=x3的圖象。)

  師:看來問題確實是出在這個地方,那么請同學再想想,為什么他采用了錯誤的次序后,恰好得到了y=x3的反函數(shù)y=的圖象呢?

 。▽W生再次陷入思考,一會兒有學生舉手。)

  師:我們請生4來告訴大家。

  生4:因為他這樣做,正好是將y=x3上的點B(x,y)的橫坐標x與縱坐標y交換,而y=x3的反函數(shù)也正好是將x與y交換。

  師:完全正確。下面我們進一步研究y=x3的圖象及其反函數(shù)y=的圖象的關(guān)系,同學們能不能看出這兩個函數(shù)的圖象有什么樣的關(guān)系?

 。ǘ鄶(shù)學生回答可由y=x3的圖象得到y(tǒng)=的.圖象,于是教師進一步追問。)

  師:怎么由y=x3的圖象得到y(tǒng)=的圖象?

  生5:將y=x3的圖象上點的橫坐標與縱坐標交換,可得到y(tǒng)=的圖象。

  師:將橫坐標與縱坐標互換?怎么換?

 。▽W生一時未能明白教師的意思,場面一下子冷了下來,教師不得不將問題進一步明確。)

  師:我其實是想問大家這兩個函數(shù)的圖象有沒有對稱關(guān)系,有的話,是什么樣的對稱關(guān)系?

 。▽W生重新開始觀察這兩個函數(shù)的圖象,一會兒有學生舉手。)

  生6:我發(fā)現(xiàn)這兩個圖象應(yīng)是關(guān)于某條直線對稱。

  師:能說說是關(guān)于哪條直線對稱嗎?

  生6:我還沒找出來。

 。ń酉聛,教師引導(dǎo)學生利用幾何畫板找出兩函數(shù)圖象的對稱軸,畫出如下圖形,如圖2所示:)

  學生通過移動點A(點B、C隨之移動)后發(fā)現(xiàn),BC的中點M在同一條直線上,這條直線就是兩函數(shù)圖象的對稱軸,在追蹤M點后,發(fā)現(xiàn)中點的軌跡是直線y=x。

  生7:y=x3的圖象及其反函數(shù)y=的圖象關(guān)于直線y=x對稱。

  師:這個結(jié)論有一般性嗎?其他函數(shù)及其反函數(shù)的圖象,也有這種對稱關(guān)系嗎?請同學們用其他函數(shù)來試一試。

 。▽W生紛紛畫出其他函數(shù)與其反函數(shù)的圖象進行驗證,最后大家一致得出結(jié)論:函數(shù)及其反函數(shù)的圖象關(guān)于直線y=x對稱。)

  教師巡視全班時已經(jīng)發(fā)現(xiàn)這個問題,將這個圖象傳給全班學生后,幾乎所有人都看出了問題所在:圖中函數(shù)y=x2(x∈R)沒有反函數(shù),②也不是函數(shù)的圖象。

  最后教師與學生一起總結(jié):

  點(x,y)與點(y,x)關(guān)于直線y=x對稱;

  函數(shù)及其反函數(shù)的圖象關(guān)于直線y=x對稱。

  二、反思與點評

  1、在開學初,我就教學幾何畫板4.0的用法,在教函數(shù)圖象畫法的過程當中,發(fā)現(xiàn)學生根據(jù)選定坐標作點時,不太注意選擇橫坐標與縱坐標的順序,本課設(shè)計起源于此。雖然幾何畫板4、04中,能直接根據(jù)函數(shù)解析式畫出圖象,但這樣反而不能揭示圖象對稱的本質(zhì),所以本節(jié)課教學中,我有意選擇了幾何畫板4.0進行教學。

  2、荷蘭數(shù)學教育家弗賴登塔爾認為,數(shù)學學習過程當中,可借助于生動直觀的形象來引導(dǎo)人們的思想過程,但常常由于圖形或想象的錯誤,使人們的思維誤入歧途,因此我們既要借助直觀,但又必須在一定條件下擺脫直觀而形成抽象概念,要注意過于直觀的例子常常會影響學生正確理解比較抽象的概念。

  計算機作為一種現(xiàn)代信息技術(shù)工具,在直觀化方面有很強的表現(xiàn)能力,如在函數(shù)的圖象、圖形變換等方面,利用計算機都可得到其他直觀工具不可能有的效果;如果只是為了直觀而使用計算機,但不能達到更好地理解抽象概念,促進學生思維的目的的話,這樣的教學中,計算機最多只是一種普通的直觀工具而已。

  在本節(jié)課的教學中,計算機更多的是作為學生探索發(fā)現(xiàn)的工具,學生不但發(fā)現(xiàn)了函數(shù)與其反函數(shù)圖象間的對稱關(guān)系,而且在更深層次上理解了反函數(shù)的概念,對反函數(shù)的存在性、反函數(shù)的求法等方面也有了更深刻的理解。

  當前計算機用于中學數(shù)學的主要形式還是以輔助為主,更多的是把計算機作為一種直觀工具,有時甚至只是作為電子黑板使用,今后的發(fā)展方向應(yīng)是:將計算機作為學生的認知工具,讓學生通過計算機發(fā)現(xiàn)探索,甚至利用計算機來做數(shù)學,在此過程當中更好地理解數(shù)學概念,促進數(shù)學思維,發(fā)展數(shù)學創(chuàng)新能力。

  3、在引出兩個函數(shù)圖象對稱關(guān)系的時候,問題設(shè)計不甚妥當,本來是想要學生回答兩個函數(shù)圖象對稱的關(guān)系,但學生誤以為是問如何由y=x3的圖象得到y(tǒng)=的圖象,以致將學生引入歧途。這樣的問題在今后的教學中是必須力求避免的。

高一數(shù)學教案模板2

  目標:

 。1)使學生初步理解集合的概念,知道常用數(shù)集的概念及其記法

 。2)使學生初步了解“屬于”關(guān)系的意義

 。3)使學生初步了解有限集、無限集、空集的意義

  重點:集合的基本概念

  教學過程:

  1、引入

 。1)章頭導(dǎo)言

 。2)集合論與集合論的—————康托爾(有關(guān)介紹可引用附錄中的內(nèi)容)

  2、講授新課

  閱讀教材,并思考下列問題:

 。1)有那些概念?

 。2)有那些符號?

 。3)集合中元素的特性是什么?

 。4)如何給集合分類?

 。ㄒ唬┯嘘P(guān)概念:

  1、集合的概念

 。1)對象:我們可以感覺到的客觀存在以及我們思想中的事物或抽象符號,都可以稱作對象、

 。2)集合:把一些能夠確定的不同的`對象看成一個整體,就說這個整體是由這些對象的全體構(gòu)成的集合、

  (3)元素:集合中每個對象叫做這個集合的元素、

  集合通常用大寫的拉丁字母表示,如A、B、C、……元素通常用小寫的拉丁字母表示,如a、b、c、……

  2、元素與集合的關(guān)系

 。1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A

 。2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作

  要注意“∈”的方向,不能把a∈A顛倒過來寫、

  3、集合中元素的特性

 。1)確定性:給定一個集合,任何對象是不是這個集合的元素是確定的了、

  (2)互異性:集合中的元素一定是不同的

 。3)無序性:集合中的元素沒有固定的順序、

  4、集合分類

  根據(jù)集合所含元素個屬不同,可把集合分為如下幾類:

 。1)把不含任何元素的集合叫做空集Ф

 。2)含有有限個元素的集合叫做有限集

  (3)含有無窮個元素的集合叫做無限集

  注:應(yīng)區(qū)分,0等符號的含義

  5、常用數(shù)集及其表示方法

  (1)非負整數(shù)集(自然數(shù)集):全體非負整數(shù)的集合、記作N

  (2)正整數(shù)集:非負整數(shù)集內(nèi)排除0的集、記作N—或N+

  (3)整數(shù)集:全體整數(shù)的集合、記作Z

 。4)有理數(shù)集:全體有理數(shù)的集合、記作Q

 。5)實數(shù)集:全體實數(shù)的集合、記作R

  注:(1)自然數(shù)集包括數(shù)0、

 。2)非負整數(shù)集內(nèi)排除0的集、記作N—或N+,Q、Z、R等其它數(shù)集內(nèi)排除0的集,也這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成Z—

  課堂練習:教材第5頁練習A、B

  小結(jié):本節(jié)課我們了解集合論的發(fā)展,學習了集合的概念及有關(guān)性質(zhì)

  課后作業(yè):第十頁習題1—1B第3題

高一數(shù)學教案模板3

  一、教學目標

  1、知識與技能:

 。1)通過實物操作,增強學生的直觀感知。

 。2)能根據(jù)幾何結(jié)構(gòu)特征對空間物體進行分類。

 。3)會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結(jié)構(gòu)特征。

  (4)會表示有關(guān)于幾何體以及柱、錐、臺的分類。

  2、過程與方法:

 。1)讓學生通過直觀感受空間物體,從實物中概括出柱、錐、臺、球的幾何結(jié)構(gòu)特征。

 。2)讓學生觀察、討論、歸納、概括所學的知識。

  3、情感態(tài)度與價值觀:

 。1)使學生感受空間幾何體存在于現(xiàn)實生活周圍,增強學生學習的積極性,同時提高學生的觀察能力。

 。2)培養(yǎng)學生的空間想象能力和抽象括能力。

  二、教學重點:讓學生感受大量空間實物及模型、概括出柱、錐、臺、球的結(jié)構(gòu)特征。

  難點:柱、錐、臺、球的結(jié)構(gòu)特征的概括。

  三、教學用具

 。1)學法:觀察、思考、交流、討論、概括。

  (2)實物模型、投影儀。

  四、教學過程

 。ㄒ唬﹦(chuàng)設(shè)情景,揭示課題

  1、由六根火柴最多可搭成幾個三角形?(空間:4個)

  2、在我們周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?

  3、展示具有柱、錐、臺、球結(jié)構(gòu)特征的空間物體。

  問題:請根據(jù)某種標準對以上空間物體進行分類。

 。ǘ⒀刑叫轮

  空間幾何體:多面體(面、棱、頂點):棱柱、棱錐、棱臺;

  旋轉(zhuǎn)體(軸):圓柱、圓錐、圓臺、球。

  1、棱柱的結(jié)構(gòu)特征:

  (1)觀察棱柱的幾何物體以及投影出棱柱的圖片,思考:它們各自的特點是什么?共同特點是什么?

  (學生討論)

 。2)棱柱的'主要結(jié)構(gòu)特征(棱柱的概念):

 、儆袃蓚面互相平行;

  ②其余各面都是平行四邊形;

 、勖肯噜弮缮纤倪呅蔚墓策吇ハ嗥叫小

 。3)棱柱的表示法及分類:

 。4)相關(guān)概念:底面(底)、側(cè)面、側(cè)棱、頂點。

  2、棱錐、棱臺的結(jié)構(gòu)特征:

 。1)實物模型演示,投影圖片;

 。2)以類似的方法,根據(jù)出棱錐、棱臺的結(jié)構(gòu)特征,并得出相關(guān)的概念、分類以及表示。

  棱錐:有一個面是多邊形,其余各面都是有一個公共頂點的三角形。

  棱臺:且一個平行于棱錐底面的平面去截棱錐,底面與截面之間的部分。

  3、圓柱的結(jié)構(gòu)特征:

 。1)實物模型演示,投影圖片——如何得到圓柱?

 。2)根據(jù)圓柱的概念、相關(guān)概念及圓柱的表示。

  4、圓錐、圓臺、球的結(jié)構(gòu)特征:

 。1)實物模型演示,投影圖片

  ——如何得到圓錐、圓臺、球?

  (2)以類似的方法,根據(jù)圓錐、圓臺、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示。

  5、柱體、錐體、臺體的概念及關(guān)系:

  探究:棱柱、棱錐、棱臺都是多面體,它們在結(jié)構(gòu)上有哪些相同點和不同點?三者的關(guān)系如何?當?shù)酌姘l(fā)生變化時,它們能否互相轉(zhuǎn)化?

  圓柱、圓錐、圓臺呢?

  6、簡單組合體的結(jié)構(gòu)特征:

 。1)簡單組合體的構(gòu)成:由簡單幾何體拼接或截去或挖去一部分而成。

 。2)實物模型演示,投影圖片——說出組成這些物體的幾何結(jié)構(gòu)特征。

  (3)列舉身邊物體,說出它們是由哪些基本幾何體組成的。

  (三)排難解惑,發(fā)展思維

  1、有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱?(反例說明)

  2、棱柱的何兩個平面都可以作為棱柱的底面嗎?

  3、圓柱可以由矩形旋轉(zhuǎn)得到,圓錐可以由直角三角形旋轉(zhuǎn)得到,圓臺可以由什么圖形旋轉(zhuǎn)得到?如何旋轉(zhuǎn)?

 。ㄋ模╈柟躺罨

  練習:課本P7練習1、2;課本P8習題1、1第1、2、3、4、5題

 。ㄎ澹w納整理:由學生整理學習了哪些內(nèi)容

高一數(shù)學教案模板4

  一、教學目標

  (1)了解含有“或”、“且”、“非”復(fù)合命題的概念及其構(gòu)成形式;

  (2)理解邏輯聯(lián)結(jié)詞“或”“且”“非”的含義;

  (3)能用邏輯聯(lián)結(jié)詞和簡單命題構(gòu)成不同形式的復(fù)合命題;

 。4)能識別復(fù)合命題中所用的邏輯聯(lián)結(jié)詞及其聯(lián)結(jié)的簡單命題;

  (5)會用真值表判斷相應(yīng)的復(fù)合命題的真假;

 。6)在知識學習的基礎(chǔ)上,培養(yǎng)學生簡單推理的技能.

  二、教學重點難點:

  重點是判斷復(fù)合命題真假的方法;難點是對“或”的含義的'理解.

  三、教學過程

  1.新課導(dǎo)入

  在當今社會中,人們從事任何工作、學習,都離不開邏輯.具有一定邏輯知識是構(gòu)成一個公民的文化素質(zhì)的重要方面.數(shù)學的特點是邏輯性強,特別是進入高中以后,所學的教學比初中更強調(diào)邏輯性.如果不學習一定的邏輯知識,將會在我們學習的過程中不知不覺地經(jīng)常犯邏輯性的錯誤.其實,同學們在初中已經(jīng)開始接觸一些簡易邏輯的知識.

  初一平面幾何中曾學過命題,請同學們舉一個命題的例子.(板書:命題.)

 。◤某踔薪佑|過的“命題”入手,提出問題,進而學習邏輯的有關(guān)知識.)

  學生舉例:平行四邊形的對角線互相平. ……(1)

  兩直線平行,同位角相等.…………(2)

  教師提問:“……相等的角是對頂角”是不是命題?……(3)

  (同學議論結(jié)果,答案是肯定的.)

  教師提問:什么是命題?

 。▽W生進行回憶、思考.)

  概念總結(jié):對一件事情作出了判斷的語句叫做命題.

 。ń處熆隙送瑢W的回答,并作板書.)

  由于判斷有正確與錯誤之分,所以命題有真假之分,命題(1)、(2)是真命題,而(3)是假命題.

 。ń處熇猛队捌,和學生討論以下問題.)

  例1 判斷以下各語句是不是命題,若是,判斷其真假:

  命題一定要對一件事情作出判斷,(3)、(4)沒有對一件事情作出判斷,所以它們不是命題.

  初中所學的命題概念涉及邏輯知識,我們今天開始要在初中學習的基礎(chǔ)上,介紹簡易邏輯的知識.

  2.講授新課

  大家看課本(人教版,試驗修訂本,第一冊(上))從第25頁至26頁例1前,并歸納一下這段內(nèi)容主要講了哪些問題?

  (片刻后請同學舉手回答,一共講了四個問題.師生一道歸納如下.)

 。1)什么叫做命題?

  可以判斷真假的語句叫做命題.

  判斷一個語句是不是命題,關(guān)鍵看這語句有沒有對一件事情作出了判斷,疑問句、祈使句都不是命題.有些語句中含有變量,如 x2-5x+6=0

  中含有變量 ,在不給定變量的值之前,我們無法確定這語句的真假(這種含有變量的語句叫做“開語句”).

 。2)介紹邏輯聯(lián)結(jié)詞“或”、“且”、“非”.

  “或”、“且”、“非”這些詞叫做邏輯聯(lián)結(jié)詞.邏輯聯(lián)結(jié)詞除這三種形式外,還有“若…則…”和“當且僅當”兩種形式.

  命題可分為簡單命題和復(fù)合命題.

  不含邏輯聯(lián)結(jié)詞的命題叫做簡單命題.簡單命題是不含其他命題作為其組成部分(在結(jié)構(gòu)上不能再分解成其他命題)的命題.

  由簡單命題和邏輯聯(lián)結(jié)詞構(gòu)成的命題叫做復(fù)合命題,如“6是自然數(shù)且是偶數(shù)”就是由簡單命題“6是自然數(shù)”和“6是偶數(shù)”由邏輯聯(lián)結(jié)詞“且”構(gòu)成的復(fù)合命題.

 。4)命題的表示:用p ,q ,r ,s ,……來表示.

  (教師根據(jù)學生回答的情況作補充和強調(diào),特別是對復(fù)合命題的概念作出分析和展開.)

  我們接觸的復(fù)合命題一般有“p 或q ”“p且q ”、“非p ”、“若p 則q ”等形式.

  給出一個含有“或”、“且”、“非”的復(fù)合命題,應(yīng)能說出構(gòu)成它的簡單命題和弄清它所用的邏輯聯(lián)結(jié)詞;應(yīng)能根據(jù)所給出的兩個簡單命題,寫出含有邏輯聯(lián)結(jié)詞“或”、“且”、“非”的復(fù)合命題.

  對于給出“若p 則q ”形式的復(fù)合命題,應(yīng)能找到條件p 和結(jié)論q .

  在判斷一個命題是簡單命題還是復(fù)合命題時,不能只從字面上來看有沒有“或”、“且”、“非”.例如命題“等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合”,此命題字面上無“且”;命題“5的倍數(shù)的末位數(shù)字不是0就是5”的字面上無“或”,但它們都是復(fù)合命題.

  3.鞏固新課

  例2 判斷下列命題,哪些是簡單命題,哪些是復(fù)合命題.如果是復(fù)合命題,指出它的構(gòu)成形式以及構(gòu)成它的簡單命題.

 。1)5 ;

 。2)0.5非整數(shù);

 。3)內(nèi)錯角相等,兩直線平行;

  (4)菱形的對角線互相垂直且平分;

 。5)平行線不相交;

 。6)若ab=0 ,則a=0 .

 。ㄗ寣W生有充分的時間進行辨析.教材中對“若…則…”不作要求,教師可以根據(jù)學生的情況作些補充.)

高一數(shù)學教案模板5

  一、教學目標

  1、通過高速公路上的實際例子,引起積極的思考和交流,從而認識到生活中處處可以遇到變量間的依賴關(guān)系、能夠利用初中對函數(shù)的認識,了解依賴關(guān)系中有的是函數(shù)關(guān)系,有的則不是函數(shù)關(guān)系、

  2、培養(yǎng)廣泛聯(lián)想的能力和熱愛數(shù)學的態(tài)度、

  二、教學重點:

  在于讓學生領(lǐng)悟生活中處處有變量,變量之間充滿了關(guān)系

  教學難點:培養(yǎng)廣泛聯(lián)想的能力和熱愛數(shù)學的態(tài)度

  三、教學方法:

  探究交流法

  四、教學過程

 。ㄒ唬⒅R探索:

  閱讀課文P25頁。實例分析:書上在高速公路情境下的問題。

  在高速公路情景下,你能發(fā)現(xiàn)哪些函數(shù)關(guān)系?

  2、對問題3,儲油量v對油面高度h、油面寬度w都存在依賴關(guān)系,兩種依賴關(guān)系都有函數(shù)關(guān)系嗎?

  問題小結(jié):

  1、生活中變量及變量之間的依賴關(guān)系隨處可見,并非有依賴關(guān)系的兩個變量都有函數(shù)關(guān)系,只有滿足對于一個變量的每一個值,另一個變量都有確定的值與之對應(yīng),才稱它們之間有函數(shù)關(guān)系。

  2、構(gòu)成函數(shù)關(guān)系的兩個變量,必須是對于自變量的每一個值,因變量都有確定的y值與之對應(yīng)。

  3、確定變量的`依賴關(guān)系,需分清誰是自變量,誰是因變量,如果一個變量隨著另一個變量的變化而變化,那么這個變量是因變量,另一個變量是自變量。

 。ǘ、新課探究——函數(shù)概念

  1、初中關(guān)于函數(shù)的定義:

  2、從集合的觀點出發(fā),函數(shù)定義:

  給定兩個非空數(shù)集A和B,如果按照某個對應(yīng)關(guān)系f,對于A中的任何一個數(shù)x,在集合B中都存在確定的數(shù)f(x)與之對應(yīng),那么就把這種對應(yīng)關(guān)系f叫做定義在A上的函數(shù),記作或f:A→B,或y=f(x),x∈A、;

  此時x叫做自變量,集合A叫做函數(shù)的定義域,集合{f(x)︱x∈A}叫作函數(shù)的值域。習慣上我們稱y是x的函數(shù)。

  定義域,值域,對應(yīng)法則

  4、函數(shù)值

  當x=a時,我們用f(a)表示函數(shù)y=f(x)的函數(shù)值。

【高一數(shù)學教案】相關(guān)文章:

高一優(yōu)秀數(shù)學教案09-28

高一數(shù)學教案11-05

【熱門】高一數(shù)學教案11-26

【薦】高一數(shù)學教案11-27

高一數(shù)學教案【熱門】11-28

高一數(shù)學教案【精】11-29

人教版高一數(shù)學教案06-10

高一數(shù)學教案優(yōu)秀09-05

高一數(shù)學教案函數(shù)12-28

高一數(shù)學教案數(shù)列12-29