丁香婷婷网,黄色av网站裸体无码www,亚洲午夜无码精品一级毛片,国产一区二区免费播放

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>高一數(shù)學(xué)上冊教案

高一數(shù)學(xué)上冊教案

時間:2023-02-07 09:00:54 數(shù)學(xué)教案 我要投稿

人教版高一數(shù)學(xué)上冊教案2篇

  作為一位杰出的教職工,時常需要編寫教案,編寫教案助于積累教學(xué)經(jīng)驗,不斷提高教學(xué)質(zhì)量?靵韰⒖冀贪甘窃趺磳懙陌!下面是小編整理的人教版高一數(shù)學(xué)上冊教案,僅供參考,大家一起來看看吧。

人教版高一數(shù)學(xué)上冊教案2篇

人教版高一數(shù)學(xué)上冊教案1

  教學(xué)目標(biāo):

  (1)了解集合的表示方法;

  (2)能正確選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用;

  教學(xué)重點(diǎn):

  掌握集合的表示方法;

  教學(xué)難點(diǎn):

  選擇恰當(dāng)?shù)谋硎痉椒?

  教學(xué)過程:

  一、復(fù)習(xí)回顧:

  1.集合和元素的定義;元素的三個特性;元素與集合的關(guān)系;常用的數(shù)集及表示。

  2.集合{1,2}、{(1,2)}、{(2,1)}、{2,1}的元素分別是什么?有何關(guān)系

  二、新課教學(xué)

  (一).集合的表示方法

  我們可以用自然語言和圖形語言來描述一個集合,但這將給我們帶來很多不便,除此之外還常用列舉法和描述法來表示集合。

  (1) 列舉法:把集合中的元素一一列舉出來,并用花括號“ ”括起來表示集合的方法叫列舉法。

  如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…

  說明:1.集合中的元素具有無序性,所以用列舉法表示集合時不必考

  慮元素的順序。

  2.各個元素之間要用逗號隔開;

  3.元素不能重復(fù);

  4.集合中的元素可以數(shù),點(diǎn),代數(shù)式等;

  5.對于含有較多元素的集合,用列舉法表示時,必須把元素間的規(guī)律顯示清楚后方能用省略號,象自然數(shù)集N用列舉法表示為

  例1.(課本例1)用列舉法表示下列集合:

  (1)小于10的所有自然數(shù)組成的集合;

  (2)方程x2=x的所有實數(shù)根組成的集合;

  (3)由1到20以內(nèi)的所有質(zhì)數(shù)組成的集合;

  (4)方程組 的解組成的集合。

  思考2:(課本P4的思考題)得出描述法的定義:

  (2)描述法:把集合中的元素的`公共屬性描述出來,寫在花括號{ }內(nèi)。

  具體方法:在花括號內(nèi)先寫上表示這個集合元素的一般符號及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個集合中元素所具有的共同特征。

  一般格式:

  如:{x|x-3>2},{(x,y)|y=x2+1},{x|直角三角形},…

  說明:

  1.課本P5最后一段話;

  2.描述法表示集合應(yīng)注意集合的代表元素,如{(x,y)|y= x2+3x+2}與 {y|y= x2+3xx2}是不同的兩個集合,只要不引起誤解,集合的代表元素也可省略,例如:{xx整數(shù)},即代表整數(shù)集Z。

  辨析:這里的{ }已包含“所有”的意思,所以不必寫{全體整數(shù)}。下列寫法{實數(shù)集},{R}也是錯誤的。

  例2.(課本例2)試分別用列舉法和描述法表示下列集合:

  (1)方程x2—2=0的所有實數(shù)根組成的集合;

  (2)由大于10小于20的所有整數(shù)組成的集合;

  (3)方程組 的解。

  思考3:(課本P6思考)

  說明:列舉法與描述法各有優(yōu)點(diǎn),應(yīng)該根據(jù)具體問題確定采用哪種表示法,要注意,一般集合中元素較多或有無限個元素時,不宜采用列舉法。

  (二).課堂練習(xí):

  1.課本P6練習(xí)2;

  2.用適當(dāng)?shù)姆椒ū硎炯希捍笥?的所有奇數(shù)

  3.集合A={x| ∈Z,x∈N},則它的元素是 。

  4.已知集合A={x|-3

  歸納小結(jié):

  本節(jié)課從實例入手,介紹了集合的常用表示方法,包括列舉法、描述法。

  作業(yè)布置:

  1. 習(xí)題1.1,第3.4題;

  2. 課后預(yù)習(xí)集合間的基本關(guān)系.

人教版高一數(shù)學(xué)上冊教案2

  一、等差數(shù)列

  1、定義

  注:“從第二項起”及

  “同一常數(shù)”用紅色粉筆標(biāo)注

  二、等差數(shù)列的通項公式

  (一)例題與練習(xí)

  通過練習(xí)2和3 引出兩個具體的等差數(shù)列,初步認(rèn)識等差數(shù)列的特征,為后面的概念學(xué)習(xí)建立基礎(chǔ),為學(xué)習(xí)新知識創(chuàng)設(shè)問題情境,激發(fā)學(xué)生的求知欲。由學(xué)生觀察兩個數(shù)列特點(diǎn),引出等差數(shù)列的概念,對問題的總結(jié)又培養(yǎng)學(xué)生由具體到抽象、由特殊到一般的認(rèn)知能力。

  (二)新課探究

  1、由引入自然的給出等差數(shù)列的概念:

  如果一個數(shù)列,從第二項開始它的每一項與前一項之差都等于同一常數(shù),這個數(shù)列就叫等差數(shù)列, 這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。強(qiáng)調(diào):

 、 “從第二項起”滿足條件; f

  ②公差d一定是由后項減前項所得;

 、勖恳豁椗c它的前一項的差必須是同一個常數(shù)(強(qiáng)調(diào)“同一個常數(shù)” );

  在理解概念的基礎(chǔ)上,由學(xué)生將等差數(shù)列的文字語言轉(zhuǎn)化為數(shù)學(xué)語言,歸納出數(shù)學(xué)表達(dá)式:

  an+1—an=d (n≥1) ;h4z+0"6vG

  同時為了配合概念的理解,我找了5組數(shù)列,由學(xué)生判斷是否為等差數(shù)列,是等差數(shù)列的找出公差。

  1。 9 ,8,7,6,5,4,……;√ d=—1

  2。 0。70,0。71,0。72,0。73,0。74……;√ d=0。01

  3。 0,0,0,0,0,0,……。; √ d=0

  4。 1,2,3,2,3,4,……;×

  5。 1,0,1,0,1,……×

  其中第一個數(shù)列公差<0,>0,第三個數(shù)列公差=0

  由此強(qiáng)調(diào):公差可以是正數(shù)、負(fù)數(shù),也可以是0

  2、第二個重點(diǎn)部分為等差數(shù)列的通項公式

  在歸納等差數(shù)列通項公式中,我采用討論式的教學(xué)方法。給出等差數(shù)列的首項 ,公差d,由學(xué)生研究分組討論a4 的通項公式。通過總結(jié)a4的通項公式由學(xué)生猜想a40的通項公式,進(jìn)而歸納an的通項公式。整個過程由學(xué)生完成,通過互相討論的方式既培養(yǎng)了學(xué)生的協(xié)作意識又化解了教學(xué)難點(diǎn)。

  若一等差數(shù)列{an }的首項是a1,公差是d,

  則據(jù)其定義可得:

  a2 — a1 =d 即: a2 =a1 +d

  a3 – a2 =d 即: a3 =a2 +d = a1 +2d

  a4 – a3 =d 即: a4 =a3 +d = a1 +3d

  ……

  猜想: a40 = a1 +39d

  進(jìn)而歸納出等差數(shù)列的通項公式:

  an=a1+(n—1)d

  此時指出: 這種求通項公式的辦法叫不完全歸納法,這種導(dǎo)出公式的方法不夠嚴(yán)密,為了培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,在這里向?qū)W生介紹另外一種求數(shù)列通項公式的辦法——————迭加法:

  a2 – a1 =d

  a3 – a2 =d

  a4 – a3 =d

  ……

  an+1 – an=d

  將這(n—1)個等式左右兩邊分別相加,就可以得到 an– a1= (n—1) d即 an= a1+(n—1) d (1)

  當(dāng)n=1時,(1)也成立,

  所以對一切n∈N﹡,上面的公式都成立

  因此它就是等差數(shù)列{an}的通項公式。

  在迭加法的證明過程中,我采用啟發(fā)式教學(xué)方法。

  利用等差數(shù)列概念啟發(fā)學(xué)生寫出n—1個等式。

  對照已歸納出的通項公式啟發(fā)學(xué)生想出將n—1個等式相加。證出通項公式。

  在這里通過該知識點(diǎn)引入迭加法這一數(shù)學(xué)思想,逐步達(dá)到“注重方法,凸現(xiàn)思想” 的教學(xué)要求

  接著舉例說明:若一個等差數(shù)列{an}的首項是1,公差是2,得出這個數(shù)列的通項公式是:an=1+(n—1)×2 , 即an=2n—1 以此來鞏固等差數(shù)列通項公式運(yùn)用

  同時要求畫出該數(shù)列圖象,由此說明等差數(shù)列是關(guān)于正整數(shù)n一次函數(shù),其圖像是均勻排開的無窮多個孤立點(diǎn)。用函數(shù)的思想來研究數(shù)列,使數(shù)列的性質(zhì)顯現(xiàn)得更加清楚。

  (三)應(yīng)用舉例

  這一環(huán)節(jié)是使學(xué)生通過例題和練習(xí),增強(qiáng)對通項公式含義的`理解以及對通項公式的運(yùn)用,提高解決實際問題的能力。通過例1和例2向?qū)W生表明:要用運(yùn)動變化的觀點(diǎn)看等差數(shù)列通項公式中的a1、d、n、an這4個量之間的關(guān)系。當(dāng)其中的部分量已知時,可根據(jù)該公式求出另一部分量。

  例1 (1)求等差數(shù)列8,5,2,…的第20項;第30項;第40項

 。2)—401是不是等差數(shù)列—5,—9,—13,…的項?如果是,是第幾項?

  在第一問中我添加了計算第30項和第40項以加強(qiáng)鞏固等差數(shù)列通項公式;第二問實際上是求正整數(shù)解的問題,而關(guān)鍵是求出數(shù)列的通項公式an

  例2 在等差數(shù)列{an}中,已知a5=10,a12 =31,求首項a1與公差d。

  在前面例1的基礎(chǔ)上將例2當(dāng)作練習(xí)作為對通項公式的鞏固

  例3 是一個實際建模問題

  建造房屋時要設(shè)計樓梯,已知某大樓第2層的樓底離地面的高度為3米,第三層離地面5。8米,若樓梯設(shè)計為等高的16級臺階,問每級臺階高為多少米?

  這道題我采用啟發(fā)式和討論式相結(jié)合的教學(xué)方法。啟發(fā)學(xué)生注意每級臺階“等高”使學(xué)生想到每級臺階離地面的高度構(gòu)成等差數(shù)列,引導(dǎo)學(xué)生將該實際問題轉(zhuǎn)化為數(shù)學(xué)模型——————等差數(shù)列:(學(xué)生討論分析,分別演板,教師評析問題。問題可能出現(xiàn)在:項數(shù)學(xué)生認(rèn)為是16項,應(yīng)明確a1為第2層的樓底離地面的高度,a2表示第一級臺階離地面的高度而第16級臺階離地面高度為a17,可用展示實際樓梯圖以化解難點(diǎn))

  設(shè)置此題的目的:

  1。加強(qiáng)同學(xué)們對應(yīng)用題的綜合分析能力,

  2。通過數(shù)學(xué)實際問題引出等差數(shù)列問題,激發(fā)了學(xué)生的興趣;

  3。再者通過數(shù)學(xué)實例展示了“從實際問題出發(fā)經(jīng)抽象概括建立數(shù)學(xué)模型,最后還原說明實際問題的“數(shù)學(xué)建!钡臄(shù)學(xué)思想方法

  (四)反饋練習(xí)

  1、小節(jié)后的練習(xí)中的第1題和第2題(要求學(xué)生在規(guī)定時間內(nèi)完成)。目的:使學(xué)生熟悉通項公式,對學(xué)生進(jìn)行基本技能訓(xùn)練。

  2、書上例3)梯子的最高一級寬33c,最低一級寬110c,中間還有10級,各級的寬度成等差數(shù)列。計算中間各級的寬度。

  目的:對學(xué)生加強(qiáng)建模思想訓(xùn)練。

  3、若數(shù)例{an} 是等差數(shù)列,若 bn = an ,(為常數(shù))試證明:數(shù)列{bn}是等差數(shù)列

  此題是對學(xué)生進(jìn)行數(shù)列問題提高訓(xùn)練,學(xué)習(xí)如何用定義證明數(shù)列問題同時強(qiáng)化了等差數(shù)列的概念。

  (五)歸納小結(jié) (由學(xué)生總結(jié)這節(jié)課的收獲)

  1。等差數(shù)列的概念及數(shù)學(xué)表達(dá)式.

  強(qiáng)調(diào)關(guān)鍵字:從第二項開始它的每一項與前一項之差都等于同一常數(shù)

  2。等差數(shù)列的通項公式 an= a1+(n—1) d會知三求一

  3.用“數(shù)學(xué)建!彼枷敕椒ń鉀Q實際問題

  (六)布置作業(yè)

  必做題:課本P114 習(xí)題3。2第2,6 題

  選做題:已知等差數(shù)列{an}的首項a1= —24,從第10項開始為正數(shù),求公差d的取值范圍。(目的:通過分層作業(yè),提高同學(xué)們的求知欲和滿足不同層次的學(xué)生需求)

  五、板書設(shè)計

  在板書中突出本節(jié)重點(diǎn),將強(qiáng)調(diào)的地方如定義中,“從第二項起”及“同一常數(shù)”等幾個字用紅色粉筆標(biāo)注,同時給學(xué)生留有作題的地方,整個板書充分體現(xiàn)了精講多練的教學(xué)方法。

【高一數(shù)學(xué)上冊教案】相關(guān)文章:

數(shù)學(xué)高一上冊教案12-17

高一上冊的數(shù)學(xué)教案02-14

人教版高一數(shù)學(xué)上冊教案01-06

數(shù)學(xué)高一上冊教案8篇12-18

數(shù)學(xué)高一上冊教案(8篇)12-19

高一上冊的數(shù)學(xué)教案3篇02-14

數(shù)學(xué)高一上冊教案(通用8篇)12-20

數(shù)學(xué)上冊教案01-15

高一數(shù)學(xué)的教案08-26