高三數學優(yōu)秀教案2篇
在教學工作者開展教學活動前,通常需要用到教案來輔助教學,教案是保證教學取得成功、提高教學質量的基本條件。那么應當如何寫教案呢?以下是小編為大家整理的高三數學優(yōu)秀教案,希望對大家有所幫助。
高三數學優(yōu)秀教案1
一、教學內容分析
圓錐曲線的定義反映了圓錐曲線的本質屬性,它是無數次實踐后的高度抽象。恰當地利用定義來解題,許多時候能以簡馭繁。因此,在學習了橢圓、雙曲線、拋物線的定義及標準方程、幾何性質后,再一次強調定義,學會利用圓錐曲線定義來熟練的解題”。
二、學生學習情況分析
我所任教班級的學生參與課堂教學活動的積極性強,思維活躍,但計算能力較差,推理能力較弱,使用數學語言的表達能力也略顯不足。
三、設計思想
由于這部分知識較為抽象,如果離開感性認識,容易使學生陷入困境,降低學習熱情。在教學時,借助多媒體動畫,引導學生主動發(fā)現問題、解決問題,主動參與教學,在輕松愉快的環(huán)境中發(fā)現、獲取新知,提高教學效率。
四、教學目標
1、深刻理解并熟練掌握圓錐曲線的定義,能靈活應用定義__問題;熟練掌握焦點坐標、頂點坐標、焦距、離心率、準線方程、漸近線、焦半徑等概念和求法;能結合平面幾何的基本知識求解圓錐曲線的方程。
2、通過對練習,強化對圓錐曲線定義的'理解,提高分析、解決問題的能力;通過對問題的不斷引申,精心設問,引導學生學習解題的一般方法。
3、借助多媒體輔助教學,激發(fā)學習數學的興趣。
五、教學重點與難點:
教學重點
1、對圓錐曲線定義的理解
2、利用圓錐曲線的定義求“最值”
3、“定義法”求軌跡方程
教學難點:
巧用圓錐曲線定義
高三數學優(yōu)秀教案2
一、教學內容分析
本小節(jié)是普通高中課程標準實驗教科書數學5(必修)第三章第3小節(jié),主要內容是利用平面區(qū)域體現二元一次不等式(組)的解集;借助圖解法解決在線性約束條件下的二元線性目標函數的最值與解問題;運用線性規(guī)劃知識解決一些簡單的實際問題(如資源利用,人力調配,生產安排等)。突出體現了優(yōu)化思想,與數形結合的思想。本小節(jié)是利用數學知識解決實際問題的典例,它體現了數學源于生活而用于生活的特性。
二、學生學習情況分析
本小節(jié)內容建立在學生學習了一元不等式(組)及其應用、直線與方程的基礎之上,學生對于將實際問題轉化為數學問題,數形結合思想有所了解。但從數學知識上看學生對于涉及多個已知數據、多個字母變量,多個不等關系的知識接觸尚少,從數學方法上看,學生對于圖解法還缺少認識,對數形結合的思想方法的掌握還需時日,而這些都將成為學生學習中的難點。
三、設計思想
以問題為載體,以學生為主體,以探究歸納為主要手段,以問題解決為目的,以多媒體為重要工具,激發(fā)學生的動手、觀察、思考、猜想探究的興趣。注重引導學生充分體驗“從實際問題到數學問題”的數學建模過程,體會“從具體到一般”的抽象思維過程,從“特殊到一般”的探究新知的過程;提高學生應用“數形結合”的思想方法解題的'能力;培養(yǎng)學生的分析問題、解決問題的能力。
四、教學目標
1、知識與技能:了解二元一次不等式(組)的概念,掌握用平面區(qū)域刻畫二元一次
不等式(組)的方法;了解線性規(guī)劃的意義,了解線性約束條件、線性目標函數、
可行解、可行域和解等概念;理解線性規(guī)劃問題的圖解法;會利用圖解法
求線性目標函數的最值與相應解;
2、過程與方法:從實際問題中抽象出簡單的線性規(guī)劃問題,提高學生的數學建模能力;
在探究的過程中讓學生體驗到數學活動中充滿著探索與創(chuàng)造,培養(yǎng)學生的數據分析能力、
化歸能力、探索能力、合情推理能力;
3、情態(tài)與價值:在應用圖解法解題的過程中,培養(yǎng)學生的化歸能力與運用數形結合思想的能力;體會線性規(guī)劃的基本思想,培養(yǎng)學生的數學應用意識;體驗數學來源于生活而服務于生活的特性。
五、教學重點和難點
重點:從實際問題中抽象出二元一次不等式(組),用平面區(qū)域刻畫二元一次不等式組
的解集及用圖解法解簡單的二元線性規(guī)劃問題;
難點:二元一次不等式所表示的平面區(qū)域的探究,從實際情境中抽象出數學問題的過
程探究,簡單的二元線性規(guī)劃問題的圖解法的探究。
六、教學基本流程
第一課時,利用生動的情景激起學生求知的__,從中抽象出數學問題,引出二元一次不等式(組)的基本概念,并為線性規(guī)劃問題的引出埋下伏筆。通過學生的自主探究,分類討論,大膽猜想,細心求證,得出二元一次不等式所表示的平面區(qū)域,從而突破本小節(jié)的第一個難點;通過例1、例2的討論與求解引導學生歸納出畫二元一次不等式(組)所表示的平面區(qū)域的具體解答步驟(直線定界,特殊點定域);最后通過練習加以鞏固。
第二課時,重現引例,在學生的回顧、探討中解決引例中的可用方案問題,并由此歸納總結出從實際問題中抽象出數學問題的基本過程:理清數據關系(列表)→設立決策變量→建立數學關系式→畫出平面區(qū)域。讓學生對例3、例4進行分析與討論進一步完善這一過程,突破本小節(jié)的第二個難點。
第三課時,設計情景,借助前兩個課時所學,設立決策變量,畫出平面區(qū)域并引出新的問題,從中引出線性規(guī)劃的相關概念,并讓學生思考探究,利用特殊值進行猜測,找到方案;再引導學生對目標函數進行變形轉化,利用直線的圖象對上述問題進行幾何探究,把最值問題轉化為截距問題,通過幾何方法對引例做出完美的解答;回顧整個探究過程,讓學生在討論中達成共識,總結出簡單線性規(guī)劃問題的圖解法的基本步驟。通過例5的展示讓學生從動態(tài)的角度感受圖解法。最后再現情景1,并對之作出完美的解答。
第四課時,給出新的引例,讓學生體會到線性規(guī)劃問題的普遍性。讓學生討論分析,對引例給出解答,并綜合前三個課時的教學內容,連綴成線,總結出簡單線性規(guī)劃的應用性問題的一般解答步驟,通過例6,例7的分析與展示進一步完善這一過程?偨Y線性規(guī)劃的應用性問題的幾種類型,讓學生更深入的體會到優(yōu)化理論,更好的認識到數學來源于生活而運用于生活的特點。
【高三數學優(yōu)秀教案】相關文章:
高三數學優(yōu)秀教案01-12
高三數學優(yōu)秀教案7篇01-13
高三數學數列教案01-17
高三數學備課教案01-03
高三數學教案11-07
數學優(yōu)秀教案01-19
高三化學優(yōu)秀教案11-13
高三語文優(yōu)秀教案12-31
高三數學上冊教案02-01