丁香婷婷网,黄色av网站裸体无码www,亚洲午夜无码精品一级毛片,国产一区二区免费播放

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>初中數(shù)學(xué)分式教案

初中數(shù)學(xué)分式教案

時(shí)間:2022-12-29 19:21:35 數(shù)學(xué)教案 我要投稿

初中數(shù)學(xué)分式教案

  在教學(xué)工作者開展教學(xué)活動(dòng)前,總不可避免地需要編寫教案,編寫教案有利于我們準(zhǔn)確把握教材的重點(diǎn)與難點(diǎn),進(jìn)而選擇恰當(dāng)?shù)慕虒W(xué)方法。寫教案需要注意哪些格式呢?下面是小編精心整理的初中數(shù)學(xué)分式教案,僅供參考,大家一起來看看吧。

初中數(shù)學(xué)分式教案

初中數(shù)學(xué)分式教案1

  教學(xué)目標(biāo)

  1.通過實(shí)踐總結(jié)分式 的乘 除法,并能較熟練地進(jìn)行式的乘除法 運(yùn)算.

  2.理解分式乘方的原理,掌握乘方的規(guī)律,并能運(yùn)用乘方規(guī)律進(jìn)行分式的乘 方運(yùn)算

  3.引 導(dǎo)學(xué)生通過分析、歸納,培養(yǎng)學(xué)生用類比的 方法探索新知識(shí)的能力

  教學(xué)重點(diǎn) 分式的乘除法、乘方運(yùn)算

  教學(xué)難點(diǎn) 分式的乘除法、混合運(yùn)算,分式乘法,除法 、乘方運(yùn)算中符號(hào)的確定.

  教學(xué)過程

(一)復(fù)習(xí)與情境導(dǎo)入

  1.(1)什么叫做分式的約分?約分的根據(jù)是什么?

  (2):下列各式是否正確?為什么?

  2.(1)回憶:

  計(jì)算:

 。2)嘗試探究:計(jì)算:

 。1) ; (2) .

  概括 :分式的乘除法用式子表示即 搶答

  嘗試 探究用式子表示,用文字表達(dá).培養(yǎng)學(xué)生的合情推理能力.

  (二)實(shí)踐與探索 1

  例2計(jì)算

  分析:①本題是幾個(gè)分式在進(jìn)行什么運(yùn)算?

 、诿總(gè)分式的分子 和分母都是什么代數(shù)式?

 、墼诜质降姆肿、分母中的多項(xiàng)式是否可以分解因式,怎樣分解?

 、茉鯓討(yīng)用分式 乘法法則得到積的分式?

  解 原式= = .

  練習(xí):①課本練習(xí)1.

  ②計(jì) 算:

  (三)實(shí)踐與探索2

  探索分式的乘方的法則1.思 考

  我們都學(xué)過了有理數(shù)的`乘方,那么分式的乘 方該是怎樣運(yùn)算的呢?

  先做下面的乘法:(1) = =( )3;

 。2) = =( )k.

  2.仔細(xì)觀察這兩題的結(jié)果,你能發(fā)現(xiàn)什么 規(guī)律?與同伴交流一下,然后完成下面的填 空: )(k) =___________(k是正整數(shù))

  老師應(yīng)格外強(qiáng)調(diào)符 號(hào)問題 自主探究,后合作交流學(xué)習(xí)探索分式的乘方的法則

 。ㄋ模┬〗Y(jié)與作業(yè) 怎樣進(jìn) 行分式 的乘除法?怎樣進(jìn)行分式的乘方?

  作業(yè):

 。ㄎ澹┌鍟O(shè)計(jì)

初中數(shù)學(xué)分式教案2

  一、素質(zhì)教育目標(biāo)

 。ㄒ唬┲R(shí)教學(xué)點(diǎn)

  1.使學(xué)生了解反比例函數(shù)的概念;

  2.使學(xué)生能夠根據(jù)問題中的條件確定反比例函數(shù)的解析式;

  3.使學(xué)生理解反比例函數(shù)的性質(zhì),會(huì)畫出它們的圖像,以及根據(jù)圖像指出函數(shù)值隨自變量的增加或減小而變化的情況;

  4.會(huì)用待定系數(shù)法確定反比例函數(shù)的解析式.

 。ǘ┠芰τ(xùn)練點(diǎn)

  1.培養(yǎng)學(xué)生的作圖、觀察、分析、總結(jié)的能力;

  2.向?qū)W生滲透數(shù)形結(jié)合的教學(xué)思想方法.

 。ㄈ┑掠凉B透點(diǎn)

  1.向?qū)W生滲透數(shù)學(xué)來源于實(shí)踐又反過來作用于實(shí)踐的觀點(diǎn);

  2.使學(xué)生體會(huì)事物是有規(guī)律地變化著的觀點(diǎn).

 。ㄋ模┟烙凉B透點(diǎn)

  通過反比例函數(shù)圖像的研究,滲透反映其性質(zhì)的圖像的直觀形象美,激發(fā)學(xué)生的興趣,也培養(yǎng)學(xué)生積極探求知識(shí)的能力.

  二、學(xué)法引導(dǎo)

  教師采用類比法、觀察法、練習(xí)法

  學(xué)生學(xué)習(xí)反比例函數(shù)要與學(xué)習(xí)其他函數(shù)一樣,要善于數(shù)形結(jié)合,由解析式聯(lián)想到圖像的位置及其性質(zhì),由圖像和性質(zhì)聯(lián)想比例系數(shù) k 的符號(hào).

  三、重點(diǎn)·難點(diǎn)·疑點(diǎn)及解決辦法

  1.教學(xué)重點(diǎn):反比例的概念、圖像、性質(zhì)以及用待定系數(shù)法確定反比例函數(shù)的解析式.因?yàn)橐芯糠幢壤瘮?shù)就必須明確反比例函數(shù)的上述問題.

  2.教學(xué)難點(diǎn):畫反比例函數(shù)的圖像.因?yàn)榉幢壤瘮?shù)的圖像有兩個(gè)分支,而且這兩個(gè)分支的變化趨勢(shì)又不同,學(xué)生初次接觸,一定會(huì)感到困難.

  3.教學(xué)疑點(diǎn):(1)反比例函數(shù)為何與 x 軸, y 軸無交點(diǎn);(2)反比例函數(shù)的圖像只能說在第一、三象限或第二、四象限,而不能說經(jīng)過第幾象限,增減性也要說明在第幾象限(或說在它的每一個(gè)象限內(nèi)).

  4.解決辦法:(1)中隱含條件是或;(2)雙曲線的兩個(gè)分支是斷開的,研究函數(shù)的增減性時(shí),要將兩個(gè)分支分別討論,不能一概而論.

  四、 教學(xué)步驟

 。ㄒ唬┙虒W(xué)過程

  提問:小學(xué)是否學(xué)過反比例關(guān)系?是如何敘述的?

  由學(xué)生先考慮及討論一下.

  答:小學(xué)學(xué)過:兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對(duì)應(yīng)的兩個(gè)數(shù)的積一定,這兩種量就叫做反比例的量,它們的關(guān)系叫做反比例關(guān)系.

  看下面的實(shí)例:(出示幻燈)

  1.當(dāng)路程 s 一定時(shí),時(shí)間 t 與速度 v 成反比例;

  2.當(dāng)矩形面積 S 一定時(shí),長(zhǎng) a 與寬 b 成反比例;

  它們分別可以寫成( s 是常數(shù)),( S 是常數(shù))寫在黑板上,用以得出反比例函數(shù)的`概念:(板書)

  一般地,函數(shù)( k 是常數(shù),)叫做反比例函數(shù).

  即在上面的例子中,當(dāng)路程 s 是常數(shù)時(shí),時(shí)間 t 就是速度 v 的反比例函數(shù),能否說:速度 v 是時(shí)間 t 的反比例函數(shù)呢?

  通過這個(gè)問題,使學(xué)生進(jìn)一步理解反比例函數(shù)的概念,只要滿足( k 是常數(shù),)就可以.因此可以說速度 v 是時(shí)間 t 的反比例函數(shù),因?yàn)椋?em> s 是常量).對(duì)第2個(gè)實(shí)例也一樣.

  練習(xí)一:教材P129中1口答.P130 1

  根據(jù)前面學(xué)習(xí)特殊函數(shù)的經(jīng)驗(yàn),研究完函數(shù)的概念,跟著要研究的是什么?

  答:圖像和性質(zhì).

  通過這個(gè)問題,使學(xué)生對(duì)課本上給出的知識(shí)的發(fā)生、發(fā)展過程有一個(gè)明確的認(rèn)識(shí),以后

  學(xué)生要研究其他函數(shù),也可以按照這種方式來研究.

  下面,我們就來看一個(gè)例題:(出示幻燈)

  例1畫出反比例函數(shù)與的圖像.

  提問:1.畫函數(shù)圖像的關(guān)鍵問題是什么?

  答:合理、正確地選值列表.

  2.在選值時(shí),你認(rèn)為要注意什么問題?

  答:(1)由于函數(shù)圖像的特點(diǎn)還不清楚,多選幾個(gè)點(diǎn)較好;

 。2)不能選,因?yàn)闀r(shí)函數(shù)無意義;

 。3)選整數(shù)較好計(jì)算和描點(diǎn).

  這個(gè)問題中最核心的一點(diǎn)是關(guān)于的問題,提醒學(xué)生注意.

  3.你能不能自己完成這道題呢?

  學(xué)生在練習(xí)本上列表、描點(diǎn)、連線,教師在黑板上板演,到連線時(shí)可暫停,讓學(xué)生先連完線之后,找一名同學(xué)上黑板連線,然后就這名同學(xué)的連線加以評(píng)價(jià)、總結(jié):

  注意:(1)一般地,反比例函數(shù)的圖像由兩條曲線組成,叫做雙曲線;

 。2)這兩條曲線不相交;

  (3)這兩條曲線無限延伸,無限靠近 x 軸和 y 軸,但永不會(huì)與 x 軸和 y 軸相交.

  關(guān)于注意(3)可問學(xué)生:為什么圖像與 x y 軸不相交?

  通過這個(gè)問題既可加深學(xué)生對(duì)反比例函數(shù)圖像的記憶,又可培養(yǎng)學(xué)生思維的靈活性和深刻性.

  再讓學(xué)生觀察黑板上的圖,提問:

  1.當(dāng)時(shí),雙曲線的兩個(gè)分支各在哪個(gè)象限?在每個(gè)象限內(nèi), y x 的增大怎樣變化?

  2.當(dāng)時(shí),雙曲線的兩個(gè)分支各在哪個(gè)象限?在每個(gè)象限內(nèi), y x 的增大怎樣變化?

  這兩個(gè)問題由學(xué)生討論總結(jié)之后回答,教師板書:

  對(duì)于雙曲線(1)當(dāng):(1)當(dāng)時(shí),雙曲線的兩分支位于一、三象限, y x 的增大而減少;(2)當(dāng)時(shí),雙曲線的兩分支位于二、四象限, y x 的增大而增大.

  3.反比例函數(shù)的這一性質(zhì)與正比例函數(shù)的性質(zhì)有何異同?

  通過這個(gè)問題使學(xué)生能把學(xué)過的相關(guān)知識(shí)有機(jī)地串聯(lián)起來,便于記憶和應(yīng)用.

  練習(xí)二:教材P129中2由學(xué)生在練習(xí)本上完成,教師巡回指導(dǎo).P130中2、3填在書上

  上面,我們討論了反比例函數(shù)的概念、圖像和性質(zhì),下面我們?cè)賮砜匆粋(gè)不同類型的例題:(出示幻燈)

  例2已知 y 與成反比例,并且當(dāng)時(shí),,求時(shí), y 的值.

  用提問的方式對(duì)此題加以分析:

  (1) y 與成反比例是什么含義?

  由學(xué)生討論這一問題,最后歸結(jié)為根據(jù)反比例函數(shù)的概念,這句話說明了:.

 。2)根據(jù)這個(gè)式子,能否求出當(dāng)時(shí), y 的值?

 。3)要想求出 y 的值,必須先知道哪個(gè)量呢?

  (4)怎樣才能確定 k 的值?用什么條件?

  答:用待定系數(shù)法,把時(shí)代入,求出 k 的值.

  (5)你能否自己完成這道例題:

  由一名同學(xué)板演,其他同學(xué)在練習(xí)本上完成.

  例3已知:,與 x 成正比例,與 x 成反比例,當(dāng)時(shí),時(shí),,求 y x 的解析式.

  分析:一定要先寫出 y x 的函數(shù)表達(dá)式,

  要用 x 分別把,表示出來得,

  要注意不能寫成 k ,∴

  解:設(shè),

  .

  由題意得

  ∴ .

  (二)總結(jié)、擴(kuò)展

  教師提問,學(xué)生思考回答:

  1.什么是反比例函數(shù)?

  2.反比例函數(shù)的圖像是什么樣的?

  3.反比例函數(shù)的性質(zhì)是什么?

  4.命題方向及題型設(shè)置,反比例函數(shù)也是中考命題的主要考點(diǎn),其圖像和性質(zhì),以及其函數(shù)解析式的確定,常以填空題、選擇題出現(xiàn),在低檔題中,近兩年各省、市的中考試卷中出現(xiàn)不少將反比例函數(shù)與一次函數(shù)、幾何知識(shí)、三角知識(shí)等綜合編擬的解答題,豐富了壓軸題的形式和內(nèi)容.

  五、布置作業(yè)

  1.教材P130中4,5,6

  2.選做:P130中B1,2

  六、板書設(shè)計(jì)

  13.8反比例函數(shù)及其圖像

  引例:(1)例1:例2:例3:

初中數(shù)學(xué)分式教案3

  學(xué)習(xí)目標(biāo)

  1、了解分式的概念,會(huì)判斷一個(gè)代數(shù)式是否是分式。

  2、能用分式表示簡(jiǎn)單問題中數(shù)量之間的關(guān)系,能解釋簡(jiǎn)單分式的實(shí)際背景或幾何意義。

  3、能分析出一個(gè)簡(jiǎn)單分式有、無意義的條件。

  4、會(huì)根據(jù)已知條件求分式的值。

  學(xué)習(xí)重點(diǎn)

  分式的概念,掌握分式有意義的條件

  學(xué)習(xí)難點(diǎn)

  分式有、無意義的條件

  教學(xué)流程

  預(yù)習(xí)導(dǎo)航

  一、創(chuàng)設(shè)情境:

  京滬鐵路是我國東部沿海地區(qū)縱貫?zāi)媳钡慕煌ù髣?dòng)脈,全長(zhǎng)1462km,是我國最繁忙的鐵路干線之一。如果貨運(yùn)列車的速度為akm/h,快速列車的速度為貨運(yùn)列車2倍,那么:

  (1)貨運(yùn)列車從北京到上海需要多長(zhǎng)時(shí)間?

  (2)快速列車從北京到上海需要多長(zhǎng)時(shí)間?

  (3)已知從北京到上?焖倭熊嚤蓉涍\(yùn)列車少用多少時(shí)間?

  觀察剛才你們所列的式子,它們有什么特點(diǎn)?

  這些式子與分?jǐn)?shù)有什么相同和不同之處?

  合作探究

  一、概念探究:

  1、列出下列式子:

  (1)一塊長(zhǎng)方形玻璃板的面積為2㎡,如果寬為am,那么長(zhǎng)是

  (2)小麗用n元人民幣買了m袋瓜子,那么每袋瓜子的價(jià)格是 元。

  (3)正n邊形的每個(gè)內(nèi)角為 度。

  (4)兩塊面積分別為a公頃、b公頃的棉田,產(chǎn)棉花分別為m㎏、n㎏。這兩塊棉田平均每公頃產(chǎn)棉花 ______㎏。

  2、兩個(gè)數(shù)相除可以把它們的商表示成分?jǐn)?shù)的形式。如果用字母 分別表示分?jǐn)?shù)的分子和分母,那么 可以表示成什么形式呢?

  3、思考:

  上面所列各式有什么共同特點(diǎn)?

  (通過對(duì)以上幾個(gè)實(shí)際問題的研討,學(xué)會(huì)用 的形式表示實(shí)際問題中數(shù)量之間的'關(guān)系,感受把分?jǐn)?shù)推廣到分式的優(yōu)越性和必要性)

  分式的概念:

  4、小結(jié)分式的概念中應(yīng)注意的問題.

 、 分式是兩個(gè)整式相除的商式,其中分子為被除式,分母為除式,分?jǐn)?shù)線起除號(hào)的作用;

 、 分式的分母中必須含有字母,而分子中可以含有字母,也可以不含字母,這是區(qū)別整式的重要依據(jù);

 、 如同分?jǐn)?shù)一樣,在任何情況下,分式的分母的值都不可以為0,否則分式無意義。分式分母不為零是隱含在此分式中而無須注明的條件。

  二、例題分析:

  例1 : 試解釋分式 所表示的實(shí)際意義

  例2:求分式 的值 ①a=3 ②a=—

  例3:當(dāng)取什么值時(shí),分式 (1)沒有意義?(2)有意義?(3)值為零。

  三、展示交流:

  1、在 ____________中,是整式的有_____________________,是分式的有________________;

  2、 寫成分式為____________,且當(dāng)m≠_____時(shí)分式有意義;

  3、當(dāng)x_______時(shí),分式 無意義,當(dāng)x______時(shí),分式的值為1。

  4、 若分式 的值為正數(shù),則x的取值應(yīng)是 ( )

  A. , B. C. D. 為任意實(shí)數(shù)

  四、提煉總結(jié):

  1、什么叫分式?

  2、分式什么時(shí)候有意義?怎樣求分式的值

初中數(shù)學(xué)分式教案4

  分式(2課時(shí))

  上課時(shí)間 年 月 日星期

  一、復(fù)習(xí)要點(diǎn)

  1、分式的通分和約分

  2、分式的定義域

  3、分式的化簡(jiǎn)和求值

  二、復(fù)習(xí)過程

  1、求代數(shù)式的值:①化 ②代 ③算

  例:①已知x+y=5;xy=3,求x3y+2x2y2+xy3

 、谝阎猘=-1,b=-3,c=1,求 a2b--3abc

 、垡阎猘= 求 ÷( - )+

 、芤阎獂= y= ,求 +

  2、分式的通分和約分

  (1)通分最簡(jiǎn)公分母:;高

  (2)約分:注: 與 和

  3、分式的定義域

  ①分式 (1)何時(shí)有意義(2)何時(shí)無意義(3)何時(shí)值為0

  4、分式的化簡(jiǎn)和求值

  ①1- ÷ +

  其他例題見復(fù)習(xí)用書13頁5(6、7、8、)6

  三、小結(jié) 1、分式的通分和約分

  2、分式的`定義域

  3、分式的化簡(jiǎn)和求值

  四、練習(xí):略

  五、作業(yè):

  見復(fù)習(xí)用書

  分式(2課時(shí))

  上課時(shí)間 年 月 日星期

  一、復(fù)習(xí)要點(diǎn)

  1、分式的通分和約分

  2、分式的定義域

  3、分式的化簡(jiǎn)和求值

  二、復(fù)習(xí)過程

  1、求代數(shù)式的值:①化 ②代 ③算

  例:①已知x+y=5;xy=3,求x3y+2x2y2+xy3

 、谝阎猘=-1,b=-3,c=1,求 a2b--3abc

 、垡阎猘= 求 ÷( - )+

  ④已知x= y= ,求 +

  2、分式的通分和約分

 。1)通分最簡(jiǎn)公分母:。桓

 。2)約分:注: 與 和

  3、分式的定義域

 、俜质 (1)何時(shí)有意義(2)何時(shí)無意義(3)何時(shí)值為0

  4、分式的化簡(jiǎn)和求值

 、1- ÷ +

  其他例題見復(fù)習(xí)用書13頁5(6、7、8、)6

  三、小結(jié) 1、分式的通分和約分

  2、分式的定義域

  3、分式的化簡(jiǎn)和求值

  四、練習(xí):略

  五、作業(yè):

  見復(fù)習(xí)用書

初中數(shù)學(xué)分式教案5

  教學(xué)目標(biāo):

  1、理解反比例函數(shù),并能從實(shí)際問題中抽象出反比例關(guān)系的函數(shù)解析式;

  2、會(huì)畫出反比例函數(shù)的圖象,并結(jié)合圖象分析總結(jié)出反比例函數(shù)的性質(zhì);

  3、滲透數(shù)形結(jié)合的數(shù)學(xué)思想及普遍聯(lián)系的辨證唯物主義思想;

  4、體會(huì)數(shù)學(xué)從實(shí)踐中來又到實(shí)際中去的研究、應(yīng)用過程;

  5、培養(yǎng)學(xué)生的觀察能力,及數(shù)學(xué)地發(fā)現(xiàn)問題,解決問題的能力.

  教學(xué)重點(diǎn):

  結(jié)合圖象分析總結(jié)出反比例函數(shù)的性質(zhì);

  教學(xué)難點(diǎn):描點(diǎn)畫出反比例函數(shù)的圖象

  教學(xué)用具:直尺

  教學(xué)方法:小組合作、探究式

  教學(xué)過程

  1、從實(shí)際引出反比例函數(shù)的概念

  我們?cè)谛W(xué)學(xué)過反比例關(guān)系.例如:當(dāng)路程S一定時(shí),時(shí)間t與速度v成反比例

  即vt=S(S是常數(shù));

  當(dāng)矩形面積S一定時(shí),長(zhǎng)a與寬b成反比例,即ab=S(S是常數(shù))

  從函數(shù)的觀點(diǎn)看,在運(yùn)動(dòng)變化的過程中,有兩個(gè)變量可以分別看成自變量與函數(shù),寫成:

 。⊿是常數(shù))

 。⊿是常數(shù))

  一般地,函數(shù)(k是常數(shù),)叫做反比例函數(shù).

  如上例,當(dāng)路程S是常數(shù)時(shí),時(shí)間t就是v的反比例函數(shù).當(dāng)矩形面積S是常數(shù)時(shí),長(zhǎng)a是寬b的反比例函數(shù).

  在現(xiàn)實(shí)生活中,也有許多反比例關(guān)系的例子.可以組織學(xué)生進(jìn)行討論.下面的例子僅供

  2、列表、描點(diǎn)畫出反比例函數(shù)的圖象

  例1、畫出反比例函數(shù)與的圖象

  說明:由于學(xué)生第一次接觸反比例函數(shù),無法推測(cè)出它的大致圖象.取點(diǎn)的時(shí)候最好多取幾個(gè),正負(fù)可以對(duì)稱著取分別畫點(diǎn)描圖

  一般地反比例函數(shù)(k是常數(shù),)的圖象由兩條曲線組成,叫做雙曲線.

  3、觀察圖象,歸納、總結(jié)出反比例函數(shù)的性質(zhì)

  前面學(xué)習(xí)了三類基本的初等函數(shù),有了一定的基礎(chǔ),這里可視學(xué)生的程度或展開全面的討論,或在老師的引導(dǎo)下完成知識(shí)的學(xué)習(xí).

  顯示這兩個(gè)函數(shù)的圖象,提出問題:你能從圖象上發(fā)現(xiàn)什么有關(guān)反比例函數(shù)的性質(zhì)呢?并能從解析式或列表中得到論證.(下列答案僅供參考)

  (1)的圖象在第一、三象限.可以擴(kuò)展到k >0時(shí)的情形,即k>0時(shí),雙曲線兩支各在第一和第三象限.從解析式中,也可以得出這個(gè)結(jié)論:xy=k,即x與y同號(hào),因此,圖象在第一、三象限.

  的討論與此類似.

  抓住機(jī)會(huì),說明數(shù)與形的統(tǒng)一,也滲透了數(shù)形結(jié)合的數(shù)學(xué)思想方法.體現(xiàn)了由特殊到一般的研究過程.

 。2)函數(shù)的圖象,在每一個(gè)象限內(nèi),y隨x的增大而減。

  從圖象中可以看出,當(dāng)x從左向右變化時(shí),圖象呈下坡趨勢(shì).從列表中也可以看出這樣的變化趨勢(shì).有理數(shù)除法說明了同樣的道理,被除數(shù)一定時(shí),若除數(shù)大于零,除數(shù)越大,商越;若除數(shù)小于零,同樣是除數(shù)越大,商越小.由此可歸納出,當(dāng)k>0時(shí),函數(shù)的圖象,在每一個(gè)象限內(nèi),y隨x的增大而減小.

  同樣可以推出的圖象的性質(zhì).

 。3)函數(shù)的圖象不經(jīng)過原點(diǎn),且不與x軸、y軸交.從解析式中也可以看出,.如果x取值越來越大時(shí),y的值越來越小,趨近于零;如果x取負(fù)值且越來越小時(shí),y的值也越來越趨近于零.因此,呈現(xiàn)的是雙曲線的'樣子.同理,抽象出圖象的性質(zhì).

  函數(shù)的圖象性質(zhì)的討論與次類似.

  4、小結(jié):

  本節(jié)課我們學(xué)習(xí)了反比例函數(shù)的概念及其圖象的性質(zhì).大家展開了充分的討論,對(duì)函數(shù)的概念,函數(shù)的圖象的性質(zhì)有了進(jìn)一步的認(rèn)識(shí).數(shù)學(xué)學(xué)習(xí)要求我們要深刻地理解,找出事物間的普遍聯(lián)系和發(fā)展規(guī)律,能數(shù)學(xué)地發(fā)現(xiàn)問題,并能運(yùn)用已有的數(shù)學(xué)知識(shí),給以一定的解釋.即數(shù)學(xué)是世界的一個(gè)部分,同時(shí)又隱藏在世界中.

  5、布置作業(yè)習(xí)題13.8 1-4

【初中數(shù)學(xué)分式教案】相關(guān)文章:

初中數(shù)學(xué)分式教案5篇12-29

初中數(shù)學(xué)第六冊(cè)分式教案01-10

初中數(shù)學(xué) 教案02-24

分式教學(xué)反思02-14

初中數(shù)學(xué)教案08-12

初中數(shù)學(xué)方差教案12-28

初中數(shù)學(xué)直線教案12-29

初中數(shù)學(xué)矩形教案12-30

初中數(shù)學(xué)《圓 》教案12-30