【推薦】高一數(shù)學(xué)教案
作為一位優(yōu)秀的人民教師,時(shí)常要開(kāi)展教案準(zhǔn)備工作,通過(guò)教案準(zhǔn)備可以更好地根據(jù)具體情況對(duì)教學(xué)進(jìn)程做適當(dāng)?shù)谋匾恼{(diào)整。那么應(yīng)當(dāng)如何寫(xiě)教案呢?下面是小編為大家收集的高一數(shù)學(xué)教案,希望能夠幫助到大家。
高一數(shù)學(xué)教案1
學(xué)習(xí)是一個(gè)潛移默化、厚積薄發(fā)的過(guò)程。編輯老師編輯了高一數(shù)學(xué)教案:數(shù)列,希望對(duì)您有所幫助!
教學(xué)目標(biāo)
1.使學(xué)生理解數(shù)列的概念,了解數(shù)列通項(xiàng)公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫(xiě)出數(shù)列的前幾項(xiàng).
(1)理解數(shù)列是按一定順序排成的一列數(shù),其每一項(xiàng)是由其項(xiàng)數(shù)唯一確定的.
(2)了解數(shù)列的各種表示方法,理解通項(xiàng)公式是數(shù)列第項(xiàng)與項(xiàng)數(shù)的關(guān)系式,能根據(jù)通項(xiàng)公式寫(xiě)出數(shù)列的前幾項(xiàng),并能根據(jù)給出的一個(gè)數(shù)列的前幾項(xiàng)寫(xiě)出該數(shù)列的一個(gè)通項(xiàng)公式.
(3)已知一個(gè)數(shù)列的遞推公式及前若干項(xiàng),便確定了數(shù)列,能用代入法寫(xiě)出數(shù)列的前幾項(xiàng).
2.通過(guò)對(duì)一列數(shù)的觀察、歸納,寫(xiě)出符合條件的一個(gè)通項(xiàng)公式,培養(yǎng)學(xué)生的觀察能力和抽象概括能力.
3.通過(guò)由求的過(guò)程,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度及良好的思維習(xí)慣.
教學(xué)建議
(1)為激發(fā)學(xué)生學(xué)習(xí)數(shù)列的興趣,體會(huì)數(shù)列知識(shí)在實(shí)際生活中的作用,可由實(shí)際問(wèn)題引入,從中抽象出數(shù)列要研究的問(wèn)題,使學(xué)生對(duì)所要研究的內(nèi)容心中有數(shù),如書(shū)中所給的例子,還有物品堆放個(gè)數(shù)的'計(jì)算等.
(2)數(shù)列中蘊(yùn)含的函數(shù)思想是研究數(shù)列的指導(dǎo)思想,應(yīng)及早引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)列與函數(shù)的關(guān)系.在教學(xué)中強(qiáng)調(diào)數(shù)列的項(xiàng)是按一定順序排列的,“次序”便是函數(shù)的自變量,相同的數(shù)組成的數(shù)列,次序不同則就是不同的數(shù)列.函數(shù)表示法有列表法、圖象法、解析式法,類(lèi)似地,數(shù)列就有列舉法、圖示法、通項(xiàng)公式法.由于數(shù)列的自變量為正整數(shù),于是就有可能相鄰的兩項(xiàng)(或幾項(xiàng))有關(guān)系,從而數(shù)列就有其特殊的表示法——遞推公式法.
(3)由數(shù)列的通項(xiàng)公式寫(xiě)出數(shù)列的前幾項(xiàng)是簡(jiǎn)單的代入法,教師應(yīng)精心設(shè)計(jì)例題,使這一例題為寫(xiě)通項(xiàng)公式作一些準(zhǔn)備,尤其是對(duì)程度差的學(xué)生,應(yīng)多舉幾個(gè)例子,讓學(xué)生觀察歸納通項(xiàng)公式與各項(xiàng)的結(jié)構(gòu)關(guān)系,盡量為寫(xiě)通項(xiàng)公式提供幫助.
(4)由數(shù)列的前幾項(xiàng)寫(xiě)出數(shù)列的一個(gè)通項(xiàng)公式使學(xué)生學(xué)習(xí)中的一個(gè)難點(diǎn),要幫助學(xué)生分析各項(xiàng)中的結(jié)構(gòu)特征(整式,分式,遞增,遞減,擺動(dòng)等),由學(xué)生歸納一些規(guī)律性的結(jié)論,如正負(fù)相間用來(lái)調(diào)整等.如果學(xué)生一時(shí)不能寫(xiě)出通項(xiàng)公式,可讓學(xué)生依據(jù)前幾項(xiàng)的規(guī)律,猜想該數(shù)列的下一項(xiàng)或下幾項(xiàng)的值,以便尋求項(xiàng)與項(xiàng)數(shù)的關(guān)系.
(5)對(duì)每個(gè)數(shù)列都有求和問(wèn)題,所以在本節(jié)課應(yīng)補(bǔ)充數(shù)列前項(xiàng)和的概念,用表示的問(wèn)題是重點(diǎn)問(wèn)題,可先提出一個(gè)具體問(wèn)題讓學(xué)生分析與的關(guān)系,再由特殊到一般,研究其一般規(guī)律,并給出嚴(yán)格的推理證明(強(qiáng)調(diào)的表達(dá)式是分段的);之后再到特殊問(wèn)題的解決,舉例時(shí)要兼顧結(jié)果可合并及不可合并的情況.
(6)給出一些簡(jiǎn)單數(shù)列的通項(xiàng)公式,可以求其最大項(xiàng)或最小項(xiàng),又是函數(shù)思想與方法的體現(xiàn),對(duì)程度好的學(xué)生應(yīng)提出這一問(wèn)題,學(xué)生運(yùn)用函數(shù)知識(shí)是可以解決的.
上述提供的高一數(shù)學(xué)教案:數(shù)列希望能夠符合大家的實(shí)際需要!
高一數(shù)學(xué)教案2
教學(xué)目標(biāo)
1、掌握平面向量的數(shù)量積及其幾何意義;
2、掌握平面向量數(shù)量積的重要性質(zhì)及運(yùn)算律;
3、了解用平面向量的數(shù)量積可以處理垂直的問(wèn)題;
4、掌握向量垂直的條件、
教學(xué)重難點(diǎn)
教學(xué)重點(diǎn):平面向量的數(shù)量積定義
教學(xué)難點(diǎn):平面向量數(shù)量積的定義及運(yùn)算律的理解和平面向量數(shù)量積的'應(yīng)用
教學(xué)過(guò)程
1、平面向量數(shù)量積(內(nèi)積)的定義:已知兩個(gè)非零向量a與b,它們的夾角是θ,
則數(shù)量|a||b|cosq叫a與b的數(shù)量積,記作a×b,即有a×b=|a||b|cosq,(0≤θ≤π)、
并規(guī)定0向量與任何向量的數(shù)量積為0、
×探究:1、向量數(shù)量積是一個(gè)向量還是一個(gè)數(shù)量?它的符號(hào)什么時(shí)候?yàn)檎?什么時(shí)候?yàn)樨?fù)?
2、兩個(gè)向量的數(shù)量積與實(shí)數(shù)乘向量的積有什么區(qū)別?
(1)兩個(gè)向量的數(shù)量積是一個(gè)實(shí)數(shù),不是向量,符號(hào)由cosq的符號(hào)所決定、
(2)兩個(gè)向量的數(shù)量積稱(chēng)為內(nèi)積,寫(xiě)成a×b;今后要學(xué)到兩個(gè)向量的外積a×b,而a×b是兩個(gè)向量的數(shù)量的積,書(shū)寫(xiě)時(shí)要嚴(yán)格區(qū)分、符號(hào)“·”在向量運(yùn)算中不是乘號(hào),既不能省略,也不能用“×”代替、
(3)在實(shí)數(shù)中,若a?0,且a×b=0,則b=0;但是在數(shù)量積中,若a?0,且a×b=0,不能推出b=0、因?yàn)槠渲衏osq有可能為0、
高一數(shù)學(xué)教案3
教學(xué)目標(biāo):
1、初步掌握?qǐng)A周長(zhǎng)、弧長(zhǎng)公式;
2、通過(guò)弧長(zhǎng)公式的推導(dǎo),培養(yǎng)學(xué)生探究新問(wèn)題的能力;
3、調(diào)動(dòng)學(xué)生的積極性,培養(yǎng)學(xué)生的鉆研精神;
4、進(jìn)一步培養(yǎng)學(xué)生從實(shí)際問(wèn)題中抽象出數(shù)學(xué)模型的能力,綜合運(yùn)用所學(xué)知識(shí)分析問(wèn)題和解決問(wèn)題的能力.
教學(xué)重點(diǎn):弧長(zhǎng)公式.
教學(xué)難點(diǎn):正確理解弧長(zhǎng)公式.
教學(xué)活動(dòng)設(shè)計(jì):
(一)復(fù)習(xí)(圓周長(zhǎng))
已知⊙O半徑為R,⊙O的周長(zhǎng)C是多少?
C=2πR
這里π=3.14159…,這個(gè)無(wú)限不循環(huán)的小數(shù)叫做圓周率.
由于生產(chǎn)、生活實(shí)際中常遇到有關(guān)弧的長(zhǎng)度計(jì)算,那么怎樣求一段弧的長(zhǎng)度呢?
提出新問(wèn)題:已知⊙O半徑為R,求n°圓心角所對(duì)弧長(zhǎng).
(二)探究新問(wèn)題、歸納結(jié)論
教師組織學(xué)生探討(因?yàn)閱?wèn)題并不難,學(xué)生完全可以自己研究得到公式).
研究步驟:
(1)圓周長(zhǎng)C=2πR;
(2)1°圓心角所對(duì)弧長(zhǎng)=;
(3)n°圓心角所對(duì)的'弧長(zhǎng)是1°圓心角所對(duì)的弧長(zhǎng)的n倍;
(4)n°圓心角所對(duì)弧長(zhǎng)=.
歸納結(jié)論:若設(shè)⊙O半徑為R,n°圓心角所對(duì)弧長(zhǎng)l,則
(弧長(zhǎng)公式)
(三)理解公式、區(qū)分概念
教師引導(dǎo)學(xué)生理解:
(1)在應(yīng)用弧長(zhǎng)公式進(jìn)行計(jì)算時(shí),要注意公式中n的意義.n表示1°圓心角的倍數(shù),它是不帶單位的;
(2)公式可以理解記憶(即按照上面推導(dǎo)過(guò)程記憶);
(3)區(qū)分弧、弧的度數(shù)、弧長(zhǎng)三概念.度數(shù)相等的弧,弧長(zhǎng)不一定相等,弧長(zhǎng)相等的弧也不一定是等孤,而只有在同圓或等圓中,才可能是等弧.
(四)初步應(yīng)用
例1、已知:如圖,圓環(huán)的外圓周長(zhǎng)C1=250cm,內(nèi)圓周長(zhǎng)C2=150cm,求圓環(huán)的寬度d (精確到1mm).
分析:(1)圓環(huán)的寬度與同心圓半徑有什么關(guān)系?
(2)已知周長(zhǎng)怎樣求半徑?
(學(xué)生獨(dú)立完成)
解:設(shè)外圓的半徑為R1,內(nèi)圓的半徑為R2,則
d= .
∵,,
∴ (cm)
例2,彎制管道時(shí),先按中心線計(jì)算展直長(zhǎng)度,再下料,試計(jì)算圖所示管道的展直長(zhǎng)度L(單位:mm,精確到1mm)
教師引導(dǎo)學(xué)生把實(shí)際問(wèn)題抽象成數(shù)學(xué)問(wèn)題,滲透數(shù)學(xué)建模思想.
解:由弧長(zhǎng)公式,得
(mm)
所要求的展直長(zhǎng)度
L (mm)
答:管道的展直長(zhǎng)度為2970mm.
課堂練習(xí):P176練習(xí)1、4題.
(五)總結(jié)
知識(shí):圓周長(zhǎng)、弧長(zhǎng)公式;圓周率概念;
能力:探究問(wèn)題的方法和能力,弧長(zhǎng)公式的記憶方法;初步應(yīng)用弧長(zhǎng)公式解決問(wèn)題.
(六)作業(yè)教材P176練習(xí)2、3;P186習(xí)題3.
高一數(shù)學(xué)教案4
一、教材
首先談?wù)勎覍?duì)教材的理解,《兩條直線平行與垂直的判定》是人教A版高中數(shù)學(xué)必修2第三章3.1.2的內(nèi)容,本節(jié)課的內(nèi)容是兩條直線平行與垂直的判定的推導(dǎo)及其應(yīng)用,學(xué)生對(duì)于直線平行和垂直的概念已經(jīng)十分熟悉,并且在上節(jié)課學(xué)習(xí)了直線的傾斜角與斜率,為本節(jié)課的學(xué)習(xí)打下了基礎(chǔ)。
二、學(xué)情
教材是我們教學(xué)的工具,是載體。但我們的教學(xué)是要面向?qū)W生的,高中學(xué)生本身身心已經(jīng)趨于成熟,管理與教學(xué)難度較大,那么為了能夠成為一個(gè)合格的高中教師,深入了解所面對(duì)的學(xué)生可以說(shuō)是必修課。本階段的學(xué)生思維能力已經(jīng)非常成熟,能夠有自己獨(dú)立的思考,所以應(yīng)該積極發(fā)揮這種優(yōu)勢(shì),讓學(xué)生獨(dú)立思考探索。
三、教學(xué)目標(biāo)
根據(jù)以上對(duì)教材的分析以及對(duì)學(xué)情的把握,我制定了如下三維教學(xué)目標(biāo):
(一)知識(shí)與技能
掌握兩條直線平行與垂直的判定,能夠根據(jù)其判定兩條直線的位置關(guān)系。
(二)過(guò)程與方法
在經(jīng)歷兩條直線平行與垂直的判定過(guò)程中,提升邏輯推理能力。
(三)情感態(tài)度價(jià)值觀
在猜想論證的過(guò)程中,體會(huì)數(shù)學(xué)的嚴(yán)謹(jǐn)性。
四、教學(xué)重難點(diǎn)
我認(rèn)為一節(jié)好的數(shù)學(xué)課,從教學(xué)內(nèi)容上說(shuō)一定要突出重點(diǎn)、突破難點(diǎn)。而教學(xué)重點(diǎn)的確立與我本節(jié)課的.內(nèi)容肯定是密不可分的。那么根據(jù)授課內(nèi)容可以確定本節(jié)課的教學(xué)重點(diǎn)是:兩條直線平行與垂直的判定。本節(jié)課的教學(xué)難點(diǎn)是:兩條直線平行與垂直的判定的推導(dǎo)。
五、教法和學(xué)法
現(xiàn)代教學(xué)理論認(rèn)為,在教學(xué)過(guò)程中,學(xué)生是學(xué)習(xí)的主體,教師是學(xué)習(xí)的組織者、引導(dǎo)者,教學(xué)的一切活動(dòng)都必須以強(qiáng)調(diào)學(xué)生的主動(dòng)性、積極性為出發(fā)點(diǎn)。根據(jù)這一教學(xué)理念,結(jié)合本節(jié)課的內(nèi)容特點(diǎn)和學(xué)生的年齡特征,本節(jié)課我采用講授法、練習(xí)法、小組合作等教學(xué)方法。
六、教學(xué)過(guò)程
下面我將重點(diǎn)談?wù)勎覍?duì)教學(xué)過(guò)程的設(shè)計(jì)。
(一)新課導(dǎo)入
首先是導(dǎo)入環(huán)節(jié),那么我采用復(fù)習(xí)導(dǎo)入,回顧上節(jié)課所學(xué)的直線的傾斜角與斜率并順勢(shì)提問(wèn):能否通過(guò)直線的斜率,來(lái)判斷兩條直線的位置關(guān)系呢?
利用上節(jié)課所學(xué)的知識(shí)進(jìn)行導(dǎo)入,很好的克服學(xué)生的畏難情緒。
(二)新知探索
接下來(lái)是教學(xué)中最重要的新知探索環(huán)節(jié),我主要采用講解法、小組合作、啟發(fā)法等。
高一數(shù)學(xué)教案5
第一節(jié) 集合的含義與表示
學(xué)時(shí):1學(xué)時(shí)
[學(xué)習(xí)引導(dǎo)]
一、自主學(xué)習(xí)
1.閱讀課本 .
2.回答問(wèn)題:
、疟竟(jié)內(nèi)容有哪些概念和知識(shí)點(diǎn)?
、茋L試說(shuō)出相關(guān)概念的含義?
3完成 練習(xí)
4小結(jié)
二、方法指導(dǎo)
1、要結(jié)合例子理解集合的概念,能說(shuō)出常用的數(shù)集的名稱(chēng)和符號(hào)。
2、理解集合元素的特性,并會(huì)判斷元素與集合的關(guān)系
3、掌握集合的表示方法,并會(huì)正確運(yùn)用它們表示一些簡(jiǎn)單集合。
4、在學(xué)習(xí)中要特別注意理解空集的意義和記法
[思考引導(dǎo)]
一、提問(wèn)題
1.集合中的元素有什么特點(diǎn)?
2、集合的常用表示法有哪些?
3、集合如何分類(lèi)?
4.元素與集合具有什么關(guān)系?如何用數(shù)學(xué)語(yǔ)言表述?
5集合 和 是否相同?
二、變題目
1.下列各組對(duì)象不能構(gòu)成集合的是( )
A.北京大學(xué)2008級(jí)新生
B.26個(gè)英文字母
C.著名的藝術(shù)家
D.2008年北京奧運(yùn)會(huì)中所設(shè)定的比賽項(xiàng)目
2.下列語(yǔ)句:①0與 表示同一個(gè)集合;
、谟1,2,3組成的集合可表示為 或 ;
、鄯匠 的解集可表示為 ;
④集合 可以用列舉法表示。
其中正確的是( )
A.①和④ B.②和③
C.② D.以上語(yǔ)句都不對(duì)
[總結(jié)引導(dǎo)]
1.集合中元素的三特性:
2.集合、元素、及其相互關(guān)系的'數(shù)學(xué)符號(hào)語(yǔ)言的表示和理解:
3.空集的含義:
[拓展引導(dǎo)]
1.課外作業(yè): 習(xí)題11第 題;
2.若集合 ,求實(shí)數(shù) 的值;
3.若集合 只有一個(gè)元素,則實(shí)數(shù) 的值為 ;若 為空集,則 的取值范圍是 .
撰稿:程曉杰 審稿:宋慶
高一數(shù)學(xué)教案6
教學(xué)目標(biāo):
1.進(jìn)一步理解對(duì)數(shù)函數(shù)的性質(zhì),能運(yùn)用對(duì)數(shù)函數(shù)的相關(guān)性質(zhì)解決對(duì)數(shù)型函數(shù)的常見(jiàn)問(wèn)題.
2.培養(yǎng)學(xué)生數(shù)形結(jié)合的思想,以及分析推理的能力.
教學(xué)重點(diǎn):
對(duì)數(shù)函數(shù)性質(zhì)的應(yīng)用.
教學(xué)難點(diǎn):
對(duì)數(shù)函數(shù)的性質(zhì)向?qū)?shù)型函數(shù)的演變延伸.
教學(xué)過(guò)程:
一、問(wèn)題情境
1.復(fù)習(xí)對(duì)數(shù)函數(shù)的性質(zhì).
2.回答下列問(wèn)題.
(1)函數(shù)y=log2x的值域是 ;
(2)函數(shù)y=log2x(x≥1)的值域是 ;
(3)函數(shù)y=log2x(0
3.情境問(wèn)題.
函數(shù)y=log2(x2+2x+2)的定義域和值域分別如何求呢?
二、學(xué)生活動(dòng)
探究完成情境問(wèn)題.
三、數(shù)學(xué)運(yùn)用
例1 求函數(shù)y=log2(x2+2x+2)的定義域和值域.
練習(xí):
(1)已知函數(shù)y=log2x的值域是[-2,3],則x的范圍是________________.
(2)函數(shù) ,x(0,8]的值域是 .
(3)函數(shù)y=log (x2-6x+17)的'值域 .
(4)函數(shù) 的值域是_______________.
例2 判斷下列函數(shù)的奇偶性:
(1)f (x)=lg (2)f (x)=ln( -x)
例3 已知loga 0.75>1,試求實(shí)數(shù)a 取值范圍.
例4 已知函數(shù)y=loga(1-ax)(a>0,a≠1).
(1)求函數(shù)的定義域與值域;
(2)求函數(shù)的單調(diào)區(qū)間.
練習(xí):
1.下列函數(shù)(1) y=x-1;(2) y=log2(x-1);(3) y= ;(4)y=lnx,其中值域?yàn)镽的有 (請(qǐng)寫(xiě)出所有正確結(jié)論的序號(hào)).
2.函數(shù)y=lg( -1)的圖象關(guān)于 對(duì)稱(chēng).
3.已知函數(shù) (a>0,a≠1)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),那么實(shí)數(shù)m= .
4.求函數(shù) ,其中x [ ,9]的值域.
四、要點(diǎn)歸納與方法小結(jié)
(1)借助于對(duì)數(shù)函數(shù)的性質(zhì)研究對(duì)數(shù)型函數(shù)的定義域與值域;
(2)換元法;
(3)能畫(huà)出較復(fù)雜函數(shù)的圖象,根據(jù)圖象研究函數(shù)的性質(zhì)(數(shù)形結(jié)合).
五、作業(yè)
課本P70~71-4,5,10,11.
高一數(shù)學(xué)教案7
教學(xué)目標(biāo)
1、使學(xué)生理解求圓錐體積的計(jì)算公式.
2、會(huì)運(yùn)用公式計(jì)算圓錐的體積.
教學(xué)重點(diǎn)
圓錐體體積計(jì)算公式的推導(dǎo)過(guò)程.
教學(xué)難點(diǎn)
正確理解圓錐體積計(jì)算公式.
教學(xué)步驟
一、鋪墊孕伏
1、提問(wèn):
(1)圓柱的體積公式是什么?
(2)投影出示圓錐體的圖形,學(xué)生指圖說(shuō)出圓錐的底面、側(cè)面和高.
2、導(dǎo)入:同學(xué)們,前面我們已經(jīng)認(rèn)識(shí)了圓錐,掌握了它的特征,那么圓錐的體積怎樣計(jì)算呢?這節(jié)課我們就來(lái)研究這個(gè)問(wèn)題.(板書(shū):圓錐的體積)
二、探究新知
(一)指導(dǎo)探究圓錐體積的計(jì)算公式.
1、教師談話:
下面我們利用實(shí)驗(yàn)的方法來(lái)探究圓錐體積的計(jì)算方法.老師給每組同學(xué)都準(zhǔn)備了兩個(gè)圓錐體容器,兩個(gè)圓柱體容器和一些沙土.實(shí)驗(yàn)時(shí),先往圓柱體(或圓錐體)容器里裝滿(mǎn)沙土(用直尺將多余的沙土刮掉),倒人圓錐體(或圓柱體)容器里.倒的時(shí)候要注意,把兩個(gè)容器比一比、量一量,看它們之間有什么關(guān)系,并想一想,通過(guò)實(shí)驗(yàn)?zāi)惆l(fā)現(xiàn)了什么?
2、學(xué)生分組實(shí)驗(yàn)
3、學(xué)生匯報(bào)實(shí)驗(yàn)結(jié)果(課件演示:圓錐體的體積1、2、3、4、5)
、賵A柱和圓錐的底面積相等,高不相等,圓錐體容器裝滿(mǎn)沙土往圓柱體容器里倒,倒了一次,又倒了一些,才裝滿(mǎn).
、趫A柱和圓錐的底面積不相等,高相等,圓錐體容器裝滿(mǎn)沙土往圓柱體容器里倒,倒了兩次,又倒了一些,才裝滿(mǎn).
、蹐A柱和圓錐的底面積相等,高相等,圓錐體容器裝滿(mǎn)沙土往圓柱體容器里倒,倒了三次,正好裝滿(mǎn).
4、引導(dǎo)學(xué)生發(fā)現(xiàn):
圓柱體的體積等于和它等底等高的圓錐體體積的3倍或圓錐的體積是和它等底等高圓柱體積的.
板書(shū):
5、推導(dǎo)圓錐的體積公式:用字母表示圓錐的體積公式.板書(shū):
6、思考:要求圓錐的體積,必須知道哪兩個(gè)條件?
7、反饋練習(xí)
圓錐的`底面積是5,高是3,體積是( )
圓錐的底面積是10,高是9,體積是( )
(二)教學(xué)例1
1、例1一個(gè)圓錐形的零件,底面積是19平方厘米,高是12厘米.這個(gè)零件的體積是多少?
學(xué)生獨(dú)立計(jì)算,集體訂正.
板書(shū):
答:這個(gè)零件的體積是76立方厘米.
2、反饋練習(xí):一個(gè)圓錐的底面積是25平方分米,高是9分米,她它的體積是多少?
3、思考:求圓錐的體積,還可能出現(xiàn)哪些情況?(圓錐的底面積不直接告訴)
(1)已知圓錐的底面半徑和高,求體積.
(2)已知圓錐的底面直徑和高,求體積.
(3)已知圓錐的底面周長(zhǎng)和高,求體積.
4、反饋練習(xí):一個(gè)圓錐的底面直徑是20厘米,高是8厘米,它的體積體積是多少?
(三)教學(xué)例2
1、例2在打谷場(chǎng)上,有一個(gè)近似于圓錐的小麥堆,測(cè)得底面直徑是4米,高是1.2米.每立方米小麥約重735千克,這堆小麥大約有多少千克?(得數(shù)保留整千克)
思考:這道題已知什么?求什么?
要求小麥的重量,必須先求什么?
要求小麥的體積應(yīng)怎么辦?
這道題應(yīng)先求什么?再求什么?最后求什么?
2、學(xué)生獨(dú)立解答,集體訂正.
板書(shū):(1)麥堆底面積:
=3.14×4
=12.56(平方米)
(2)麥堆的體積:
12.56×1.2
=15.072(立方米)
(3)小麥的重量:
735×15.072
=11077.92
≈11078(千克)
答:這堆小麥大約重11078千克.
3、教學(xué)如何測(cè)量麥堆的底面直徑和高.
(1)啟發(fā)學(xué)生根據(jù)自己的生活經(jīng)驗(yàn)來(lái)討論、談想法.
(2)教師補(bǔ)充介紹.
a.測(cè)量麥堆的底面直徑可以用繩子在麥堆底部圓周?chē)σ蝗Γ康名湺训闹荛L(zhǎng),再算直徑.也可用兩根竹竿平行地放在麥堆的兩側(cè),量得兩根竹竿的距離,就是麥堆的'直徑.
b.測(cè)量麥堆的高,可用兩根竹竿在麥堆旁邊組成兩個(gè)直角后量得.
三、全課小結(jié)
通過(guò)本節(jié)的學(xué)習(xí),你學(xué)到了什么知識(shí)?(從兩個(gè)方面談:圓錐體體積公式的推導(dǎo)方法和公式的應(yīng)用)
高一數(shù)學(xué)教案8
經(jīng)典例題
已知關(guān)于 的方程 的實(shí)數(shù)解在區(qū)間 ,求 的取值范圍。
反思提煉:1.常見(jiàn)的四種指數(shù)方程的一般解法
(1)方程 的.解法:
。2)方程 的解法:
(3)方程 的解法:
。4)方程 的解法:
2.常見(jiàn)的三種對(duì)數(shù)方程的一般解法
(1)方程 的解法:
。2)方程 的解法:
。3)方程 的解法:
3.方程與函數(shù)之間的轉(zhuǎn)化。
4.通過(guò)數(shù)形結(jié)合解決方程有無(wú)根的問(wèn)題。
課后作業(yè):
1.對(duì)正整數(shù)n,設(shè)曲線 在x=2處的切線與軸交點(diǎn)的縱坐標(biāo)為 ,則數(shù)列 的前n項(xiàng)和的公式是
[答案] 2n+1-2
[解析] ∵=xn(1-x),∴′=(xn)′(1-x)+(1-x)′xn=nxn-1(1-x)-xn.
f ′(2)=-n2n-1-2n=(-n-2)2n-1.
在點(diǎn)x=2處點(diǎn)的縱坐標(biāo)為=-2n.
∴切線方程為+2n=(-n-2)2n-1(x-2).
令x=0得,=(n+1)2n,
∴an=(n+1)2n,
∴數(shù)列ann+1的前n項(xiàng)和為2(2n-1)2-1=2n+1-2.
2.在平面直角坐標(biāo)系 中,已知點(diǎn)P是函數(shù) 的圖象上的動(dòng)點(diǎn),該圖象在P處的切線 交軸于點(diǎn)M,過(guò)點(diǎn)P作 的垂線交軸于點(diǎn)N,設(shè)線段MN的中點(diǎn)的縱坐標(biāo)為t,則t的最大值是_____________
解析:設(shè) 則 ,過(guò)點(diǎn)P作 的垂線
,所以,t在 上單調(diào)增,在 單調(diào)減, 。
高一數(shù)學(xué)教案9
【學(xué)習(xí)目標(biāo)】
1、感受數(shù)學(xué)探索的成功感,提高學(xué)習(xí)數(shù)學(xué)的興趣;
2、經(jīng)歷誘導(dǎo)公式的探索過(guò)程,感悟由未知到已知、復(fù)雜到簡(jiǎn)單的數(shù)學(xué)轉(zhuǎn)化思想。
3、能借助單位圓的對(duì)稱(chēng)性理解記憶誘導(dǎo)公式,能用誘導(dǎo)公式進(jìn)行簡(jiǎn)單應(yīng)用。
【學(xué)習(xí)重點(diǎn)】三角函數(shù)的誘導(dǎo)公式的理解與應(yīng)用
【學(xué)習(xí)難點(diǎn)】誘導(dǎo)公式的推導(dǎo)及靈活運(yùn)用
【知識(shí)鏈接】(1)單位圓中任意角α的正弦、余弦的定義
。2)對(duì)稱(chēng)性:已知點(diǎn)P(x,),那么,點(diǎn)P關(guān)于x軸、軸、原點(diǎn)對(duì)稱(chēng)的點(diǎn)坐標(biāo)
【學(xué)習(xí)過(guò)程】
一、預(yù)習(xí)自學(xué)
閱讀書(shū)第19頁(yè)——20頁(yè)內(nèi)容,通過(guò)對(duì)-α、π-α、π+α、2π-α、α的終邊與單位圓的交點(diǎn)的對(duì)稱(chēng)性規(guī)律的探究,結(jié)合單位圓中任意角的`正弦、余弦的定義,從中自我發(fā)現(xiàn)歸納出三角函數(shù)的誘導(dǎo)公式,并寫(xiě)出下列關(guān)系:
(1)- 407[導(dǎo)學(xué)案]4.4單位圓的對(duì)稱(chēng)性與誘導(dǎo)公式與 407[導(dǎo)學(xué)案]4.4單位圓的對(duì)稱(chēng)性與誘導(dǎo)公式 的正弦函數(shù)、余弦函數(shù)關(guān)系
(2)角407[導(dǎo)學(xué)案]4.4單位圓的對(duì)稱(chēng)性與誘導(dǎo)公式與角 407[導(dǎo)學(xué)案]4.4單位圓的對(duì)稱(chēng)性與誘導(dǎo)公式 的正弦函數(shù)、余弦函數(shù)關(guān)系
(3)角 407[導(dǎo)學(xué)案]4.4單位圓的對(duì)稱(chēng)性與誘導(dǎo)公式與角 407[導(dǎo)學(xué)案]4.4單位圓的對(duì)稱(chēng)性與誘導(dǎo)公式 的正弦函數(shù)、余弦函數(shù)關(guān)系
(4)角 407[導(dǎo)學(xué)案]4.4單位圓的對(duì)稱(chēng)性與誘導(dǎo)公式與角 407[導(dǎo)學(xué)案]4.4單位圓的對(duì)稱(chēng)性與誘導(dǎo)公式 的正弦函數(shù)、余弦函數(shù)關(guān)系
二、合作探究
探究1、求下列函數(shù)值,思考你用到了哪些三角函數(shù)誘導(dǎo)公式?試總結(jié)一下求任意角的三角函數(shù)值的過(guò)程與方法。
。1) 407[導(dǎo)學(xué)案]4.4單位圓的對(duì)稱(chēng)性與誘導(dǎo)公式 (2) 407[導(dǎo)學(xué)案]4.4單位圓的對(duì)稱(chēng)性與誘導(dǎo)公式 (3)sin(-1650°);
探究2: 化簡(jiǎn): 407[導(dǎo)學(xué)案]4.4單位圓的對(duì)稱(chēng)性與誘導(dǎo)公式 407[導(dǎo)學(xué)案]4.4單位圓的對(duì)稱(chēng)性與誘導(dǎo)公式(先逐個(gè)化簡(jiǎn))
探究3、利用單位圓求滿(mǎn)足 407[導(dǎo)學(xué)案]4.4單位圓的對(duì)稱(chēng)性與誘導(dǎo)公式 的角的集合。
三、學(xué)習(xí)小結(jié)
(1)你能說(shuō)說(shuō)化任意角的正(余)弦函數(shù)為銳角正(余)弦函數(shù)的一般思路嗎?
。2)本節(jié)學(xué)習(xí)涉及到什么數(shù)學(xué)思想方法?
。3)我的疑惑有
【達(dá)標(biāo)檢測(cè)】
1、在單位圓中,角α的終邊與單位圓交于點(diǎn)P(- 407[導(dǎo)學(xué)案]4.4單位圓的對(duì)稱(chēng)性與誘導(dǎo)公式 , 407[導(dǎo)學(xué)案]4.4單位圓的對(duì)稱(chēng)性與誘導(dǎo)公式 ),
則sin(-α)= ;cs(α±π)= ;cs(π-α)=
2.求下列函數(shù)值:
。1)sin( 407[導(dǎo)學(xué)案]4.4單位圓的對(duì)稱(chēng)性與誘導(dǎo)公式 )= ; (2) cs210&rd;=
3、若csα=-1/2,則α的集合S=
高一數(shù)學(xué)教案10
教學(xué)目標(biāo):
1、應(yīng)用圓周長(zhǎng)、弧長(zhǎng)公式綜合圓的有關(guān)知識(shí)解答問(wèn)題;
2、培養(yǎng)學(xué)生綜合運(yùn)用知識(shí)的能力和數(shù)學(xué)模型的能力;
3、通過(guò)應(yīng)用題的教學(xué),向?qū)W生滲透理論聯(lián)系實(shí)際的觀點(diǎn).
教學(xué)重點(diǎn):靈活運(yùn)用弧長(zhǎng)公式解有關(guān)的應(yīng)用題.
教學(xué)難點(diǎn):建立數(shù)學(xué)模型.
教學(xué)活動(dòng)設(shè)計(jì):
(一)靈活運(yùn)用弧長(zhǎng)公式
例1、填空:
(1)半徑為3cm,120°的圓心角所對(duì)的弧長(zhǎng)是_______cm;
(2)已知圓心角為150°,所對(duì)的弧長(zhǎng)為20π,則圓的半徑為_(kāi)______;
(3)已知半徑為3,則弧長(zhǎng)為π的弧所對(duì)的圓心角為_(kāi)______.
(學(xué)生獨(dú)立完成,在弧長(zhǎng)公式中l(wèi)、n、R知二求一.)
答案:(1)2π;(2)24;(3)60°.
說(shuō)明:使學(xué)生靈活運(yùn)用公式,為綜合題目作準(zhǔn)備.
練習(xí):P196練習(xí)第1題
(二)綜合應(yīng)用題
例2、如圖,兩個(gè)皮帶輪的中心的'距離為2.1m,直徑分別為0.65m和0.24m.(1)求皮帶長(zhǎng)(保留三個(gè)有效數(shù)字);(2)如果小輪每分轉(zhuǎn)750轉(zhuǎn),求大輪每分約轉(zhuǎn)多少轉(zhuǎn).
教師引導(dǎo)學(xué)生建立數(shù)學(xué)模型:
分析:(1)皮帶長(zhǎng)包括哪幾部分(+DC++AB);
(2)“兩個(gè)皮帶輪的中心的距離為2.1m”,給我們解決此題提供了什么數(shù)學(xué)信息?
(3)AB、CD與⊙O1、⊙O2具有什么位置關(guān)系?AB與CD具有什么數(shù)量關(guān)系?根據(jù)是什么?(AB與CD是⊙O1與⊙O2的公切線,AB=CD,根據(jù)的是兩圓外公切線長(zhǎng)相等.)
(4)如何求每一部分的長(zhǎng)?
這里給學(xué)生考慮的時(shí)間和空間,充分發(fā)揮學(xué)生的主體作用.
解:(1)作過(guò)切點(diǎn)的半徑O1A、O1D、O2B、O2C,作O2E⊥O1A,垂足為E.
∵O1O2=2.1,,,
∴,
∴ (m)
∵,∴,
∴的長(zhǎng)l1 (m).
∵,∴的長(zhǎng)(m).
∴皮帶長(zhǎng)l=l1+l2+2AB=5.62(m).
(2)設(shè)大輪每分鐘轉(zhuǎn)數(shù)為n,則
,(轉(zhuǎn))
答:皮帶長(zhǎng)約5.63m,大輪每分鐘約轉(zhuǎn)277轉(zhuǎn).
說(shuō)明:通過(guò)本題滲透數(shù)學(xué)建模思想,弧長(zhǎng)公式的應(yīng)用,求兩圓公切線的方法和計(jì)算能力.
鞏固練習(xí):P196練習(xí)2、3題.
探究活動(dòng)
鋼管捆扎問(wèn)題
已知由若干根鋼管的外直徑均為d,想用一根金屬帶緊密地捆在一起,求金屬帶的長(zhǎng)度.
請(qǐng)根據(jù)下列特殊情況,找出規(guī)律,并加以證明.
提示:設(shè)鋼管的根數(shù)為n,金屬帶的長(zhǎng)度為L(zhǎng)n如圖:
當(dāng)n=2時(shí),L2=(π+2)d.
當(dāng)n=3時(shí),L3=(π+3)d.
當(dāng)n=4時(shí),L4=(π+4)d.
當(dāng)n=5時(shí),L5=(π+5)d.
當(dāng)n=6時(shí),L6=(π+6)d.
當(dāng)n=7時(shí),L7=(π+6)d.
當(dāng)n=8時(shí),L8=(π+7)d.
猜測(cè):若最外層有n根鋼管,兩兩相鄰接排列成一個(gè)向外凸的圈,相鄰兩圓是切,則金屬帶的長(zhǎng)度為L(zhǎng)=(π+n)d.
證明略.
高一數(shù)學(xué)教案11
教學(xué)目標(biāo)
。1)正確理解充分條件、必要條件和充要條件的概念;
。2)能正確判斷是充分條件、必要條件還是充要條件;
。3)培養(yǎng)學(xué)生的邏輯思維能力及歸納總結(jié)能力;
。4)在充要條件的教學(xué)中,培養(yǎng)等價(jià)轉(zhuǎn)化思想.
教學(xué)建議
。ㄒ唬┙滩姆治
1.知識(shí)結(jié)構(gòu)
首先給出推斷符號(hào)“”,并引出的意義,在此基礎(chǔ)上講述了充要條件的初步知識(shí).
2.重點(diǎn)難點(diǎn)分析
本節(jié)的重點(diǎn)與難點(diǎn)是關(guān)于充要條件的判斷.
(1)充分但不必要條件、必要但不充分條件、充要條件、既不充分也不必要條件是重要的數(shù)學(xué)概念,主要用來(lái)區(qū)分命題的條件和結(jié)論之間的因果關(guān)系.
。2)在判斷條件和結(jié)論之間的因果關(guān)系中應(yīng)該:
、偈紫确智鍡l件是什么,結(jié)論是什么;
、谌缓髧L試用條件推結(jié)論,再?lài)L試用結(jié)論推條件.推理方法可以是直接證法、間接證法(即反證法),也可以舉反例說(shuō)明其不成立;
、圩詈笤僦赋鰲l件是結(jié)論的什么條件.
(3)在討論條件和條件的關(guān)系時(shí),要注意:
①若,但,則是的充分但不必要條件;
、谌,但,則是的必要但不充分條件;
、廴,且,則是的充要條件;
④若,且,則是的充要條件;
、萑,且,則是的既不充分也不必要條件.
(4)若條件以集合的形式出現(xiàn),結(jié)論以集合的形式出現(xiàn),則借助集合知識(shí),有助于充要條件的理解和判斷.
、偃簦瑒t是的充分條件;
顯然,要使元素,只需就夠了.類(lèi)似地還有:
、谌,則是的必要條件;
③若,則是的充要條件;
、苋,且,則是的既不必要也不充分條件.
。5)要證明命題的條件是充要條件,就既要證明原命題成立,又要證明它的逆命題成立.證明原命題即證明條件的充分性,證明逆命題即證明條件的必要性.由于原命題逆否命題,逆命題否命題,當(dāng)我們證明某一命題有困難時(shí),可以證明該命題的逆否命題成立,從而得出原命題成立.
(二)教法建議
1.學(xué)習(xí)充分條件、必要條件和充要條件知識(shí),要注意與前面有關(guān)邏輯初步知識(shí)內(nèi)容相聯(lián)系.充要條件中的,與四種命題中的,要求是一樣的.它們可以是簡(jiǎn)單命題,也可以是不能判斷真假的語(yǔ)句,也可以是含有邏輯聯(lián)結(jié)詞或“若則”形式的復(fù)合命題.
2.由于這節(jié)課概念性、理論性較強(qiáng),一般的教學(xué)使學(xué)生感到枯燥乏味,為此,激發(fā)學(xué)生的學(xué)習(xí)興趣是關(guān)鍵.教學(xué)中始終要注意以學(xué)生為主,讓學(xué)生在自我思考、相互交流中去結(jié)概念“下定義”,去體會(huì)概念的本質(zhì)屬性.
3.由于“充要條件”與命題的真假、命題的條件與結(jié)論的相互關(guān)系緊密相關(guān),為此,教學(xué)時(shí)可以從判斷命題的真假入手,來(lái)分析命題的條件對(duì)于結(jié)論來(lái)說(shuō),是否充分,從而引入“充分條件”的概念,進(jìn)而引入“必要條件”的概念.
4.教材中對(duì)“充分條件”、“必要條件”的定義沒(méi)有作過(guò)多的解釋說(shuō)明,為了讓學(xué)生能理解定義的合理性,在教學(xué)過(guò)程中,教師可以從一些熟悉的命題的條件與結(jié)論之間的關(guān)系來(lái)認(rèn)識(shí)“充分條件”的概念,從互為逆否命題的等價(jià)性來(lái)引出“必要條件”的概念.
教學(xué)設(shè)計(jì)示例
充要條件
教學(xué)目標(biāo):
。1)正確理解充分條件、必要條件和充要條件的概念;
。2)能正確判斷是充分條件、必要條件還是充要條件;
。3)培養(yǎng)學(xué)生的邏輯思維能力及歸納總結(jié)能力;
。4)在充要條件的教學(xué)中,培養(yǎng)等價(jià)轉(zhuǎn)化思想.
教學(xué)重點(diǎn)難點(diǎn):
關(guān)于充要條件的判斷
教學(xué)用具:
幻燈機(jī)或?qū)嵨锿队皟x
教學(xué)過(guò)程設(shè)計(jì)
1.復(fù)習(xí)引入
練習(xí):判斷下列命題是真命題還是假命題(用幻燈投影):
。1)若,則;
。2)若,則;
。3)全等三角形的面積相等;
。4)對(duì)角線互相垂直的四邊形是菱形;
。5)若,則;
。6)若方程有兩個(gè)不等的實(shí)數(shù)解,則.
。▽W(xué)生口答,教師板書(shū).)
。1)、(3)、(6)是真命題,(2)、(4)、(5)是假命題.
置疑:對(duì)于命題“若,則”,有時(shí)是真命題,有時(shí)是假命題.如何判斷其真假的?
答:看能不能推出,如果能推出,則原命題是真命題,否則就是假命題.
對(duì)于命題“若,則”,如果由經(jīng)過(guò)推理能推出,也就是說(shuō),如果成立,那么一定成立.換句話說(shuō),只要有條件就能充分地保證結(jié)論的成立,這時(shí)我們稱(chēng)條件是成立的充分條件,記作.
2.講授新課
(板書(shū)充分條件的定義.)
一般地,如果已知,那么我們就說(shuō)是成立的充分條件.
提問(wèn):請(qǐng)用充分條件來(lái)敘述上述(1)、(3)、(6)的條件與結(jié)論之間的關(guān)系.
(學(xué)生口答)
。1)“,”是“”成立的充分條件;
。2)“三角形全等”是“三角形面積相等”成立的充分條件;
。3)“方程的有兩個(gè)不等的實(shí)數(shù)解”是“”成立的充分條件.
從另一個(gè)角度看,如果成立,那么其逆否命題也成立,即如果沒(méi)有,也就沒(méi)有,亦即是成立的必須要有的條件,也就是必要條件.
(板書(shū)必要條件的定義.)
提出問(wèn)題:用“充分條件”和“必要條件”來(lái)敘述上述6個(gè)命題.
。▽W(xué)生口答).
。1)因?yàn),所以是的充分條件,是的必要條件;
。2)因?yàn),所以是的必要條件,是的充分條件;
。3)因?yàn)椤皟扇切稳取薄皟扇切蚊娣e相等”,所以“兩三角形全等”是“兩三角形面積相等”的充分條件,“兩三角形面積相等”是“兩三角形全等”的必要條件;
(4)因?yàn)椤八倪呅蔚膶?duì)角線互相垂直”“四邊形是菱形”,所以“四邊形的`對(duì)角線互相垂直”是“四邊形是菱形”的必要條件,“四邊形是菱形”是“四邊形的對(duì)角線互相垂直”的充分條件;
。5)因?yàn),所以是的必要條件,是的充分條件;
。6)因?yàn)椤胺匠痰挠袃蓚(gè)不等的實(shí)根”“”,而且“方程的有兩個(gè)不等的實(shí)根”“”,所以“方程的有兩個(gè)不等的實(shí)根”是“”充分條件,而且是必要條件.
總結(jié):如果是的充分條件,又是的必要條件,則稱(chēng)是的充分必要條件,簡(jiǎn)稱(chēng)充要條件,記作.
。ò鍟(shū)充要條件的定義.)
3.鞏固新課
例1(用投影儀投影.)
。▽W(xué)生活動(dòng),教師引導(dǎo)學(xué)生作出下面回答.)
、僖?yàn)橛欣頂?shù)一定是實(shí)數(shù),但實(shí)數(shù)不一定是有理數(shù),所以是的充分非必要條件,是的必要非充分條件;
②一定能推出,而不一定推出,所以是的充分非必要條件,是的必要非充分條件;
、、是奇數(shù),那么一定是偶數(shù);是偶數(shù),、不一定都是奇數(shù)(可能都為偶數(shù)),所以是的充分非必要條件,是的必要非充分條件;
、鼙硎净,所以是成立的必要非充分條件;
、萦山患亩x可知且是成立的充要條件;
⑥由知且,所以是成立的充分非必要條件;
⑦由知或,所以是,成立的必要非充分條件;
⑧易知“是4的倍數(shù)”是“是6的倍數(shù)”成立的既非充分又非必要條件;
。ㄍㄟ^(guò)對(duì)上述問(wèn)題的交流、思辯,在爭(zhēng)論中得到了正確答案,并加深了對(duì)充分條件、必要條件的認(rèn)識(shí).)
例2已知是的充要條件,是的必要條件同時(shí)又是的充分條件,試與的關(guān)系.(投影)
解:由已知得,
所以是的充分條件,或是的必要條件.
4.小結(jié)回授
今天我們學(xué)習(xí)了充分條件、必要條件和充要條件的概念,并學(xué)會(huì)了判斷條件A是B的什么條件,這為我們今后解決數(shù)學(xué)問(wèn)題打下了等價(jià)轉(zhuǎn)化的基礎(chǔ).
課內(nèi)練習(xí):課本(人教版,試驗(yàn)修訂本,第一冊(cè)(上))第35頁(yè)練習(xí)l、2;第36頁(yè)練習(xí)l、2.
(通過(guò)練習(xí),檢查學(xué)生掌握情況,有針對(duì)性的進(jìn)行講評(píng).)
5.課外作業(yè):教材第36頁(yè) 習(xí)題1.8 1、2、3.
高一數(shù)學(xué)教案12
【內(nèi)容與解析】
本節(jié)課要學(xué)的內(nèi)容有函數(shù)的概念指的是函數(shù)的概念及符號(hào)的理解,理解它關(guān)鍵就是能用集合與對(duì)應(yīng)的語(yǔ)言刻畫(huà)函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫(huà)函數(shù)概念中的作用。學(xué)生已經(jīng)學(xué)過(guò)了集合并且初中對(duì)函數(shù)的概念已經(jīng)作了介紹,本節(jié)課的內(nèi)容函數(shù)的概念就是在此基礎(chǔ)上的發(fā)展的。由于它還與基本初等函數(shù)和函數(shù)模型等內(nèi)容有必要的聯(lián)系,所以在本學(xué)科有著很重要的地位,是學(xué)習(xí)后面知識(shí)的基礎(chǔ),是本學(xué)科的核心內(nèi)容。教學(xué)的重點(diǎn)是函數(shù)的概念,函數(shù)的三要素,所以解決重點(diǎn)的關(guān)鍵是通過(guò)實(shí)例領(lǐng)悟構(gòu)成函數(shù)的三個(gè)要素;會(huì)求一些簡(jiǎn)單函數(shù)的定義域和值域。
【教學(xué)目標(biāo)與解析】
1、教學(xué)目標(biāo)
。1)理解函數(shù)的概念;
。2)了解區(qū)間的概念;
2、目標(biāo)解析
(1)理解函數(shù)的概念就是指能用集合與對(duì)應(yīng)的語(yǔ)言刻畫(huà)函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫(huà)函數(shù)概念中的作用;
。2)了解區(qū)間的概念就是指能夠體會(huì)用區(qū)間表示數(shù)集的意義和作用;
【問(wèn)題診斷分析】
在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問(wèn)題是函數(shù)的概念及符號(hào)的理解,產(chǎn)生這一問(wèn)題的原因是:函數(shù)本身就是一個(gè)抽象的概念,對(duì)學(xué)生來(lái)說(shuō)一個(gè)難點(diǎn)。要解決這一問(wèn)題,就要在通過(guò)從實(shí)際問(wèn)題中抽象概況函數(shù)的概念,培養(yǎng)學(xué)生的抽象概況能力,其中關(guān)鍵是理論聯(lián)系實(shí)際,把抽象轉(zhuǎn)化為具體。
【教學(xué)過(guò)程】
問(wèn)題1:一枚炮彈發(fā)射后,經(jīng)過(guò)26s落到地面擊中目標(biāo).炮彈的射高為845m,且炮彈距離地面的高度h(單位:m)隨時(shí)間t(單位:s)變化的規(guī)律是:h=130t-5t2.
1.1這里的變量t的變化范圍是什么?變量h的變化范圍是什么?試用集合表示?
1.2高度變量h與時(shí)間變量t之間的對(duì)應(yīng)關(guān)系是否為函數(shù)?若是,其自變量是什么?
設(shè)計(jì)意圖:通過(guò)以上問(wèn)題,讓學(xué)生正確理解讓學(xué)生體會(huì)用解析式或圖象刻畫(huà)兩個(gè)變量之間的依賴(lài)關(guān)系,從問(wèn)題的實(shí)際意義可知,在t的變化范圍內(nèi)任給一個(gè)t,按照給定的對(duì)應(yīng)關(guān)系,都有唯一的一個(gè)高度h與之對(duì)應(yīng)。
問(wèn)題2:分析教科書(shū)中的實(shí)例(2),引導(dǎo)學(xué)生看圖并啟發(fā):在t的變化t按照給定的圖象,都有唯一的一個(gè)臭氧層空洞面積S與之相對(duì)應(yīng)。
問(wèn)題3:要求學(xué)生仿照實(shí)例(1)、(2),描述實(shí)例(3)中恩格爾系數(shù)和時(shí)間的關(guān)系。
設(shè)計(jì)意圖:通過(guò)這些問(wèn)題,讓學(xué)生理解得到函數(shù)的定義,培養(yǎng)學(xué)生的歸納、概況的能力。
問(wèn)題4:上述三個(gè)實(shí)例中變量之間的關(guān)系都是函數(shù),那么從集合與對(duì)應(yīng)的觀點(diǎn)分析,函數(shù)還可以怎樣定義?
4.1在一個(gè)函數(shù)中,自變量x和函數(shù)值y的.變化范圍都是集合,這兩個(gè)集合分別叫什么名稱(chēng)?
4.2在從集合A到集合B的一個(gè)函數(shù)f:A→B中,集合A是函數(shù)的定義域,集合B是函數(shù)的值域嗎?怎樣理解f(x)=1,x∈R?
4.3一個(gè)函數(shù)由哪幾個(gè)部分組成?如果給定函數(shù)的定義域和對(duì)應(yīng)關(guān)系,那么函數(shù)的值域確定嗎??jī)蓚(gè)函數(shù)相等的條件是什么?
【例題】:
例1求下列函數(shù)的定義域
分析:求定義域就是使式子有意義的x的取值所構(gòu)成的集合;定義域一定是集合!
例2已知函數(shù)
分析:理解函數(shù)f(x)的意義
例3下列函數(shù)中哪個(gè)與函數(shù)相等?
例4在下列各組函數(shù)中與是否相等?為什么?
分析:
。1)兩個(gè)函數(shù)相等,要求定義域和對(duì)應(yīng)關(guān)系都一致;
(2)用x還是用其它字母來(lái)表示自變量對(duì)函數(shù)實(shí)質(zhì)而言沒(méi)有影響.
【課堂目標(biāo)檢1測(cè)】
教科書(shū)第19頁(yè)1、2.
【課堂小結(jié)】
1、理解函數(shù)的定義,函數(shù)的三要素,會(huì)球簡(jiǎn)單的函數(shù)的定義域和函數(shù)值;
2、理解區(qū)間是表示數(shù)集的一種方法,會(huì)把不等式轉(zhuǎn)化為區(qū)間。
高一數(shù)學(xué)教案13
教學(xué)目標(biāo):
1、掌握對(duì)數(shù)的運(yùn)算性質(zhì),并能理解推導(dǎo)這些法則的依據(jù)和過(guò)程;
2、能較熟練地運(yùn)用法則解決問(wèn)題;
教學(xué)重點(diǎn):
對(duì)數(shù)的運(yùn)算性質(zhì)
教學(xué)過(guò)程:
一、問(wèn)題情境:
1、指數(shù)冪的運(yùn)算性質(zhì);
2、問(wèn)題:對(duì)數(shù)運(yùn)算也有相應(yīng)的運(yùn)算性質(zhì)嗎?
二、學(xué)生活動(dòng):
1、觀察教材P59的表2—3—1,驗(yàn)證對(duì)數(shù)運(yùn)算性質(zhì)、
2、理解對(duì)數(shù)的運(yùn)算性質(zhì)、
3、證明對(duì)數(shù)性質(zhì)、
三、建構(gòu)數(shù)學(xué):
1)引導(dǎo)學(xué)生驗(yàn)證對(duì)數(shù)的'運(yùn)算性質(zhì)、
2)推導(dǎo)和證明對(duì)數(shù)運(yùn)算性質(zhì)、
3)運(yùn)用對(duì)數(shù)運(yùn)算性質(zhì)解題、
探究:
、俸(jiǎn)易語(yǔ)言表達(dá):“積的對(duì)數(shù)=對(duì)數(shù)的和”……
、谟袝r(shí)逆向運(yùn)用公式運(yùn)算:如
、壅鏀(shù)的取值范圍必須是:不成立;不成立、
、茏⒁猓,
四、數(shù)學(xué)運(yùn)用:
1、例題:
例1、(教材P60例4)求下列各式的值:
。1);(2)125;(3)(補(bǔ)充)lg、
例2、(教材P60例4)已知,,求下列各式的值(結(jié)果保留4位小數(shù))
。1);(2)、
例3、用,,表示下列各式:
例4、計(jì)算:
。1);(2);(3)
2、練習(xí):
P60(練習(xí))1,2,4,5、
五、回顧小結(jié):
本節(jié)課學(xué)習(xí)了以下內(nèi)容:對(duì)數(shù)的運(yùn)算法則,公式的逆向使用、
六、課外作業(yè):
P63習(xí)題5
補(bǔ)充:
1、求下列各式的值:
。1)6—3;(2)lg5+lg2;(3)3+、
2、用lgx,lgy,lgz表示下列各式:
。1)lg(xyz);(2)lg;(3);(4)、
3、已知lg2=0、3010,lg3=0、4771,求下列各對(duì)數(shù)的值(精確到小數(shù)點(diǎn)后第四位)
。1)lg6;(2)lg;(3)lg;(4)lg32、
高一數(shù)學(xué)教案14
一:【課前預(yù)習(xí)】
(一):【知識(shí)梳理】
1.直角三角形的邊角關(guān)系(如圖)
(1)邊的關(guān)系(勾股定理):AC2+BC2=AB2;
(2)角的關(guān)系:B=
(3)邊角關(guān)系:
、伲
、冢轰J角三角函數(shù):
A的正弦= ;
A的余弦= ,
A的正切=
注:三角函數(shù)值是一個(gè)比值.
2.特殊角的三角函數(shù)值.
3.三角函數(shù)的關(guān)系
(1) 互為余角的三角函數(shù)關(guān)系.
sin(90○-A)=cosA, cos(90○-A)=sin A tan(90○-A)= cotA
(2) 同角的三角函數(shù)關(guān)系.
平方關(guān)系:sin2 A+cos2A=l
4.三角函數(shù)的`大小比較
①正弦、正切是增函數(shù).三角函數(shù)值隨角的增大而增大,隨角的減小而減小.
、谟嘞沂菧p函數(shù).三角函數(shù)值隨角的增大而減小,隨角的減小而增大。
(二):【課前練習(xí)】
1.等腰直角三角形一個(gè)銳角的余弦為( )
A. D.l
2.點(diǎn)M(tan60,-cos60)關(guān)于x軸的對(duì)稱(chēng)點(diǎn)M的坐標(biāo)是( )
3.在 △ABC中,已知C=90,sinB=0.6,則cosA的值是( )
4.已知A為銳角,且cosA0.5,那么( )
A.060 B.6090 C.030 D.3090
二:【經(jīng)典考題剖析】
1.如圖,在Rt△ABC中,C=90,A=45,點(diǎn)D在AC上,BDC=60,AD=l,求BD、DC的長(zhǎng).
2.先化簡(jiǎn),再求其值, 其中x=tan45-cos30
3. 計(jì)算:①sin248○+ sin242○-tan44○tan45○tan 46○ ②cos 255○+ cos235○
4.比較大小(在空格處填寫(xiě)或或=)
若=45○,則sin________cos
若45○,則sin cos
若45,則 sin cos.
5.⑴如圖①、②銳角的正弦值和余弦值都隨著銳角的確定而確定,變化而變化,試探索隨著銳角度數(shù)的增大,它的正弦值和余弦值變化的規(guī)律;
、聘鶕(jù)你探索到的規(guī)律,試比較18○、34○、50○、61○、88○這些銳角的正弦值的大小和余弦值的大小.
三:【課后訓(xùn)練】
1. 2sin60-cos30tan45的結(jié)果為( )
A. D.0
2.在△ABC中,A為銳角,已知 cos(90-A)= ,sin(90-B)= ,則△ABC一定是( )
A.銳角三角形;B.直角三角形;C.鈍角三角形;D.等腰三角形
3.如圖,在平面直角坐標(biāo)系中,已知A(3,0)點(diǎn)B(0,-4),則cosOAB等于__________
4.cos2+sin242○ =1,則銳角=______.
5.在下列不等式中,錯(cuò)誤的是( )
A.sin45○sin30○;B.cos60○tan30○;D.cot30○
6.如圖,在△ABC中,AC=3,BC=4,AB=5,則tanB的值是()
7.如圖所示,在菱形ABCD中,AEBC于 E點(diǎn),EC=1,B=30,求菱形ABCD的周長(zhǎng).
8.如圖所示,在△ABC中,ACB=90,BC=6,AC=8 ,CDAB,求:①sinACD 的值;②tanBCD的值
9.如圖 ,某風(fēng)景區(qū)的湖心島有一涼亭A,其正東方向有一棵大樹(shù)B,小明想測(cè)量A/B之間的距離,他從湖邊的C處測(cè)得A在北偏西45方向上,測(cè)得B在北偏東32方向上,且量得B、C之間的距離為100米,根據(jù)上述測(cè)量結(jié)果,請(qǐng)你幫小明計(jì)算A山之間的距離是多少?(結(jié)果精確至1米.參考數(shù)據(jù):sin32○0.5299,cos32○0.8480)
10.某住宅小區(qū)修了一個(gè)塔形建筑物AB,如圖所示,在與建筑物底部同一水平線的C處,測(cè)得點(diǎn)A的仰角為45,然后向塔方向前進(jìn)8米到達(dá)D處,在D處測(cè)得點(diǎn)A的仰角為60,求建筑物的高度.(精確0.1米)
高一數(shù)學(xué)教案15
學(xué)習(xí)目標(biāo):
(1)理解函數(shù)的概念
(2)會(huì)用集合與對(duì)應(yīng)語(yǔ)言來(lái)刻畫(huà)函數(shù),
(3)了解構(gòu)成函數(shù)的要素。
重點(diǎn):
函數(shù)概念的理解
難點(diǎn):
函數(shù)符號(hào)y=f(x)的理解
知識(shí)梳理:
自學(xué)課本P29—P31,填充以下空格。
1、設(shè)集合A是一個(gè)非空的實(shí)數(shù)集,對(duì)于A內(nèi) ,按照確定的對(duì)應(yīng)法則f,都有 與它對(duì)應(yīng),則這種對(duì)應(yīng)關(guān)系叫做集合A上的一個(gè)函數(shù),記作 。
2、對(duì)函數(shù) ,其中x叫做 ,x的取值范圍(數(shù)集A)叫做這個(gè)函數(shù)的 ,所有函數(shù)值的集合 叫做這個(gè)函數(shù)的 ,函數(shù)y=f(x) 也經(jīng)常寫(xiě)為 。
3、因?yàn)楹瘮?shù)的值域被 完全確定,所以確定一個(gè)函數(shù)只需要
。
4、依函數(shù)定義,要檢驗(yàn)兩個(gè)給定的變量之間是否存在函數(shù)關(guān)系,只要檢驗(yàn):
、 ;② 。
5、設(shè)a, b是兩個(gè)實(shí)數(shù),且a
(1)滿(mǎn)足不等式 的實(shí)數(shù)x的集合叫做閉區(qū)間,記作 。
(2)滿(mǎn)足不等式a
(3)滿(mǎn)足不等式 或 的實(shí)數(shù)x的集合叫做半開(kāi)半閉區(qū)間,分別表示為 ;
分別滿(mǎn)足x≥a,x>a,x≤a,x
其中實(shí)數(shù)a, b表示區(qū)間的兩端點(diǎn)。
完成課本P33,練習(xí)A 1、2;練習(xí)B 1、2、3。
例題解析
題型一:函數(shù)的概念
例1:下圖中可表示函數(shù)y=f(x)的'圖像的只可能是( )
練習(xí):設(shè)M={x| },N={y| },給出下列四個(gè)圖像,其中能表示從集合M到集合N的函數(shù)關(guān)系的有____個(gè)。
題型二:相同函數(shù)的判斷問(wèn)題
例2:已知下列四組函數(shù):① 與y=1 ② 與y=x ③ 與
、 與 其中表示同一函數(shù)的是( )
A. ② ③ B. ② ④ C. ① ④ D. ④
練習(xí):已知下列四組函數(shù),表示同一函數(shù)的是( )
A. 和 B. 和
C. 和 D. 和
題型三:函數(shù)的定義域和值域問(wèn)題
例3:求函數(shù)f(x)= 的定義域
練習(xí):課本P33練習(xí)A組 4.
例4:求函數(shù) , ,在0,1,2處的函數(shù)值和值域。
當(dāng)堂檢測(cè)
1、下列各組函數(shù)中,表示同一個(gè)函數(shù)的是( A )
A、 B、
C、 D、
2、已知函數(shù) 滿(mǎn)足f(1)=f(2)=0,則f(-1)的值是( C )
A、5 B、-5 C、6 D、-6
3、給出下列四個(gè)命題:
、 函數(shù)就是兩個(gè)數(shù)集之間的對(duì)應(yīng)關(guān)系;
、 若函數(shù)的定義域只含有一個(gè)元素,則值域也只含有一個(gè)元素;
、 因?yàn)?的函數(shù)值不隨 的變化而變化,所以 不是函數(shù);
、 定義域和對(duì)應(yīng)關(guān)系確定后,函數(shù)的值域也就確定了.
其中正確的有( B )
A. 1 個(gè) B. 2 個(gè) C. 3個(gè) D. 4 個(gè)
4、下列函數(shù)完全相同的是 ( D )
A. , B. ,
C. , D. ,
5、在下列四個(gè)圖形中,不能表示函數(shù)的圖象的是 ( B )
6、設(shè) ,則 等于 ( D )
A. B. C. 1 D.0
7、已知函數(shù) ,求 的值.( )
【高一數(shù)學(xué)教案】相關(guān)文章:
高一數(shù)學(xué)教案11-05
人教版高一數(shù)學(xué)教案06-10
高一數(shù)學(xué)教案【精】11-29
高一數(shù)學(xué)教案【推薦】11-30
【精】高一數(shù)學(xué)教案12-01
【薦】高一數(shù)學(xué)教案11-27