丁香婷婷网,黄色av网站裸体无码www,亚洲午夜无码精品一级毛片,国产一区二区免费播放

七年級數(shù)學(xué)教案

時間:2022-11-08 17:17:12 七年級數(shù)學(xué)教案 我要投稿

七年級數(shù)學(xué)教案合集15篇

  作為一位杰出的教職工,時常需要用到教案,借助教案可以恰當(dāng)?shù)剡x擇和運用教學(xué)方法,調(diào)動學(xué)生學(xué)習(xí)的積極性。那要怎么寫好教案呢?下面是小編精心整理的七年級數(shù)學(xué)教案,僅供參考,歡迎大家閱讀。

七年級數(shù)學(xué)教案合集15篇

七年級數(shù)學(xué)教案1

  一、教學(xué)目標(biāo)

  1、知識目標(biāo):掌握數(shù)軸三要素,會畫數(shù)軸。

  2、能力目標(biāo):能將已知數(shù)在數(shù)軸上表示,能說出數(shù)軸上的點表示的數(shù),知道有理數(shù)都可以用數(shù)軸上的點表示;

  3、情感目標(biāo):向?qū)W生滲透數(shù)形結(jié)合的思想。

  二、教學(xué)重難點

  教學(xué)重點:數(shù)軸的三要素和用數(shù)軸上的點表示有理數(shù)。

  教學(xué)難點:有理數(shù)與數(shù)軸上點的對應(yīng)關(guān)系。

  三、教法

  主要采用啟發(fā)式教學(xué),引導(dǎo)學(xué)生自主探索去觀察、比較、交流。

  四、教學(xué)過程

 。ㄒ唬﹦(chuàng)設(shè)情境激活思維

  1。學(xué)生觀看鐘祥二中相關(guān)背景視頻

  意圖:吸引學(xué)生注意力,激發(fā)學(xué)生自豪感。

  2。聯(lián)系實際,提出問題。

  問題1:鐘祥二中學(xué)校大門南75米是鐘祥市統(tǒng)計局,100米是中國建設(shè)銀行,在她北75米是海韻藝術(shù)學(xué)校,200米處是中百倉儲,請同學(xué)們畫圖表示這一情景。

  師生活動:學(xué)生思考解決問題的方法,學(xué)生代表畫圖演示。

  學(xué)生畫圖后提問:

  1。馬路用什么幾何圖形代表?(直線)

  2。文中相關(guān)地點用什么代表?(直線上的點)

  3。學(xué)校大門起什么作用?(基準(zhǔn)點、參照物)

  4。你是如何確定問題中各地點的位置的?(方向和距離)

  設(shè)計意圖:“三要素”為定向,用直線、點、方向、距離等幾何符號表示實際問題,這是實際問題的第一次數(shù)學(xué)抽象。

  問題2:上面的問題中,“南”和“北”具有相反意義。我們知道,正數(shù)和負(fù)數(shù)可以表示兩種具有相反意義的量,我們能不能直接用數(shù)來表示這些地理位置和學(xué)校大門的相對位置關(guān)系呢?

  師生活動:

  學(xué)生思考后回答解決方法,學(xué)生代表畫圖。

  學(xué)生畫圖后提問:

  1。0代表什么?

  2。數(shù)的符號的實際意義是什么?

  3。—75表示什么?100表示什么?

  設(shè)計意圖:繼續(xù)以三要素為定向,將點用數(shù)表示,實現(xiàn)第二次抽象,為定義數(shù)軸概念提供直觀基礎(chǔ)。

  問題3:生活中常見的溫度計,你能描述一下它的結(jié)構(gòu)嗎?

  設(shè)計意圖:借助生活中的常用工具,說明正數(shù)和負(fù)數(shù)的作用,引導(dǎo)學(xué)生用三要素表達,為定義數(shù)軸的概念提供直觀基礎(chǔ)。

  問題4:你能說說上述2個實例的共同點嗎?

  設(shè)計意圖:進一步明確“三要素”的意義,體會“用點表示數(shù)”和“用數(shù)表示點的思想方法,為定義數(shù)軸概念提供又一個直觀基礎(chǔ)。

 。ǘ┳灾鲗W(xué)習(xí)探究新知

  學(xué)生活動:帶著以下問題自學(xué)課本第8頁:

  1。什么樣的直線叫數(shù)軸?它具備什么條件。

  2。如何畫數(shù)軸?

  3。根據(jù)上述實例的經(jīng)驗,“原點”起什么作用?

  4。你是怎么理解“選取適當(dāng)?shù)拈L度為單位長度”的?

  師生活動:

  學(xué)生自學(xué)完后,請代表上黑板畫一條數(shù)軸,講解畫數(shù)軸的一般步驟。

  設(shè)計意圖:明確畫數(shù)軸的步驟,使數(shù)軸的三要素在同學(xué)們的頭腦中留下更深刻的印象,同時得到數(shù)軸的定義。

  至此,學(xué)生已會畫數(shù)軸,師生共同歸納總結(jié)(板書)

  ①數(shù)軸的定義。

  ②數(shù)軸三要素。

  練習(xí):(媒體展示)

  1。判斷下列圖形是否是數(shù)軸。

  2。口答:數(shù)軸上各點表示的數(shù)。

  3。在數(shù)軸上描出下列各點:1。5,—2,—2。5,2,2。5,0,—1。5。

 。ㄈ┬〗M合作交流展示

  問題:觀察數(shù)軸上的點,你有什么發(fā)現(xiàn)?

  數(shù)軸上表示3的點在原點的哪一側(cè)?與原點的距離是多少個單位長度?表示—2的點在原點的哪一側(cè)?與原點的距離是多少個單位長度?設(shè)a是一個正數(shù),對表示a的點和—a的點進行同樣的討論。

  設(shè)計意圖:通過從特殊到一般的方法歸納出數(shù)軸上不同位置點的特點,培養(yǎng)學(xué)生的抽象概括能力。

 。ㄋ模w納總結(jié)反思提高

  師生共同回顧本節(jié)課所學(xué)主要內(nèi)容,回答以下問題:

  1。什么是數(shù)軸?

  2。數(shù)軸的`“三要素”各指什么?

  3。數(shù)軸的畫法。

  設(shè)計意圖:梳理本節(jié)課內(nèi)容,掌握本節(jié)課的核心――數(shù)軸“三要素”。

 。ㄎ澹┠繕(biāo)檢測設(shè)計

  1。下列命題正確的是()

  A。數(shù)軸上的點都表示整數(shù)。

  B。數(shù)軸上表示4與—4的點分別在原點的兩側(cè),并且到原點的距離都等于4個單位長度。

  C。數(shù)軸包括原點與正方向兩個要素。

  D。數(shù)軸上的點只能表示正數(shù)和零。

  2。畫數(shù)軸,在數(shù)軸上標(biāo)出—5和+5之間的所有整數(shù),列舉到原點的距離小于3的所有整數(shù)。

  3。畫數(shù)軸,表示下列有理數(shù)數(shù)的點中,觀察數(shù)軸,在原點左邊的點有_______個。4。在數(shù)軸上點A表示—4,如果把原點O向負(fù)方向移動1。5個單位,那么在新數(shù)軸上點A表示的數(shù)是________。

  五、板書

  1。數(shù)軸的定義。

  2。數(shù)軸的三要素(圖)。

  3。數(shù)軸的畫法。

  4。性質(zhì)。

  六、課后反思

  附:活動單

  活動一:畫一畫

  鐘祥二中學(xué)校大門南75米是鐘祥市統(tǒng)計局,100米是中國建設(shè)銀行,在她北75米是海韻藝術(shù)學(xué)校,200米處是中百倉儲,請同學(xué)們畫圖表示這一情景。

  思考:如何簡明地用數(shù)表示這些地理位置與學(xué)校大門的相對位置關(guān)系?

  活動二:讀一讀

  帶著以下問題閱讀教科書P8頁:

  1。什么樣的直線叫數(shù)軸?

  定義:規(guī)定了_________、________、_________的直線叫數(shù)軸。

  數(shù)軸的三要素:_________、_________、__________。

  2。畫數(shù)軸的步驟是什么?

  3!霸c”起什么作用?__________

  4。你是怎么理解“選取適當(dāng)?shù)拈L度為單位長度”的?

  練習(xí):

  1。畫一條數(shù)軸

  2。在你畫好的數(shù)軸上表示下列有理數(shù):1。5,—2,—2。5,2,2。5,0,—1。5

  活動三:議一議

  小組討論:觀察你所畫的數(shù)軸上的點,你有什么發(fā)現(xiàn)?

  歸納:一般地,設(shè)a是一個正數(shù),則數(shù)軸上表示數(shù)a在原點的____邊,與原點的距離是____個單位長度;表示數(shù)—a的點在原點的____邊,與原點的距離是____個單位長度。

  練習(xí):

  1。數(shù)軸上表示—3的點在原點的_______側(cè),距原點的距離是______;表示6的點在原點的______側(cè),距原點的距離是______;兩點之間的距離為_______個單位長度。

  2。距離原點距離為5個單位的點表示的數(shù)是________。

  3。在數(shù)軸上,把表示3的點沿著數(shù)軸負(fù)方向移動5個單位長度,到達點B,則點B表示的數(shù)是________。

  附:目標(biāo)檢測

  1。下列命題正確的是()

  A。數(shù)軸上的點都表示整數(shù)。

  B。數(shù)軸上表示4與—4的點分別在原點的兩側(cè),并且到原點的距離都等于4個單位長度。

  C。數(shù)軸包括原點與正方向兩個要素。

  D。數(shù)軸上的點只能表示正數(shù)和零。

  2。畫數(shù)軸,在數(shù)軸上標(biāo)出—5和+5之間的所有整數(shù)。列舉到原點的距離小于3的所有整數(shù)。

  3。畫數(shù)軸,觀察數(shù)軸,在原點左邊的點有_______個。

  4。在數(shù)軸上點A表示—4,如果把原點O向負(fù)方向移動1。5個單位,那么在新數(shù)軸上點A表示的數(shù)是________。

七年級數(shù)學(xué)教案2

  一、目標(biāo)

  1.用它們拼成各種形狀不同的四邊形,并計算它們的周長。

 。ü膭顚W(xué)生把長方形和等腰三角形拼和成各種圖形,分別計算出它們的.周長和面積)

  2.教師揭示以上這些工作實際上是在進行整式的加減運算

  3.回顧以上過程 思考:整式的加減運算要進行哪些工作?

  生1:“去括號”

  生2:“合并同類項”

  師生小結(jié):整式的加減實際上是“去括號”和“合并同類項”法則的綜合應(yīng)用,

  二、揭示如何進行整式的加減運算

  1.進行整式的加減運算時,如果有括號先去括號,再合并同類項。

  2.教學(xué)例二 例2 求2a2-4a+1與-3a2+2a-5的差.

 。ū绢}首先帶領(lǐng)學(xué)生根據(jù)題意列出式子,強調(diào)要把兩個代數(shù)式看成整體,列式時應(yīng)加上括號)

  解:(2a2-4a+1)-(-3a2+2a-5)

  =2a2-4a+1+3a2-2a+5

  =5a2-6a+6

  3.拓展練習(xí)

 。1)求多項式2x -3 +7與6x -5 -2的和.

  提問:你有哪些計算方法?(可引導(dǎo)學(xué)生進行豎式計算,并在練習(xí)中注意豎式計算過程中需要注意什么?)

 。2)(-3x2 –x +2)+(4x2 +3x -5) (3)(4a2 -3a )+(2a2 +a -1)

 。4)(x2 +5x –2 )-(x2 +3x -22) (5)2(1-a +a2)-3(2-a –a2)

  4.教學(xué)例3

  先化簡下式,再求值:

 。ㄗ龃祟愵}目應(yīng)先與學(xué)生一起探討一般步驟:

 。1)去括號。

 。2)合并同類項。

 。3)代值)

  解:5(3a2b –ab2)-4(-ab2 +3a2b),其中=-2 ,=3

  =15a2b –5ab2+4ab2 -12a2b)

  =3a2b –ab2

  三、小結(jié)

  1.進行整式的加減運算時,如果有括號先去括號,再合并同類項。

  2.進行化簡求值計算時

 。1)去括號。

 。2)合并同類項。

 。3)代值

  3.通過本節(jié)課的學(xué)習(xí)你還有哪些疑問?

  四、布置作業(yè)

  習(xí)題4.5 2. (3) ;4. (2);5.。

  五、課后反思

  省略

七年級數(shù)學(xué)教案3

  【教材簡析】

  本節(jié)內(nèi)容是在學(xué)生掌握了分?jǐn)?shù)乘法和分?jǐn)?shù)除以整數(shù)的計算方法基礎(chǔ)上繼續(xù)探索一個數(shù)除以分?jǐn)?shù)的計算方法。例2結(jié)合整數(shù)除法的問題,“每人吃2個,可以分給幾人?”激活學(xué)生對除法數(shù)量關(guān)系的回憶,并用這個數(shù)量系列出求吃 1/2個、1/3個、1/4 個,可以分給幾人的算式,然后通過觀察、操作探索出一個數(shù)的幾分之一就等于這個數(shù)乘以幾分之一的倒數(shù)。例3是對一個數(shù)除以幾分之一方法的拓展。通過在條形圖上分一分,讓學(xué)生直接得到4÷2/3 的結(jié)果,再利用例2得到的方法算一算,發(fā)現(xiàn)結(jié)果是相同的。最后,通過對兩個例題的比較,歸納出整數(shù)除以分?jǐn)?shù)的方法。練一練和練習(xí)十一的5——8主要是讓學(xué)生鞏固新學(xué)的計算方法,并與分?jǐn)?shù)乘法和前一節(jié)課分?jǐn)?shù)除以整數(shù)的`方法作對比,溝通新舊知識的聯(lián)系,形成較完整的知識體系。

  【教學(xué)目標(biāo)】

  1、使學(xué)生經(jīng)歷探索整數(shù)除以分?jǐn)?shù)計算方法的過程,理解并掌握整數(shù)除以分?jǐn)?shù)的計算方法,能正確計算整數(shù)除以分?jǐn)?shù)的式題。

  2、使學(xué)生在探索整數(shù)除以分?jǐn)?shù)計算方法的過程中,進一步體會猜想——驗證的數(shù)學(xué)思想方法。

  3、使學(xué)生在學(xué)習(xí)活動中,進一步感受數(shù)學(xué)學(xué)習(xí)的挑戰(zhàn)性,體驗成功的樂趣,增強學(xué)好數(shù)學(xué)的自信心。

  【教具準(zhǔn)備】

  課件

  【教學(xué)過程】

  一、談話導(dǎo)入

  同學(xué)們,吃是為了汲取生理上的營養(yǎng),學(xué)是為了汲取精神上的養(yǎng)份。今天,我們采用“邊品邊學(xué)”的方式,學(xué)習(xí)“整數(shù)除以分?jǐn)?shù)”。

  揭題:整數(shù)除以分?jǐn)?shù)

  二、提出猜想

  1、談話:老師帶來了同樣大小的4個橙子(媒體呈現(xiàn))

  如果每人吃2個,可以分給幾人怎么列式?

  學(xué)生口頭列式。

  提問:為什么用4÷2計算呢?

  學(xué)生回答后,師小結(jié):也就是說把4個橙子,按2個一份平均分,可以用除法計算。

  問:如果每人吃一個呢?

  學(xué)生口頭列式。

  2、出示:如果“每人吃1/2 個,可以分給幾人”又怎么列式?

  學(xué)生口頭列式,教師板書:4÷1/2

  追問:為什么用除法計算?

  學(xué)生回答后,師小結(jié):就是把4個橙子,按 個一份平均分,因此也是用除法計算(課件出示)

  3、談話:請看屏幕,從圖中你數(shù)出4÷1/2 得多少?(教師隨學(xué)生回答板書4÷1/2 =8)

  提問:從這幅圖中,你還能想到什么?

  (一個橙子分給2個人,4個橙子就能分給8個人。)

  學(xué)生回答,教師恰當(dāng)評價。

  教師針對學(xué)生的回答,繼續(xù)提問:如果這樣想又怎樣列式?(教師板書4×2=8)

  4、思考:仔細(xì)對比這兩個式子,你有什么發(fā)現(xiàn)?

  學(xué)生先獨立思考,再在小組里交流自己的想法。

  反饋時恰當(dāng)評價。(教師板書4÷1/2 = 4×2)

  三、進行驗證

  (一)驗證一

  過渡:是不是所有的整數(shù)除以分?jǐn)?shù)都能用以上幾個同學(xué)說的方法做呢?這只是我們的猜想,還需進一步驗證。(板書猜想、驗證)

  1、出示:如果每人吃1/4 1/4個,可以分給幾人?

  學(xué)生口頭列式

  提問:按剛才的方法,可以怎么計算?結(jié)果是多少?

  (學(xué)生回答,教師板書4÷1/4 =4×4=16)

  談話:結(jié)果是否正確,我們來驗證一下

  請每個同學(xué)拿出4個同樣大小的圓片代表橙子,用筆分一分。

  學(xué)生操作,教師巡視指導(dǎo)。

  反饋:你是怎么分的,分得結(jié)果是多少?(隨學(xué)生利用實物投影儀演示)

  小結(jié):操作的結(jié)果和剛才計算的結(jié)果是一樣的。

  2、出示:如果每人吃1/3 1/3個呢?

  請學(xué)生先列式計算,用圓紙片分一分的方法求證結(jié)果是否正確。

  反饋交流(輔以電腦演示)

  小結(jié):通過驗證,再次證明了剛才的猜想是正確的。

  (二)驗證二

  過渡:剛才研究的都是整數(shù)除以幾分之一的題目,整數(shù)除以幾分之幾的題目,有沒有類似的規(guī)律,我們繼續(xù)探索。

  1、出示例3(電腦出現(xiàn)圖示)

  提問:怎么理解2/3 米?

  2、讓學(xué)生獨立列式算一算。

  3、學(xué)生做好后追問:這個結(jié)果是否正確,請同學(xué)們打開書57也在例3的圖中動筆分一分進行驗證。

  4、學(xué)生獨立思考后在小組里交流,全班反饋時指名學(xué)生在投影儀下演示。

  四、獲得結(jié)論

  1、觀察比較

  學(xué)生觀察黑板上的一些算式:

  4÷ 1/2= 4×2=8

  4÷1/3 =4×3=12

  4÷1/4 =4×4=16

  4÷2/3 =4×3/2 =6

  說說這些乘式中的第二個因數(shù)與除式中的除數(shù)有什么關(guān)系?

  3、思考概括

  通過以上操作活動你認(rèn)為整數(shù)除以分?jǐn)?shù)可以怎樣計算? 小組里交流回報。

  五、鞏固練習(xí)

  過渡:今天的知識大餐你品出了哪些滋味,不妨來回味一番。

  1、填一填 12÷2/3 =12×( 3/2 )=18 9÷6/7 =9×( 7/6 )=21/2

  2、找朋友

  3、練習(xí)十一第5題

  先出示前一部分要求,學(xué)生想一想后再讓學(xué)生算一算,體會計算方法的正確性。

  4、算一算 10÷2/5 8÷2/3 3÷6/7 12÷8/7

  說明:轉(zhuǎn)化成乘法后,能約分的要先約分。

  5、算一算、比一比

  (1)逐一出示第一組題,師:老師這兒有一組題,比一比誰算得又快又對。準(zhǔn)備筆和草稿紙,算出答案馬上舉手。

  提問:做這組題要注意什么?

  6、實際問題

  談話:現(xiàn)在,人們出行都有便利的交通工具,下面是自行車、小轎車、摩托車行使30千米所用時間表,你能求出它們各自的速度嗎?

  提示:單位用千米/時

  六、課堂小結(jié)

  今天學(xué)習(xí)了整數(shù)除以分?jǐn)?shù)的內(nèi)容,你有什么收獲?

  明天將要學(xué)習(xí)分?jǐn)?shù)除以分?jǐn)?shù),你有什么想法呢?

  七、布置作業(yè)

  書60頁第6題。

七年級數(shù)學(xué)教案4

  教學(xué)目標(biāo)

  1, 掌握有理數(shù)的概念,會對有理數(shù)按照一定的標(biāo)準(zhǔn)進行分類,培養(yǎng)分類能力;

  2, 了解分類的標(biāo)準(zhǔn)與分類結(jié)果的相關(guān)性,初步了解“集合”的含義;

  3, 體驗分類是數(shù)學(xué)上的常用處理問題的方法。

  教學(xué)難點 正確理解分類的標(biāo)準(zhǔn)和按照一定的標(biāo)準(zhǔn)進行分類

  知識重點 正確理解有理數(shù)的概念

  教學(xué)過程(師生活動) 設(shè)計理念

  探索新知 在前兩個學(xué)段,我們已經(jīng)學(xué)習(xí)了很多不同類型的數(shù),通過上兩節(jié)課的學(xué)習(xí),又知道了現(xiàn)在的數(shù)包括了負(fù)數(shù),現(xiàn)在請同學(xué)們在草稿紙上任意寫出3個數(shù)(同時請3個同學(xué)在黑板上寫出).

  問題1:觀察黑板上的9個數(shù),并給它們進行分類.

  學(xué)生思考討論和交流分類的情況.

  學(xué)生可能只給出很粗略的分類,如只分為“正數(shù)”和“負(fù)數(shù)”或“零”三類,此時,教師應(yīng)給予引導(dǎo)和鼓勵.

  例如,

  對于數(shù)5,可這樣問:5和5. 1有相同的類型嗎?5可以表示5個人,而5. 1可以表示人數(shù)嗎?(不可以)所以它們是不同類型的數(shù),數(shù)5是正數(shù)中整個的數(shù),我們就稱它為“正整數(shù)”,而5. 1不是整個的數(shù),稱為“正分?jǐn)?shù),,.…(由于小數(shù)可化為分?jǐn)?shù),以后把小數(shù)和分?jǐn)?shù)都稱為分?jǐn)?shù))

  通過教師的引導(dǎo)、鼓勵和不斷完善,以及學(xué)生自己的概括,最后歸納出我們已經(jīng)學(xué)過的5類不同的數(shù),它們分別是“正整數(shù),零,負(fù)整數(shù),正分?jǐn)?shù),負(fù)分?jǐn)?shù),’.

  按照書本的說法,得出“整數(shù)”“分?jǐn)?shù)”和“有理數(shù)”的概念.

  看書了解有理數(shù)名稱的由來.

  “統(tǒng)稱”是指“合起來總的名稱”的意思.

  試一試:按照以上的分類,你能作出一張有理數(shù)的分類表嗎?你能說出以上有理數(shù)的分類是以什么為標(biāo)準(zhǔn)的嗎?(是按照整數(shù)和分?jǐn)?shù)來劃分的) 分類是數(shù)學(xué)中解決問題的常用手段,這個引入具有開放的特點,學(xué)生樂于參與

  學(xué)生自己嘗試分類時,可能會很粗略,教師給予引導(dǎo)和鼓勵,劃分?jǐn)?shù)的類型要從文字所表示的意義上去引導(dǎo),這樣學(xué)生易于理解。

  有理數(shù)的分類表要在黑板或媒體上展示,分類的標(biāo)準(zhǔn)要引導(dǎo)學(xué)生去體會

  練一練 1,任意寫出三個有理數(shù),并說出是什么類型的`數(shù),與同伴進行交流.

  2,教科書第10頁練習(xí).

  此練習(xí)中出現(xiàn)了集合的概念,可向?qū)W生作如下的說明.

  把一些數(shù)放在一起,就組成了一個數(shù)的集合,簡稱“數(shù)集”,所有有理數(shù)組成的數(shù)集叫做有理數(shù)集.類似地,所有整數(shù)組成的數(shù)集叫做整數(shù)集,所有負(fù)數(shù)組成的數(shù)集叫做負(fù)數(shù)集……;

  數(shù)集一般用圓圈或大括號表示,因為集合中的數(shù)是無限的,而本題中只填了所給的幾個數(shù),所以應(yīng)該加上省略號.

  思考:上面練習(xí)中的四個集合合并在一起就是全體有理數(shù)的集合嗎?

  也可以教師說出一些數(shù),讓學(xué)生進行判斷。

  集合的概念不必深入展開。

  創(chuàng)新探究 問題2:有理數(shù)可分為正數(shù)和負(fù)數(shù)兩大類,對嗎?為什么?

  教學(xué)時,要讓學(xué)生總結(jié)已經(jīng)學(xué)過的數(shù),鼓勵學(xué)生概括,通過交流和討論,教師作適當(dāng)?shù)闹笇?dǎo),逐步得到如下的分類表。

  有理數(shù) 這個分類可視學(xué)生的程度確定是否有必要教學(xué)。

  應(yīng)使學(xué)生了解分類的標(biāo)準(zhǔn)不一樣時,分類的結(jié)果也是不同的,所以分類的標(biāo)準(zhǔn)要明確,使分類后每一個參加分類的象屬于其中的某一類而只能屬于這一類,教學(xué)中教師可舉出通俗易懂的例子作些說明,可以按年齡,也可以按性別、地域來分等

  小結(jié)與作業(yè)

  課堂小結(jié) 到現(xiàn)在為止我們學(xué)過的數(shù)都是有理數(shù)(圓周率除外),有理數(shù)可以按不同的標(biāo)準(zhǔn)進行分類,標(biāo)準(zhǔn)不同,分類的結(jié)果也不同。

  本課作業(yè)

  1, 必做題:教科書第18頁習(xí)題1.2第1題

  2, 教師自行準(zhǔn)備

  本課教育評注(課堂設(shè)計理念,實際教學(xué)效果及改進設(shè)想)

  1,本課在引人了負(fù)數(shù)后對所學(xué)過的數(shù)按照一定的標(biāo)準(zhǔn)進行分類,提出了有理數(shù)的概念.分類是數(shù)學(xué)中解決問題的常用手段,通過本節(jié)課的學(xué)習(xí)使學(xué)生了解分類的思想并進行簡單的分類是數(shù)學(xué)能力的體現(xiàn),教師在教學(xué)中應(yīng)引起足夠的重視.關(guān)于分類標(biāo)準(zhǔn)與分類結(jié)果的關(guān)系,分類標(biāo)準(zhǔn)的確定可向?qū)W生作適當(dāng)?shù)臐B透,集合的概念比較抽象,學(xué)生真正接受需要很長的過程,本課不要過多展開。

  2,本課具有開放性的特點,給學(xué)生提供了較大的思維空間,能促進學(xué)生積極主動地參加學(xué)習(xí),親自體驗知識的形成過程,可避免直接進行分類所帶來的枯燥性;同時還體現(xiàn)合作學(xué)習(xí)、交流、探究提高的特點,對學(xué)生分類能力的養(yǎng)成有很好的作用。

  3,兩種分類方法,應(yīng)以第一種方法為主,第二種方法可視學(xué)生的情況進行。

七年級數(shù)學(xué)教案5

  學(xué)習(xí)目標(biāo)

  1.經(jīng)歷觀察、操作、想像、推理、交流等活動,進一步發(fā)展空間觀念,推理能力和有條理表達能力.

  2.分析題意說理過程,能靈活地選用直線平行的方法進行說理.

  學(xué)習(xí)重點:

  直線平行的條件的'應(yīng)用.

  學(xué)習(xí)難點:

  選取適當(dāng)判定直線平行的方法進行說理是重點也是難點.

  一、學(xué)習(xí)過程

  平行線的判定方法有幾種?分別是什么?

  二.鞏固練習(xí):

  1.如圖2,若∠2=∠6,則______∥_______,如果∠3+∠4+∠5+∠6=180°,那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.

  (第1題)(第2題)

  2.如圖,一個合格的變形管道ABCD需要AB邊與CD邊平行,若一個拐角∠ABC=72°,則另一個拐角∠BCD=_______時,這個管道符合要求.

  二、選擇題.

  1.如圖,下列判斷不正確的是()

  A.因為∠1=∠4,所以DE∥AB

  B.因為∠2=∠3,所以AB∥EC

  C.因為∠5=∠A,所以AB∥DE

  D.因為∠ADE+∠BED=180°,所以AD∥BE

  2.如圖,直線AB、CD被直線EF所截,使∠1=∠2≠90°,則()

  A.∠2=∠4B.∠1=∠4C.∠2=∠3D.∠3=∠4

  三、解答題.

  1.你能用一張不規(guī)則的紙(比如,如圖1所示的四邊形的紙)折出兩條平行的直線嗎?與同伴說說你的折法.

  2.已知,如圖2,點B在AC上,BD⊥BE,∠1+∠C=90°,問射線CF與BD平行嗎?試用兩種方法說明理由.

七年級數(shù)學(xué)教案6

  一、教材分析

  1、教材的內(nèi)容:本節(jié)課是人教版七年級下冊第五章第一節(jié)的第一課時

  2、教材的地位和作用:平面內(nèi)兩條直線的位置關(guān)系是“空間與圖形”所要研究的基本問題,這些內(nèi)容學(xué)生在前兩個學(xué)段已經(jīng)有所接觸,本章在學(xué)生已有知識和經(jīng)驗的基礎(chǔ)上,繼續(xù)研究平面內(nèi)兩條直線的位置關(guān)系,首先研究相交的兩條直線,這是后面學(xué)習(xí)垂直相交的必要基礎(chǔ)也為后面學(xué)面直角坐標(biāo)系奠定基石,因此本節(jié)課具有承前啟后的重要作用

  3、教學(xué)的重點、難點:

  重點:鄰補角、對頂角的概念,對頂角的性質(zhì)和應(yīng)用。

  難點:理解對頂角性質(zhì)的探索

  (確定重難點的依據(jù):本節(jié)的學(xué)習(xí)目的是研究兩條相交直線產(chǎn)生的四個角的關(guān)系,因此將鄰補角、對頂角的概念、性質(zhì)以及應(yīng)用作為本節(jié)的重點。同學(xué)們剛剛開始接觸幾何,對推理說理不習(xí)慣也不熟悉,所以將理解對頂角相等的性質(zhì)作為難點。)

  4、教學(xué)目標(biāo):

  A:知識與技能目標(biāo)

  (1).理解對頂角和鄰補角的`概念,能在圖形中辨認(rèn).

  (2).掌握對頂角相等的性質(zhì)和它的推證過程

  (3).會用對頂角的性質(zhì)進行有關(guān)的簡單推理和計算.

  B:過程與方法目標(biāo)

  (1).通過觀察、操作、探究、猜想、思考、交流、歸納、推理等培養(yǎng)學(xué)生的推理能力和有條理的表達能力,培養(yǎng)操作能力、動手能力。

  (2).體會具體到抽象再到具體的思想方法.

  C:情感、態(tài)度與價值目標(biāo)

  (1).感受圖形中和諧美、對稱美.

  (2).感受合作交流帶來的成功感,樹立自信心.

  (3).感受數(shù)學(xué)應(yīng)用的廣泛性,使學(xué)生更加熱愛數(shù)學(xué)

  二、學(xué)情分析:

  在此之前,學(xué)生已經(jīng)學(xué)習(xí)了圖形的初步認(rèn)識、對相交線和平行線有了直觀的感性認(rèn)識,且對互補和互余有了清楚的了解,在此基礎(chǔ)上來學(xué)習(xí)鄰補角和對頂角,符合學(xué)生的認(rèn)知規(guī)律,讓學(xué)生對新知識的應(yīng)用充滿好奇與期待.

  三、教法和學(xué)法:

  教法:

  葉圣陶先生倡導(dǎo):解放學(xué)生的手,解放學(xué)生的腦,解放學(xué)生的時間.根據(jù)這一思想及我校初一學(xué)生活潑好動的特點,我采取啟發(fā)式教學(xué)、探究式教學(xué)及多媒體輔助教學(xué)相結(jié)合的方法.

  學(xué)法:以學(xué)生分組實踐、自主探究、合作交流為主要形式的探究式學(xué)習(xí)方法.

  四、教學(xué)過程:

  1課前準(zhǔn)備:課件,剪刀,紙片,相交線模型

  2教學(xué)過程:設(shè)置以下六個環(huán)節(jié)

  環(huán)節(jié)一:情景屋(創(chuàng)設(shè)情景,激發(fā)學(xué)習(xí)動機)

  請學(xué)生欣賞觀察圖片,圖片中有大橋上的鋼梁和鋼索,窗戶的窗格都給我們以相交線平行線的形象,讓學(xué)生感受到相交線平行線在我們生活中有著廣泛的應(yīng)用,由此產(chǎn)生研究它們了解它們的興趣和欲望,適時的給出本章課題:相交線和平行線

  環(huán)節(jié)二:問題苑(合作交流,解釋發(fā)現(xiàn))

  通過一些問題的設(shè)置,激發(fā)學(xué)生探究的欲望,具體操作:

  (1):動手嘗試:剪紙片,感知剪刀所形成的角在剪紙過程中的變化

  (2):給出問題,由剪刀這個實物抽象出幾何模型——兩條直線相交。

  (讓學(xué)生充分的感知到數(shù)學(xué)來源于生活,符合初中學(xué)生的認(rèn)識規(guī)律和興趣愛好)

  (3):分析研究此模型:

  設(shè)置以下一系列問題:

  A、兩直線相交構(gòu)成的4個角兩兩相配共能組成幾對?(6對)

  B、對各對角進行分析,首先從位置上去分析————結(jié)論:可把這六對角分成兩大類,一類為哪些角?——特點?——它們有一條公共邊,它們的另一邊互為反向延長線——引出概念——鄰補角。

  另一類是哪些角?———特點?——它們的兩邊互為反向延長線——引出概念——對頂角

  C、再從大小上進行分析——量一量——結(jié)論:鄰補角互補、對頂角相等。

  D、你能闡述它們互補和相等的理由嗎?

  (一堂好課,是由一系列的真問題組成的,本環(huán)節(jié)在老師的引導(dǎo)下,由學(xué)生自由的發(fā)揮,通過觀察分析,交流討論一步一步的解決本節(jié)課的重點和難點,學(xué)生通過自己探索獲得的知識才是自己的知識,讓學(xué)生在此過程中學(xué)會學(xué)習(xí),達到教是為了不教的目的)

  環(huán)節(jié)三:快樂房(大膽創(chuàng)設(shè),感悟變換)

  (設(shè)置見投影,讓學(xué)生判斷形成的兩個角是否為鄰補角,這一變換讓學(xué)生充滿興趣,此時一定讓學(xué)生用鄰補角的特點去檢驗,達到知識的正向遷移,并理解鄰補角和補角的關(guān)系)

  環(huán)節(jié)四:實例庫(拓展應(yīng)用,升華提高)

  例子1:是一組不同形式的角,判斷是否為對頂角,此題的目的是鞏固對頂角的概念,培養(yǎng)學(xué)生的識圖能力

  例子2:例子2是用對頂角和鄰補角的性質(zhì)進行簡單的計算,在這里設(shè)置了一組變式題,而且變式題目不是教師直接給出,而是啟發(fā)學(xué)生自己編,讓學(xué)生過了一把編導(dǎo)的癮,學(xué)生一定非常的開心,這樣可以活躍課堂氣氛,提高學(xué)生的思維能力

  (一方面鞏固了對頂角的性質(zhì);另一方面說明幾何里的計算題,需要用到圖形的幾何性質(zhì),因此,要有根有據(jù)地計算.例題放手讓學(xué)生自己解決,比教師單純地講解效果會更好.盡管學(xué)生書寫格式不如課本上的規(guī)范,但通過集體講評糾正后,學(xué)生印象會更深刻).

  最后安排一個腦筋急轉(zhuǎn)彎:見投影

  (讓學(xué)生始終對課堂充滿熱情,通過此練習(xí),體會到數(shù)學(xué)來自于生活又用于生活,提高學(xué)習(xí)數(shù)學(xué)的興趣和熱情)

  環(huán)節(jié)五:點金帚(學(xué)后反思感悟收獲)

  通過本堂課的探究

  我經(jīng)歷了......

  我體會到......

  我感受到......

  (學(xué)生暢所欲言,在“以生為本”的民主氛圍中培養(yǎng)學(xué)生歸納、概括能力和語言表達能力;同時引導(dǎo)學(xué)生反思探究過程,幫助學(xué)生肯定自我,欣賞他人,同時把本節(jié)課的內(nèi)容形成知識體系.)

  角的名稱

  特征

  性質(zhì)

  相同點

  不同點

  對頂角

 、賰蓷l直線相交而成的角

 、谟幸粋公共頂點

 、蹧]有公共邊

  對頂角相等

  都是兩直線相交而成的角,都有一個公共頂點,它們都是成對出現(xiàn)。

  對頂角沒有公共邊而鄰補角有一條公共邊;兩條直線相交時,一個角的對頂角有一個,而一個角的鄰補角有兩個

  鄰補角

 、賰蓷l直線相交面成的角

 、谟幸粋公共頂點

 、塾幸粭l公共邊

  鄰補角互補

  環(huán)節(jié)六:沉思閣(課后延伸張揚個性)

  此為課后作業(yè):

  (適當(dāng)增加利用對頂角相等解決一些說理的題目,既讓學(xué)生感受到對頂角相等這個性質(zhì)在解題中的獨特魅力,又為后續(xù)學(xué)習(xí)打下良好的基礎(chǔ).)

  五、教學(xué)設(shè)計說明:

  設(shè)計理念:面向全體學(xué)生,實現(xiàn):

  ——人人學(xué)有價值的數(shù)學(xué)

  ——人人都能獲得必需的數(shù)學(xué)

  ——不同的人在數(shù)學(xué)上得到不同的發(fā)展

  過程設(shè)計:學(xué)生親身經(jīng)歷從現(xiàn)實生活的圖形中提出數(shù)學(xué)問題,并抽象其蘊涵的數(shù)學(xué)本質(zhì)(相交直線),最后回歸生活去運用所學(xué)知識的全過程。

  設(shè)計目的:讓學(xué)生帶著興趣、帶著問題走進課堂,帶著新的問題、帶著高漲的熱情離開課堂,進行不斷的探究。

七年級數(shù)學(xué)教案7

  教學(xué)目標(biāo)

  1. 使學(xué)生在了解代數(shù)式概念的基礎(chǔ)上,能把簡單的與數(shù)量有關(guān)的詞語用代數(shù)式表示出來;

  2. 初步培養(yǎng)學(xué)生觀察、分析和抽象思維的能力.

  教學(xué)重點和難點

  重點:列代數(shù)式.

  難點:弄清楚語句中各數(shù)量的意義及相互關(guān)系.

  課堂教學(xué)過程設(shè)計

  一、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問題

  1?用代數(shù)式表示乙數(shù):(投影)

  (1)乙數(shù)比x大5;(x+5)

  (2)乙數(shù)比x的2倍小3;(2x-3)

  (3)乙數(shù)比x的倒數(shù)小7;( -7)

  (4)乙數(shù)比x大16%?((1+16%)x)

  (應(yīng)用引導(dǎo)的方法啟發(fā)學(xué)生解答本題)

  2?在代數(shù)里,我們經(jīng)常需要把用數(shù)字或字母敘述的一句話或一些計算關(guān)系式,列成代數(shù)式,正如上面的練習(xí)中的問題一樣,這一點同學(xué)們已經(jīng)比較熟悉了,但在代數(shù)式里也常常需要把用文字?jǐn)⑹龅囊痪湓捇蛴嬎汴P(guān)系式(即日常生活語言)列成代數(shù)式?本節(jié)課我們就來一起學(xué)習(xí)這個問題?

  二、講授新課

  例1 用代數(shù)式表示乙數(shù):

  (1)乙數(shù)比甲數(shù)大5; (2)乙數(shù)比甲數(shù)的2倍小3;

  (3)乙數(shù)比甲數(shù)的倒數(shù)小7; (4)乙數(shù)比甲數(shù)大16%?

  分析:要確定的乙數(shù),既然要與甲數(shù)做比較,那么就只有明確甲數(shù)是什么之后,才能確定乙數(shù),因此寫代數(shù)式以前需要把甲數(shù)具體設(shè)出來,才能解決欲求的乙數(shù)?

  解:設(shè)甲數(shù)為x,則乙數(shù)的代數(shù)式為

  (1)x+5 (2)2x-3; (3) -7; (4)(1+16%)x?

  (本題應(yīng)由學(xué)生口答,教師板書完成)

  最后,教師需指出:第4小題的答案也可寫成x+16%x?

  例2 用代數(shù)式表示:

  (1)甲乙兩數(shù)和的2倍;

  (2)甲數(shù)的 與乙數(shù)的 的差;

  (3)甲乙兩數(shù)的平方和;

  (4)甲乙兩數(shù)的和與甲乙兩數(shù)的差的積;

  (5)乙甲兩數(shù)之和與乙甲兩數(shù)的差的積?

  分析:本題應(yīng)首先把甲乙兩數(shù)具體設(shè)出來,然后依條件寫出代數(shù)式?

  解:設(shè)甲數(shù)為a,乙數(shù)為b,則

  (1)2(a+b); (2) a- b; (3)a2+b2;

  (4)(a+b)(a-b); (5)(a+b)(b-a)或(b+a)(b-a)?

  (本題應(yīng)由學(xué)生口答,教師板書完成)

  此時,教師指出:a與b的和,以及b與a的和都是指(a+b),這是因為加法有交換律?但a與b的差指的是(a-b),而b與a的差指的是(b-a)?兩者明顯不同,這就是說,用文字語言敘述的句子里應(yīng)特別注意其運算順序?

  例3 用代數(shù)式表示:

  (1)被3整除得n的數(shù);

  (2)被5除商m余2的數(shù)?

  分析本題時,可提出以下問題:

  (1)被3整除得2的數(shù)是幾?被3整除得3的數(shù)是幾?被3整除得n的數(shù)如何表示?

  (2)被5除商1余2的數(shù)是幾?如何表示這個數(shù)?商2余2的數(shù)呢?商m余2的數(shù)呢?

  解:(1)3n; (2)5m+2?

  (這個例子直接為以后讓學(xué)生用代數(shù)式表示任意一個偶數(shù)或奇數(shù)做準(zhǔn)備)?

  例4 設(shè)字母a表示一個數(shù),用代數(shù)式表示:

  (1)這個數(shù)與5的和的3倍;(2)這個數(shù)與1的差的 ;

  (3)這個數(shù)的5倍與7的和的一半;(4)這個數(shù)的平方與這個數(shù)的 的和?

  分析:啟發(fā)學(xué)生,做分析練習(xí)?如第1小題可分解為“a與5的和”與“和的3倍”,先將“a與5的和”例成代數(shù)式“a+5”再將“和的3倍”列成代數(shù)式“3(a+5)”?

  解:(1)3(a+5); (2) (a-1); (3) (5a+7); (4) a2+ a?

  (通過本例的.講解,應(yīng)使學(xué)生逐步掌握把較復(fù)雜的數(shù)量關(guān)系分解為幾個基本的數(shù)量關(guān)系,培養(yǎng)學(xué)生分析問題和解決問題的能力?)

  例5 設(shè)教室里座位的行數(shù)是m,用代數(shù)式表示:

  (1)教室里每行的座位數(shù)比座位的行數(shù)多6,教室里總共有多少個座位?

  (2)教室里座位的行數(shù)是每行座位數(shù)的 ,教室里總共有多少個座位?

  分析本題時,可提出如下問題:

  (1)教室里有6行座位,如果每行都有7個座位,那么這個教室總共有多少個座位呢?

  (2)教室里有m行座位,如果每行都有7個座位,那么這個教室總共有多少個座位呢?

  (3)通過上述問題的解答結(jié)果,你能找出其中的規(guī)律嗎?(總座位數(shù)=每行的座位數(shù)×行數(shù))

  解:(1)m(m+6)個; (2)( m)m個?

  三、課堂練習(xí)

  1?設(shè)甲數(shù)為x,乙數(shù)為y,用代數(shù)式表示:(投影)

  (1)甲數(shù)的2倍,與乙數(shù)的 的和; (2)甲數(shù)的 與乙數(shù)的3倍的差;

  (3)甲乙兩數(shù)之積與甲乙兩數(shù)之和的差;(4)甲乙的差除以甲乙兩數(shù)的積的商?

  2?用代數(shù)式表示:

  (1)比a與b的和小3的數(shù); (2)比a與b的差的一半大1的數(shù);

  (3)比a除以b的商的3倍大8的數(shù); (4)比a除b的商的3倍大8的數(shù)?

  3?用代數(shù)式表示:

  (1)與a-1的和是25的數(shù); (2)與2b+1的積是9的數(shù);

  (3)與2x2的差是x的數(shù); (4)除以(y+3)的商是y的數(shù)?

  〔(1)25-(a-1); (2) ; (3)2x2+2; (4)y(y+3)?〕

  四、師生共同小結(jié)

  首先,請學(xué)生回答:

  1?怎樣列代數(shù)式?2?列代數(shù)式的關(guān)鍵是什么?

  其次,教師在學(xué)生回答上述問題的基礎(chǔ)上,指出:對于較復(fù)雜的數(shù)量關(guān)系,應(yīng)按下述規(guī)律列代數(shù)式:

  (1)列代數(shù)式,要以不改變原題敘述的數(shù)量關(guān)系為準(zhǔn)(代數(shù)式的形式不唯一);

  (2)要善于把較復(fù)雜的數(shù)量關(guān)系,分解成幾個基本的數(shù)量關(guān)系;

  (3)把用日常生活語言敘述的數(shù)量關(guān)系,列成代數(shù)式,是為今后學(xué)習(xí)列方程解應(yīng)用題做準(zhǔn)備?要求學(xué)生一定要牢固掌握?

  五、作業(yè)

  1?用代數(shù)式表示:

  (1)體校里男生人數(shù)占學(xué)生總數(shù)的60%,女生人數(shù)是a,學(xué)生總數(shù)是多少?

  (2)體校里男生人數(shù)是x,女生人數(shù)是y,教練人數(shù)與學(xué)生人數(shù)之比是1∶10,教練人數(shù)是多?

  2?已知一個長方形的周長是24厘米,一邊是a厘米,

  求:(1)這個長方形另一邊的長;(2)這個長方形的面積.

  學(xué)法探究

  已知圓環(huán)內(nèi)直徑為acm,外直徑為bcm,將100個這樣的圓環(huán)一個接著一個環(huán)套環(huán)地連成一條鎖鏈,那么這條鎖鏈拉直后的長度是多少厘米?

  分析:先深入研究一下比較簡單的情形,比如三個圓環(huán)接在一起的情形,看 有沒有規(guī)律.

  當(dāng)圓環(huán)為三個的時候,如圖:

  此時鏈長為,這個結(jié)論可以繼續(xù)推廣到四個環(huán)、五個環(huán)、…直至100個環(huán),答案不難得到:

  解:

  =99a+b(cm)

七年級數(shù)學(xué)教案8

  1.1 生活中的立體圖形

  〖教學(xué)過程:

  一、看一看:(情境創(chuàng)設(shè))

  教師(導(dǎo)語):在我們的生活中,充滿著各種各樣的圖形,其優(yōu)美的結(jié)構(gòu)值得我們鑒賞,其奇妙的性質(zhì)等著我們?nèi)ヌ骄俊U埪爜碜允澜鐖D形的對話吧。

  設(shè)計:(1)卡通A(代表平面圖形):“我是平面圖形,是大家的老朋友,我家的家庭成員一定比你家多!

  (2)卡通B(代表立體圖形):“我是立體圖形,是大家的新朋友,大家知道的并不一定比你少。”

  教師(問):卡通A、B身體各部分是什么圖形?

  通過卡通A、B 的對話,組織學(xué)生討論,派代表指著屏幕上圖形說明自己的觀念,讓學(xué)生主動參與,激起他們的興趣。培養(yǎng)集體意識,增強團隊精神。

  教師(導(dǎo)語):看來同學(xué)們非常善于觀察圖形,不知你們能否用數(shù)學(xué)的眼光觀察生活中的'圖形?請看來自生活中的立體圖形。

 。ǔ鍪菊n題):生活中的立體圖形

  音樂響起,屏幕播放錄象。

  二、議一議(課堂討論)

  問題1:你發(fā)現(xiàn)錄象中的這些物體與哪些立體圖形相類似,你能找出與這些立體圖形相類似的物體嗎?

  組織學(xué)生圍繞以上問題四人一小組討論,說明自己的觀念,其他小組積極點評,補充,得出常見的立體圖形:圓柱、圓錐、正方體、球、棱錐。

  問題2:比較這些立體圖形,看看相互之間有什么相同點和不同點?

  電腦演示:(1)球體 (2)圓柱 (3)圓錐

  并通過實物展示,引導(dǎo)學(xué)生觀察、討論、歸納,得出常見的立體圖形的分類:球體、柱體、椎體。

  電腦演示:由圓柱變成棱柱(三棱柱、四棱柱、五棱柱┉┉),

  問題3 以三棱柱為例,說出一個棱柱的棱數(shù)與底面的邊數(shù),側(cè)面的平面的個數(shù)之間的關(guān)系?

  誘導(dǎo)學(xué)生思考:當(dāng)棱柱的棱柱的棱數(shù)越來越多時,棱柱就越來越趨向于什么立體圖形?

 。ㄓ妙愃频姆椒ǎ,電腦演示:將圓錐演變成棱椎(三棱錐、四棱錐、五棱椎┉),再由棱錐演變成圓錐。

  通過一連串的活動,讓學(xué)生掌握從特殊到一般,再有一般到特殊的的認(rèn)知思想,了解圖形之間的相互聯(lián)系。通過對比,確立分類思想。并用類比的方法,自主的討論、歸納,突出重點、化解難點,在輕松的氛圍中學(xué)習(xí)。

  三、練一練(評價)

  遵循“由淺入深,循序漸進,由感性到理性”的認(rèn)知規(guī)律,依據(jù)“主體參與,分層優(yōu)化,及時反饋,激勵評價”的原則,我設(shè)計了以下訓(xùn)練題:

  1、發(fā)給學(xué)生一些圖片或?qū)嵨铮f說手中的圖形,是什么立體圖形?沒有發(fā)到的學(xué)生,舉出立體圖形的實例。

  盡量讓每個學(xué)生都發(fā)言,注意培養(yǎng)學(xué)生的語言表達能力。

七年級數(shù)學(xué)教案9

  【教學(xué)目標(biāo)】

  引導(dǎo)學(xué)生通過常規(guī)分析,得出解題思路,經(jīng)歷提出問題,自探問題,應(yīng)用知識的過程,自主總結(jié)出解題辦法;

  【教學(xué)難點】

  找出題目中的可有可無的已知條件,說一說為什么可以這樣認(rèn)為

  【教學(xué)過程】

  問:以前學(xué)過的有關(guān)路程,時間,和速度之間的關(guān)系是怎么樣的?你能寫出它們之間的關(guān)系嗎?

  出示例題:甲、乙兩地公路全長352千米。汽車原來從甲地到乙地要11小時,建成高速公路后,汽車每小時速度是原來的2.5倍,F(xiàn)在汽車從甲地到乙地需要多少小時?

  分析:要求現(xiàn)在汽車從甲地到乙地需要多少小時,那么先要求出汽車現(xiàn)在的速度,而汽車現(xiàn)在的速度是原來的2.5倍,那么還得先求出汽車原來的速度。根據(jù)`甲乙兩地公路全長352千米。汽車原來從甲地到乙要11小時',可以求出汽車原來的速度。

  學(xué)生寫出解答過程:汽車原來的速度:352÷1=32(千米); 汽車現(xiàn)在的速度:32×2.5=80(千米)

  現(xiàn)在的時間:352÷80=4.4(小時)

  問:用比例的'思路該怎么樣理解這道題目呢?

  分析:甲、乙兩地的公路長度一定,汽車的速度和所需的時間成反比例。因為現(xiàn)在的速度是原來的2.5倍,所以原來的時間是現(xiàn)在的

  2.5倍。即:11÷2.5=4.4(小時)。

  這樣解答使得`甲乙兩地公路全長352千米'成了多余條件,但是又不影響解答問題。

  【我們來探索】

  一批零件有240個,王師傅單獨做需要6小時,李師傅的工作效率是王師傅的1.5倍,那么如果讓李師傅單獨做這批零件,需要幾小時?

  【總結(jié)】

  在解答應(yīng)用題時要善于應(yīng)用不同的思路和技巧,巧解問題

  【作業(yè)】

  丁阿姨打一份稿件需4小時,王阿姨的速度是丁阿姨的,那么如果由王阿姨打這份稿件,需要幾小時?

  丁阿姨打一份稿件需要4小時,王阿姨的速度與丁阿姨的速度比是4:5,那么如果由王阿姨打這份稿件,需要幾小時?

七年級數(shù)學(xué)教案10

  教學(xué)目標(biāo)

  1,掌握數(shù)軸的概念,理解數(shù)軸上的點和有理數(shù)的對應(yīng)關(guān)系;

  2,會正確地畫出數(shù)軸,會用數(shù)軸上的點表示給定的有理數(shù),會根據(jù)數(shù)軸上的點讀出所表示的有理數(shù);

  3,感受在特定的條件下數(shù)與形是可以相互轉(zhuǎn)化的,體驗生活中的數(shù)學(xué)。

  教學(xué)難點 數(shù)軸的概念和用數(shù)軸上的點表示有理數(shù)

  知識重點

  教學(xué)過程(師生活動) 設(shè)計理念

  設(shè)置情境

  引入課題 教師通過實例、課件演示得到溫度計讀數(shù).

  問題1:溫度計是我們?nèi)粘I钪杏脕頊y量溫度的重要工具,你會讀溫度計嗎?請你嘗試讀出圖中三個溫度計所表示的溫度?

  (多媒體出示3幅圖,三個溫度分別為零上、零度和零下)

  問題2:在一條東西向的馬路上,有一個汽車站,汽車站東3 m和7.5m處分別有一棵柳樹和一棵楊樹,汽車站西3 m和4.8m處分別有一棵槐樹和一根電線桿,試畫圖表示這一情境.

 。ㄐ〗M討論,交流合作,動手操作) 創(chuàng)設(shè)問題情境,激發(fā)學(xué)生的學(xué)習(xí)熱情,發(fā)現(xiàn)生活中的數(shù)學(xué)

  點表示數(shù)的感性認(rèn)識。

  點表示數(shù)的'理性認(rèn)識。

  合作交流

  探究新知 教師:由上述兩問題我們得到什么啟發(fā)?你能用一條直線上的點表示有理數(shù)嗎?

  讓學(xué)生在討論的基礎(chǔ)上動手操作,在操作的基礎(chǔ)上歸納出:可以表示有理數(shù)的直線必須滿足什么條件?

  從而得出數(shù)軸的三要素:原點、正方向、單位長度 體驗數(shù)形結(jié)合思想;只描述數(shù)軸特征即可,不用特別強調(diào)數(shù)軸三要求。

  從游戲中學(xué)數(shù)學(xué) 做游戲:教師準(zhǔn)備一根繩子,請8個同學(xué)走上來,把位置調(diào)整為等距離,規(guī)定第4個同學(xué)為原點,由西向東為正方向,每個同學(xué)都有一個整數(shù)編號,請大家記住,現(xiàn)在請第一排的同學(xué)依次發(fā)出口令,口令為數(shù)字時,該數(shù)對應(yīng)的同學(xué)要回答“到”;口令為該同學(xué)的名字時,該同學(xué)要報出他對應(yīng)的“數(shù)字”,如果規(guī)定第3個同學(xué)為原點,游戲還能進行嗎? 學(xué)生游戲體驗,對數(shù)軸概念的理解

  尋找規(guī)律

  歸納結(jié)論 問題3:

  1, 你能舉出一些在現(xiàn)實生活中用直線表示數(shù)的實際例子嗎?

  2, 如果給你一些數(shù),你能相應(yīng)地在數(shù)軸上找出它們的準(zhǔn)確位置嗎?如果給你數(shù)軸上的點,你能讀出它所表示的數(shù)嗎?

  3, 哪些數(shù)在原點的左邊,哪些數(shù)在原點的右邊,由此你會發(fā)現(xiàn)什么規(guī)律?

  4, 每個數(shù)到原點的距離是多少?由此你會發(fā)現(xiàn)了什么規(guī)律?

 。ㄐ〗M討論,交流歸納)

  歸納出一般結(jié)論,教科書第12的歸納。 這些問題是本節(jié)課要求學(xué)會的技能,教學(xué)中要以學(xué)生探究學(xué)習(xí)為主來完成,教師可結(jié)合教科書給學(xué)生適當(dāng)指導(dǎo)。

  鞏固練習(xí)

  教科書第12頁練習(xí)

  小結(jié)與作業(yè)

  課堂小結(jié) 請學(xué)生總結(jié):

  1, 數(shù)軸的三個要素;

  2, 數(shù)軸的作以及數(shù)與點的轉(zhuǎn)化方法。

  本課作業(yè) 1, 必做題:教科書第18頁習(xí)題1.2第2題

  2,選做題:教師自行安排

  本課教育評注(課堂設(shè)計理念,實際教學(xué)效果及改進設(shè)想)

  1, 數(shù)軸是數(shù)形轉(zhuǎn)化、結(jié)合的重要媒介,情境設(shè)計的原型來源于生活實際,學(xué)生易于體驗和接受,讓學(xué)生通過觀察、思考和自己動手操作、經(jīng)歷和體驗數(shù)軸的形成過程,加深對數(shù)軸概念的理解,同時培養(yǎng)學(xué)生的抽象和概括能力,也體出了從感性認(rèn)識,到理性認(rèn)識,到抽象概括的認(rèn)識規(guī)律。

  2, 教學(xué)過程突出了情竟到抽象到概括的主線,教學(xué)方法體了特殊到一般,數(shù)形結(jié)合的數(shù)學(xué)思想方法。

  3, 注意從學(xué)生的知識經(jīng)驗出發(fā),充分發(fā)揮學(xué)生的主體意識,讓學(xué)生主動參與學(xué)習(xí)活,并引導(dǎo)學(xué)生在課堂上感悟知識的生成,發(fā)展與變化,培養(yǎng)學(xué)生自主探索的學(xué)習(xí)方法。

七年級數(shù)學(xué)教案11

  教材分析:

  本節(jié)課是新教材幾何教學(xué)的第一節(jié)課,通過學(xué)生身邊的現(xiàn)實生活中的實物,讓學(xué)生感覺圖形世界豐富多彩。經(jīng)歷從現(xiàn)實世界中抽象出幾何圖形的過程.激發(fā)學(xué)生學(xué)習(xí)幾何的熱情.。無需對具體定義的深刻理解,只要學(xué)生能用自己的語言描述它們的某些特征。

  教學(xué)目標(biāo):

  知識目標(biāo):

  在具體情境中認(rèn)識立方體、長方體、圓柱體、圓錐體、球體。并能用自己的語言描述它們的某些特征。進一步認(rèn)識點、線、面、體,初步感受點、線、面、體之間的關(guān)系。

  能力目標(biāo):

  讓學(xué)生經(jīng)歷“幾何模形---圖形---文字”這個抽象過程,培養(yǎng)學(xué)生抽象、辨別能力。

  情感目標(biāo):

  感受圖形世界的豐富多彩,激發(fā)學(xué)習(xí)幾何的`熱情。

  教學(xué)重點:

  經(jīng)歷從現(xiàn)實世界中抽象出幾何圖形的過程,感受點、線、面、體之間的關(guān)系。

  教學(xué)難點:

  抽象能力的培養(yǎng),學(xué)習(xí)熱情的激發(fā)。

  教學(xué)方法:

  引導(dǎo)發(fā)現(xiàn)、師生互動。

  教學(xué)準(zhǔn)備:

  多媒體課件、學(xué)生身邊的實物等。

  教學(xué)過程:

  合作學(xué)習(xí)

  問題1:

  我們已學(xué)過的或認(rèn)得的存有哪些幾何體?

  (學(xué)生討論、交流)

  問題2:

  你能舉出一些在日常生活中形狀與上述幾何體類似的物體嗎?

 。▽W(xué)生討論、舉例)

  課本中P162中的合作學(xué)習(xí)

 。ń處熆啥嗯e一些平面與曲面的實例讓學(xué)生感受、辨別)

  特別指出:

  數(shù)學(xué)中的平面是可以無限伸展的

  議一論

  P163課內(nèi)練習(xí)1

  P163課內(nèi)練習(xí)2

  師生討論指出:

  線與線相交成點,面與面相交成線。

  想一想:

  觀察下圖,你發(fā)現(xiàn)什么?

  師生討論

  議一議:

  日常生活中的哪些事物給人以點、線的形象。

  指出:

  日常生活中點與面只是相對的一個感念。如:

  在中國的地圖上,北京是一個點;而在北京市地圖上,北京是一個面。

  活動探究:

  P164課內(nèi)練習(xí)3

  應(yīng)用拓展:

  請以給定的圖形“〇〇、△△、═”(兩個圓、兩個三角形、兩條平行線)為構(gòu)件,盡可能多地構(gòu)思獨特且有意義的圖形,并寫上一句貼切、詼諧的解說詞。如圖就是符合要求的一個圖形。你還能構(gòu)思出其他的圖形嗎?比一比,看誰想得多。

  議一議:

  本節(jié)課有什么收獲?

  布置作業(yè)

七年級數(shù)學(xué)教案12

  一、 教學(xué)目標(biāo)

  1、 在了解相反意義量的基礎(chǔ)上,使學(xué)生了解正負(fù)數(shù)的概念和學(xué)習(xí)正負(fù)數(shù)的意義。

  2、 使學(xué)生能正確判斷一個數(shù)是正數(shù)還是負(fù)數(shù),明確零既不是正數(shù)也不是負(fù)數(shù)。

  3、 學(xué)會用正負(fù)數(shù)表示實際問題中具有相反意義的量。

  二、 教學(xué)重點和難點

  重點:正負(fù)數(shù)的概念

  難點:負(fù)數(shù)的概念

  三、 教具

  投影片、實物投影儀

  四、 教學(xué)內(nèi)容

  (一 )引入

  師:我們知道,為了表示物體的個數(shù)和事物的順序,產(chǎn)生了1,2,3,4……這些數(shù),我們把它叫做什么數(shù)?

  生:自然數(shù)

  師:為了表示“沒有”,又引入了一個什么數(shù)?

  生:自然數(shù)0

  師:當(dāng)測量和計算的結(jié)果不是整數(shù)時,又引進了什么數(shù)?

  生:分?jǐn)?shù)(小數(shù))

  師:可見數(shù)的概念是隨著生產(chǎn)和生活的需要而不斷發(fā)展的。請同學(xué)們想一想,在現(xiàn)實生活中是否還存在著別類型的數(shù)呢?如吐魯番盆地最低處低于海平面155米,世界最高峰珠穆朗瑪高出海平面8848.13米,我市某天最高氣溫是零上8攝氏度。

  請學(xué)生用數(shù)表示這些量,遭遇表示困難。

  師:為了能表示這些量,我們需要引入一種新數(shù)這就是本節(jié)課所要學(xué)習(xí)的內(nèi)容。[板書:1、1正數(shù)與負(fù)數(shù)]

  (二)新課教學(xué)

  1、 相反意義的量

  師:在現(xiàn)實生活中,我們常常遇到一些具有相反意義的量,比如:(投影片顯示)

  (1) 汽車向東行駛2.5千米和向西行駛1.5千米;

  (2) 氣溫從零上6攝氏度下降到零下6攝氏度;

  (3) 風(fēng)箏上升10米或下降5米。

  引導(dǎo)學(xué)生明確具有相反意義的量的特征:(1)有兩個量 (2)有相反的意義

  請學(xué)生舉出一些相反意義的量的實例。

  教師歸結(jié):相反意義中的一些常用詞有:盈利與虧損,存入與支出,增加與減少,運進與運出,上升與下降等。

  2、 正數(shù)與負(fù)數(shù)

  師:用小學(xué)里學(xué)過的數(shù)能表示這些具有相反意義的量嗎?如何來表示具有相反意義的量呢?

  由師生討論后得出:我們把一種意義的量規(guī)定為正的,用“+”(讀作正)號來表示,同時把另一種與它相反意義的量規(guī)定為負(fù)的,用“-”(讀作負(fù))號來表示。

  師:例如,如果零上6℃記作+6℃(讀作正6攝氏度),那么零下6℃記作-6℃(讀作負(fù)6攝氏度),請同學(xué)們用同樣的方法表示(1)、(2)兩題。

  生:(1)如果向東行駛2.5千米記作+2.5千米(讀作正2.5千米),那么向西行駛1.5千米記作-1.5千米(讀作負(fù)1.5千米);(2)如果上升10米記作+10米(讀作正10米),那么下降5米記作-5米(讀作負(fù)5米)。

  師:像+6,+10,+2.5等前面放有“+”號的數(shù)叫做正數(shù),像-6,-5,-1.5等前面放有“-”號的數(shù)叫做負(fù)數(shù)。正號可以省略不寫,如+5可以寫成5,但負(fù)數(shù)的負(fù)號能省略不寫嗎?

  生:(討論后得出)不能。

  師:(以溫度計為例)溫度計中的`0不是表示沒有溫度,它通常表示水結(jié)成冰時的溫度,是零上溫度與零下溫度的分界點,因此得出:零既不是正數(shù)也不是負(fù)數(shù)。

  (三)、練習(xí)

  1、 學(xué)生完成課本第4頁練習(xí)1,2,3

  2、 補充練習(xí)

  (1)在-2,+2.5,0, ,-0.35,11中,正數(shù)是 ,負(fù)數(shù)是 ;

  (2)如果向東為正,那么走-50米表示什么意思?如果向南為正,那么走-50米又表示什么意思?

  (3)歐洲人以地面一層記為0,那么1樓、2樓、3樓……就表示為0,1,2……那么地下第二層表示為 。

  (四)小結(jié)

  1、 引入負(fù)數(shù)可以簡明的表示相反意義的量,對于相反意義的量,如果其中一種量用正數(shù)表示,那么另一種量可以用負(fù)數(shù)表示。

  2、 在表示具有相反意義的量時,把哪一種意義的量規(guī)定為正,可根據(jù)實際情況決定。

  3、 要特別注意零既不是正數(shù)也不是負(fù)數(shù),建立正負(fù)數(shù)概念后,當(dāng)考慮一個數(shù)時,一定要考慮它的符號,這與小學(xué)里學(xué)過的數(shù)有很大的區(qū)別。

  (五)作業(yè)

  見作業(yè)1.1節(jié)作業(yè)。

七年級數(shù)學(xué)教案13

  教學(xué)目標(biāo):

  1、知識與技能:會解含分母的一元一次方程,掌握解一元一次方程的基本步驟和方法,能根據(jù)方程的特點靈活地選擇解法。

  2、過程與方法:經(jīng)歷一元一次方程一般解法的探究過程,理解等式基本性質(zhì)在解方程中的作用,學(xué)會通過觀察,結(jié)合方程的特點選擇合理的思考方向進行新知識探索。

  3、情感、態(tài)度與價值觀:通過嘗試從不同角度尋求解決問題的方法,體會解決問題策略的多樣性;在解一元一次放的過程中,體驗“化歸”的思想。

  教學(xué)重難點:

  重點:解一元一次方程的基本步驟和方法。

  難點:含有分母的一元一次方程的解題方法。

  教學(xué)過程:

  一、新課導(dǎo)入:

  請同學(xué)們和老師一起解方程:

  并回答:解一元一次方程的一般步驟和最終的目的是什么?

  二、講授新課

  請給同學(xué)們介紹紙草書(P95)。

  問題:一個數(shù),它的三分之二,它的一半,它的七分之一,它的全部,加起來總共是33.試問這個

  數(shù)是多少?

  并引入讓同學(xué)運用設(shè)未知數(shù)的方法,列出相應(yīng)的'方程。

  并回答:這個方程和我們以前學(xué)習(xí)的方程有什么不同?

  同學(xué)們和老師一起完成解上述方程,并引入去分母。

  例1、

  例2、

  活動:同學(xué)們,解一元一次方程的步驟有哪些?要注意哪些?

  看一看你會不會錯:

  (1)解方程:

  (2)解方程:

  典型例題:解方程:

  想一想:去分母時要注意什么問題?

  (1)方程兩邊每一項都要乘以各分母的最小公倍數(shù)

  (2)去分母后如分子中含有兩項,應(yīng)將該分子添上括號

  選一選:

  練一練:當(dāng)m為何值時,整式和的值相等?

  議一議:如何解方程:

  注意區(qū)別:

  1、把分母中的小數(shù)化為整數(shù)是利用分?jǐn)?shù)的基本性質(zhì),是對單一的一個分?jǐn)?shù)的分子分母同乘或除以一個不為0的數(shù),而不是對于整個方程的左右兩邊同乘或除以一個不為0的數(shù)。

  2、而去分母則是根據(jù)等式性質(zhì)2,對方程的左右兩邊同乘或除以一個不為0的數(shù),而不是對于一個單一的分?jǐn)?shù)。

  課堂小結(jié):

 。1)怎樣去分母?應(yīng)在方程的左右兩邊都乘以各分母的最小公倍數(shù)。

  有沒有疑問:不是最小公倍數(shù)行不行?

 。2)去分母的依據(jù)是什么?

  等式性質(zhì)2

 。3)去分母的注意點是什么?

  1、去分母時等式兩邊各項都要乘以最小公倍數(shù),不可以漏乘。

  2、如果分子是含有未知數(shù)的代數(shù)式,其分子為一個整體應(yīng)加括號。

 。4)解一元一次方程的一般步驟:

  布置作業(yè):P98,習(xí)題3.3第3題

  補充作業(yè):解方程:

 。1)

  (2)

  板書設(shè)計:

  教學(xué)反思:

七年級數(shù)學(xué)教案14

  學(xué)習(xí)目標(biāo):

  1、學(xué)會用計算器進行有理數(shù)的除法運算.

  2、掌握有理數(shù)的混合運算順序.

  3、通過探究、練習(xí),養(yǎng)成良好的學(xué)習(xí)習(xí)慣

  學(xué)習(xí)重點:有理數(shù)的混合運算

  學(xué)習(xí)難點:運算順序的確定與性質(zhì)符號的處理

  教學(xué)方法:觀察、類比、對比、歸納

  教學(xué)過程

  一、學(xué)前準(zhǔn)備

  1、計算

  1)(—0.0318)÷(—1.4)2)2+(—8)÷2

  二、探究新知

  1、由上面的問題1,計算方便嗎?想過別的方法嗎?

  2、由上面的問題2,你的計算方法是先算法,再算法。

  3、結(jié)合問題1,閱讀課本P36—P37頁內(nèi)容(帶計算器的同學(xué)跟著操作、練習(xí))

  4、結(jié)合問題2,你先猜想,有理數(shù)的混合運算順序應(yīng)該是?

  5、閱讀P36,并動手做做

  三、新知應(yīng)用

  1、計算

  1)、18—6÷(—2)×2)11+(—22)—3×(—11)

  3)(—0.1)÷×(—100)

  2、師生小結(jié)

  四、回顧與反思

  請你回顧本節(jié)課所學(xué)習(xí)的.主要內(nèi)容

  3頁

  五、自我檢測

  1、選擇題

  1)若兩個有理數(shù)的和與它們的積都是正數(shù),則這兩個數(shù)()

  A.都是正數(shù)B.是符號相同的非零數(shù)C.都是負(fù)數(shù)D.都是非負(fù)數(shù)

  2)下列說法正確的是()

  A.負(fù)數(shù)沒有倒數(shù)B.正數(shù)的倒數(shù)比自身小

  C.任何有理數(shù)都有倒數(shù)D.-1的倒數(shù)是-1

  3)關(guān)于0,下列說法不正確的是()

  A.0有相反數(shù)B.0有絕對值

  C.0有倒數(shù)D.0是絕對值和相反數(shù)都相等的數(shù)

  4)下列運算結(jié)果不一定為負(fù)數(shù)的是()

  A.異號兩數(shù)相乘B.異號兩數(shù)相除

  C.異號兩數(shù)相加D.奇數(shù)個負(fù)因數(shù)的乘積

  5)下列運算有錯誤的是()

  A.÷(-3)=3×(-3)B.

  C.8-(-2)=8+2D.2-7=(+2)+(-7)

  6)下列運算正確的是()

  A.;B.0-2=-2;C.;D.(-2)÷(-4)=2

  2、計算

  1)6—(—12)÷(—3)2)3×(—4)+(—28)÷7

  3)(—48)÷8—(—25)×(—6)4)

  六、作業(yè)

  1、P39第7題(4、5、7、8)、第8題

  2、選做題:P39第10、11、12、1314、15題

七年級數(shù)學(xué)教案15

  一、教學(xué)目標(biāo)

  1.了解推理、證明的格式,理解判定定理的證法.

  2.掌握平行線的第二個判定定理,會用判定公理及定理進行簡單的推理論證.

  3.通過第二個判定定理的推導(dǎo),培養(yǎng)學(xué)生分析問題、進行推理的能力.

  4.使學(xué)生了解知識來源于實踐,又服務(wù)于實踐,只有學(xué)好文化知識,才有解決實際問題的本領(lǐng),從而對學(xué)生進行學(xué)習(xí)目的的教育.

  二、學(xué)法引導(dǎo)

  1.教師教法:啟發(fā)式引導(dǎo)發(fā)現(xiàn)法.

  2.學(xué)生學(xué)法:積極參與、主動發(fā)現(xiàn)、發(fā)展思維.

  三、重點·難點及解決辦法

  (一)重點

  判定定理的推導(dǎo)和例題的解答.

  (二)難點

  使用符號語言進行推理.

  (三)解決辦法

  1.通過教師正確引導(dǎo),學(xué)生積極思維,發(fā)現(xiàn)定理,解決重點.

  2.通過教師指導(dǎo),學(xué)生自行完成推理過程,解決難點及疑點.

  四、課時安排

  1課時

  五、教具學(xué)具準(zhǔn)備

  三角板、投影儀、自制膠片.

  六、師生互動活動設(shè)計

  1.通過設(shè)計練習(xí),復(fù)習(xí)基礎(chǔ),創(chuàng)造情境,引入新課.

  2.通過教師指導(dǎo),學(xué)生探索新知,練習(xí)鞏固,完成新授.

  3.通過學(xué)生自己總結(jié)完成小結(jié).

  七、教學(xué)步驟

  (一)明確目標(biāo)

  掌握平行線的第二個定理的推理,并能運用其進行簡單的證明,培養(yǎng)學(xué)生的邏輯思維能力.

  (二)整體感知

  以情境創(chuàng)設(shè),設(shè)計懸念,引出課題,以引導(dǎo)學(xué)生的思維,發(fā)現(xiàn)新知,以變式訓(xùn)練鞏固新知.

  (三)教學(xué)過程

  創(chuàng)設(shè)情境,復(fù)習(xí)引入

  師:上節(jié)課我們學(xué)習(xí)了平行線的判定公理和一種判定方法,根據(jù)所學(xué)看下面的問題(出示投影).

  學(xué)生活動:學(xué)生口答第1、2題.

  師:你能說出有什么條件,就可以判定兩條直線平行呢?

  學(xué)生活動:由第l、2題,學(xué)生思考分析,只要有同位角相等或內(nèi)錯角相等,就可以判定兩條直線平行.

  教師將第3題圖形畫在黑板上.

  學(xué)生活動:學(xué)生口答理由,同角的補角相等.

  師:要求學(xué)生寫出符號推理過程,并板書.

  【教法說明】

  本節(jié)課是前一節(jié)課的'繼續(xù),是在前一節(jié)課的基礎(chǔ)上進行學(xué)習(xí)的,所以通過第1、2兩題復(fù)習(xí)上節(jié)課所學(xué)平行線判定的兩個方法,使學(xué)生明確,只要有同位角相等或內(nèi)錯角相等,就可以判定兩條直線平行.第3題是為推導(dǎo)本節(jié)到定定理做鋪墊,即如果同旁內(nèi)角互補,則可以推出同位角相等,也可以推出內(nèi)錯角相等,為定理的推理論證,分散了難點.

  師:第4題是一個實際問題,題目中已知的兩個角是什么位置關(guān)系角?

  學(xué)生活動:同分內(nèi)角.

  師:它們有什么關(guān)系.

  學(xué)生活動:互補.

  師:這個問題就是知道同分內(nèi)角互補了,那么兩條直線是不是平行的呢?這就是這節(jié)課我們要研究的問題.

【七年級數(shù)學(xué)教案】相關(guān)文章:

七年級人教版數(shù)學(xué)教案11-03

七年級上數(shù)學(xué)教案02-07

七年級數(shù)學(xué)教案08-19

七年級下冊數(shù)學(xué)教案08-26

七年級數(shù)學(xué)教案【精】01-06

初中七年級數(shù)學(xué)教案12-30

【薦】七年級數(shù)學(xué)教案12-19

七年級下冊數(shù)學(xué)教案12-05

【熱門】七年級數(shù)學(xué)教案12-15

七年級上冊數(shù)學(xué)教案12-16