丁香婷婷网,黄色av网站裸体无码www,亚洲午夜无码精品一级毛片,国产一区二区免费播放

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>高一數(shù)學(xué)教案>高一數(shù)學(xué)等差數(shù)列教案

高一數(shù)學(xué)等差數(shù)列教案

時(shí)間:2022-11-03 15:28:30 高一數(shù)學(xué)教案 我要投稿

高一數(shù)學(xué)等差數(shù)列教案

  作為一位杰出的老師,就有可能用到教案,編寫教案有利于我們科學(xué)、合理地支配課堂時(shí)間。那么寫教案需要注意哪些問題呢?下面是小編精心整理的高一數(shù)學(xué)等差數(shù)列教案,希望對(duì)大家有所幫助。

高一數(shù)學(xué)等差數(shù)列教案

高一數(shù)學(xué)等差數(shù)列教案1

  教學(xué)準(zhǔn)備

  教學(xué)目標(biāo)

  掌握等差數(shù)列與等比數(shù)列的概念,通項(xiàng)公式與前n項(xiàng)和公式,等差中項(xiàng)與等比中項(xiàng)的概念,并能運(yùn)用這些知識(shí)解決一些基本問題.

  教學(xué)重難點(diǎn)

  掌握等差數(shù)列與等比數(shù)列的`概念,通項(xiàng)公式與前n項(xiàng)和公式,等差中項(xiàng)與等比中項(xiàng)的概念,并能運(yùn)用這些知識(shí)解決一些基本問題.

  教學(xué)過程

  等比數(shù)列性質(zhì)請(qǐng)同學(xué)們類比得出.

  【方法規(guī)律】

  1、通項(xiàng)公式與前n項(xiàng)和公式聯(lián)系著五個(gè)基本量,“知三求二”是一類最基本的運(yùn)算題.方程觀點(diǎn)是解決這類問題的基本數(shù)學(xué)思想和方法.

  2、判斷一個(gè)數(shù)列是等差數(shù)列或等比數(shù)列,常用的方法使用定義.特別地,在判斷三個(gè)實(shí)數(shù)

  a,b,c成等差(比)數(shù)列時(shí),常用(注:若為等比數(shù)列,則a,b,c均不為0)

  3、在求等差數(shù)列前n項(xiàng)和的(小)值時(shí),常用函數(shù)的思想和方法加以解決.

  【示范舉例】

  例1:(1)設(shè)等差數(shù)列的前n項(xiàng)和為30,前2n項(xiàng)和為100,則前3n項(xiàng)和為.

  (2)一個(gè)等比數(shù)列的前三項(xiàng)之和為26,前六項(xiàng)之和為728,則a1=,q=.

  例2:四數(shù)中前三個(gè)數(shù)成等比數(shù)列,后三個(gè)數(shù)成等差數(shù)列,首末兩項(xiàng)之和為21,中間兩項(xiàng)之和為18,求此四個(gè)數(shù).

  例3:項(xiàng)數(shù)為奇數(shù)的等差數(shù)列,奇數(shù)項(xiàng)之和為44,偶數(shù)項(xiàng)之和為33,求該數(shù)列的中間項(xiàng).

高一數(shù)學(xué)等差數(shù)列教案2

  一、教學(xué)內(nèi)容分析

  本節(jié)課是《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·數(shù)學(xué)5》(人教版)第二章數(shù)列第二節(jié)等差數(shù)列第一課時(shí)。

  數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實(shí)際應(yīng)用,而且起著承前啟后的作用。一方面, 數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學(xué)習(xí)數(shù)列也為進(jìn)一步學(xué)習(xí)數(shù)列的極限等內(nèi)容做好準(zhǔn)備。而等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項(xiàng)公式和遞推公式的基礎(chǔ)上,對(duì)數(shù)列的知識(shí)進(jìn)一步深入和拓廣。同時(shí)等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了“聯(lián)想”、“類比”的思想方法。

  二、學(xué)生學(xué)習(xí)情況分析

  教學(xué)內(nèi)容針對(duì)的是高二的學(xué)生,經(jīng)過高中一年的學(xué)習(xí),大部分學(xué)生知識(shí)經(jīng)驗(yàn)已較為豐富,具備了較強(qiáng)的抽象思維能力和演繹推理能力,但也可能有一部分學(xué)生的基礎(chǔ)較弱,所以在授課時(shí)要從具體的生活實(shí)例出發(fā),使學(xué)生產(chǎn)生學(xué)習(xí)的.興趣,注重引導(dǎo)、啟發(fā)學(xué)生的積極主動(dòng)的去學(xué)習(xí)數(shù)學(xué),從而促進(jìn)思維能力的進(jìn)一步提高。

  三、設(shè)計(jì)思想

  1.教法

 、耪T導(dǎo)思維法:這種方法有利于學(xué)生對(duì)知識(shí)進(jìn)行主動(dòng)建構(gòu);有利于突出重點(diǎn),突破難點(diǎn);有利于調(diào)動(dòng)學(xué)生的主動(dòng)性和積極性,發(fā)揮其創(chuàng)造性。

 、品纸M討論法:有利于學(xué)生進(jìn)行交流,及時(shí)發(fā)現(xiàn)問題,解決問題,調(diào)動(dòng)學(xué)生的積極性。

 、侵v練結(jié)合法:可以及時(shí)鞏固所學(xué)內(nèi)容,抓住重點(diǎn),突破難點(diǎn)。 2.學(xué)法

  引導(dǎo)學(xué)生首先從四個(gè)現(xiàn)實(shí)問題(數(shù)數(shù)問題、女子舉重獎(jiǎng)項(xiàng)設(shè)置問題、水庫(kù)水位問題、儲(chǔ)蓄問題)概括出數(shù)組特點(diǎn)并抽象出等差數(shù)列的概念;接著就等差數(shù)列概念的特點(diǎn),推導(dǎo)出等差數(shù)列的通項(xiàng)公式;可以對(duì)各種能力的同學(xué)引導(dǎo)認(rèn)識(shí)多元的推導(dǎo)思維方法。

  用多種方法對(duì)等差數(shù)列的通項(xiàng)公式進(jìn)行推導(dǎo)。

  在引導(dǎo)分析時(shí),留出“空白”,讓學(xué)生去聯(lián)想、探索,同時(shí)鼓勵(lì)學(xué)生大膽質(zhì)疑,圍繞中心各抒己見,把思路方法和需要解決的問題弄清。

  四、教學(xué)目標(biāo)

  通過本節(jié)課的學(xué)習(xí)使學(xué)生能理解并掌握等差數(shù)列的概念,能用定義判斷一個(gè)數(shù)列是否為等差數(shù)列,引導(dǎo)學(xué)生了解等差數(shù)列的通項(xiàng)公式的推導(dǎo)過程及思想,掌握等差數(shù)列的通項(xiàng)公式與前 n 項(xiàng)和公式,并能解決簡(jiǎn)單的實(shí)際問題;并在此過程中培養(yǎng)學(xué)生觀察、分析、歸納、推理的能力,在領(lǐng)會(huì)函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,培養(yǎng)學(xué)生的知識(shí)、方法遷移能力。

  五、教學(xué)重點(diǎn)與難點(diǎn)

  重點(diǎn):

 、俚炔顢(shù)列的概念。

  ②等差數(shù)列的通項(xiàng)公式的推導(dǎo)過程及應(yīng)用。

  難點(diǎn):

  ①理解等差數(shù)列“等差”的特點(diǎn)及通項(xiàng)公式的含義。

  ②理解等差數(shù)列是一種函數(shù)模型。

  關(guān)鍵:

  等差數(shù)列概念的理解及由此得到的“性質(zhì)”的方法。

  六、教學(xué)過程(略)

高一數(shù)學(xué)等差數(shù)列教案3

  【教學(xué)目標(biāo)】

  1. 知識(shí)與技能

  (1)理解等差數(shù)列的定義,會(huì)應(yīng)用定義判斷一個(gè)數(shù)列是否是等差數(shù)列:

  (2)賬務(wù)等差數(shù)列的通項(xiàng)公式及其推導(dǎo)過程:

  (3)會(huì)應(yīng)用等差數(shù)列通項(xiàng)公式解決簡(jiǎn)單問題。

  2.過程與方法

  在定義的理解和通項(xiàng)公式的推導(dǎo)、應(yīng)用過程中,培養(yǎng)學(xué)生的觀察、分析、歸納能力和嚴(yán)密的邏輯思維的能力,體驗(yàn)從特殊到一般,一般到特殊的認(rèn)知規(guī)律,提高熟悉猜想和歸納的能力,滲透函數(shù)與方程的思想。

  3.情感、態(tài)度與價(jià)值觀

  通過教師指導(dǎo)下學(xué)生的自主學(xué)習(xí)、相互交流和探索活動(dòng),培養(yǎng)學(xué)生主動(dòng)探索、用于發(fā)現(xiàn)的求知精神,激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生感受到成功的喜悅。在解決問題的過程中,使學(xué)生養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好習(xí)慣。

  【教學(xué)重點(diǎn)】

 、俚炔顢(shù)列的概念;

  ②等差數(shù)列的通項(xiàng)公式

  【教學(xué)難點(diǎn)】

 、倮斫獾炔顢(shù)列“等差”的特點(diǎn)及通項(xiàng)公式的含義;

 、诘炔顢(shù)列的通項(xiàng)公式的推導(dǎo)過程.

  【學(xué)情分析】

  我所教學(xué)的學(xué)生是我校高一(7)班的學(xué)生(平行班學(xué)生),經(jīng)過一年的高中數(shù)學(xué)學(xué)習(xí),大部分學(xué)生知識(shí)經(jīng)驗(yàn)已較為豐富,他們的智力發(fā)展已到了形式運(yùn)演階段,具備了較強(qiáng)的抽象思維能力和演繹推理能力,但也有一部分學(xué)生的基礎(chǔ)較弱,學(xué)習(xí)數(shù)學(xué)的興趣還不是很濃,所以我在授課時(shí)注重從具體的生活實(shí)例出發(fā),注重引導(dǎo)、啟發(fā)、研究和探討以符合這類學(xué)生的心理發(fā)展特點(diǎn),從而促進(jìn)思維能力的進(jìn)一步發(fā)展.

  【設(shè)計(jì)思路】

  1.教法

 、賳l(fā)引導(dǎo)法:這種方法有利于學(xué)生對(duì)知識(shí)進(jìn)行主動(dòng)建構(gòu);有利于突出重點(diǎn),突破難點(diǎn);有利于調(diào)動(dòng)學(xué)生的主動(dòng)性和積極性,發(fā)揮其創(chuàng)造性.

  ②分組討論法:有利于學(xué)生進(jìn)行交流,及時(shí)發(fā)現(xiàn)問題,解決問題,調(diào)動(dòng)學(xué)生的積極性.

 、壑v練結(jié)合法:可以及時(shí)鞏固所學(xué)內(nèi)容,抓住重點(diǎn),突破難點(diǎn).

  2.學(xué)法

  引導(dǎo)學(xué)生首先從三個(gè)現(xiàn)實(shí)問題(數(shù)數(shù)問題、水庫(kù)水位問題、儲(chǔ)蓄問題)概括出數(shù)組特點(diǎn)并抽象出等差數(shù)列的概念;接著就等差數(shù)列概念的特點(diǎn),推導(dǎo)出等差數(shù)列的通項(xiàng)公式;可以對(duì)各種能力的同學(xué)引導(dǎo)認(rèn)識(shí)多元的推導(dǎo)思維方法.

  【教學(xué)過程】

  一:創(chuàng)設(shè)情境,引入新課

  1.從0開始,將5的倍數(shù)按從小到大的順序排列,得到的數(shù)列是什么?

  2.水庫(kù)管理人員為了保證優(yōu)質(zhì)魚類有良好的生活環(huán)境,用定期放水清庫(kù)的辦法清理水庫(kù)中的雜魚.如果一個(gè)水庫(kù)的水位為18m,自然放水每天水位降低2.5m,最低降至5m.那么從開始放水算起,到可以進(jìn)行清理工作的那天,水庫(kù)每天的水位(單位:m)組成一個(gè)什么數(shù)列?

  3.我國(guó)現(xiàn)行儲(chǔ)蓄制度規(guī)定銀行支付存款利息的方式為單利,即不把利息加入本息計(jì)算下一期的`利息.按照單利計(jì)算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10 000元錢,年利率是0.72%,那么按照單利,5年內(nèi)各年末的本利和(單位:元)組成一個(gè)什么數(shù)列?

  教師:以上三個(gè)問題中的數(shù)蘊(yùn)涵著三列數(shù).

  學(xué)生:

  1:0,5,10,15,20,25,….

  2:18,15.5,13,10.5,8,5.5.

  3:10072,10144,10216,10288,10360.

  (設(shè)置意圖:從實(shí)例引入,實(shí)質(zhì)是給出了等差數(shù)列的現(xiàn)實(shí)背景,目的是讓學(xué)生感受到等差數(shù)列是現(xiàn)實(shí)生活中大量存在的數(shù)學(xué)模型.通過分析,由特殊到一般,激發(fā)學(xué)生學(xué)習(xí)探究知識(shí)的自主性,培養(yǎng)學(xué)生的歸納能力.

  二:觀察歸納,形成定義

 、0,5,10,15,20,25,….

 、18,15.5,13,10.5,8,5.5.

 、10072,10144,10216,10288,10360.

  思考1上述數(shù)列有什么共同特點(diǎn)?

  思考2根據(jù)上數(shù)列的共同特點(diǎn),你能給出等差數(shù)列的一般定義嗎?

  思考3你能將上述的文字語言轉(zhuǎn)換成數(shù)學(xué)符號(hào)語言嗎?

  教師:引導(dǎo)學(xué)生思考這三列數(shù)具有的共同特征,然后讓學(xué)生抓住數(shù)列的特征,歸納得出等差數(shù)列概念.

  學(xué)生:分組討論,可能會(huì)有不同的答案:前數(shù)和后數(shù)的差符合一定規(guī)律;這些數(shù)都是按照一定順序排列的…只要合理教師就要給予肯定.

  教師引導(dǎo)歸納出:等差數(shù)列的定義;另外,教師引導(dǎo)學(xué)生從數(shù)學(xué)符號(hào)角度理解等差數(shù)列的定義.

  (設(shè)計(jì)意圖:通過對(duì)一定數(shù)量感性材料的觀察、分析,提煉出感性材料的本質(zhì)屬性;使學(xué)生體會(huì)到等差數(shù)列的規(guī)律和共同特點(diǎn);一開始抓。骸皬牡诙(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差為同一常數(shù)”,落實(shí)對(duì)等差數(shù)列概念的準(zhǔn)確表達(dá).)

  三:舉一反三,鞏固定義

  1.判定下列數(shù)列是否為等差數(shù)列?若是,指出公差d.

  (1)1,1,1,1,1;

  (2)1,0,1,0,1;

  (3)2,1,0,-1,-2;

  (4)4,7,10,13,16.

  教師出示題目,學(xué)生思考回答.教師訂正并強(qiáng)調(diào)求公差應(yīng)注意的問題.

  注意:公差d是每一項(xiàng)(第2項(xiàng)起)與它的前一項(xiàng)的差,防止把被減數(shù)與減數(shù)弄顛倒,而且公差可以是正數(shù),負(fù)數(shù),也可以為0 .

  (設(shè)計(jì)意圖:強(qiáng)化學(xué)生對(duì)等差數(shù)列“等差”特征的理解和應(yīng)用).

  2思考4:設(shè)數(shù)列{an}的通項(xiàng)公式為an=3n+1,該數(shù)列是等差數(shù)列嗎?為什么?

  (設(shè)計(jì)意圖:強(qiáng)化等差數(shù)列的證明定義法)

  四:利用定義,導(dǎo)出通項(xiàng)

  1.已知等差數(shù)列:8,5,2,…,求第200項(xiàng)?

  2.已知一個(gè)等差數(shù)列{an}的首項(xiàng)是a1,公差是d,如何求出它的任意項(xiàng)an呢?

  教師出示問題,放手讓學(xué)生探究,然后選擇列式具有代表性的上去板演或投影展示.根據(jù)學(xué)生在課堂上的具體情況進(jìn)行具體評(píng)價(jià)、引導(dǎo),總結(jié)推導(dǎo)方法,體會(huì)歸納思想以及累加求通項(xiàng)的方法;讓學(xué)生初步嘗試處理數(shù)列問題的常用方法.

  (設(shè)計(jì)意圖:引導(dǎo)學(xué)生觀察、歸納、猜想,培養(yǎng)學(xué)生合理的推理能力.學(xué)生在分組合作探究過程中,可能會(huì)找到多種不同的解決辦法,教師要逐一點(diǎn)評(píng),并及時(shí)肯定、贊揚(yáng)學(xué)生善于動(dòng)腦、勇于創(chuàng)新的品質(zhì),激發(fā)學(xué)生的創(chuàng)造意識(shí).鼓勵(lì)學(xué)生自主解答,培養(yǎng)學(xué)生運(yùn)算能力)

  五:應(yīng)用通項(xiàng),解決問題

  1判斷100是不是等差數(shù)列2, 9,16,…的項(xiàng)?如果是,是第幾項(xiàng)?

  2在等差數(shù)列{an}中,已知a5=10,a12=31,求a1,d和an.

  3求等差數(shù)列 3,7,11,…的第4項(xiàng)和第10項(xiàng)

  教師:給出問題,讓學(xué)生自己操練,教師巡視學(xué)生答題情況.

  學(xué)生:教師叫學(xué)生代表總結(jié)此類題型的解題思路,教師補(bǔ)充:已知等差數(shù)列的首項(xiàng)和公差就可以求出其通項(xiàng)公式

  (設(shè)計(jì)意圖:主要是熟悉公式,使學(xué)生從中體會(huì)公式與方程之間的聯(lián)系.初步認(rèn)識(shí)“基本量法”求解等差數(shù)列問題.)

  六:反饋練習(xí):教材13頁(yè)練習(xí)1

  七:歸納總結(jié):

  1.一個(gè)定義:

  等差數(shù)列的定義及定義表達(dá)式

  2.一個(gè)公式:

  等差數(shù)列的通項(xiàng)公式

  3.二個(gè)應(yīng)用:

  定義和通項(xiàng)公式的應(yīng)用

  教師:讓學(xué)生思考整理,找?guī)讉(gè)代表發(fā)言,最后教師給出補(bǔ)充

  (設(shè)計(jì)意圖:引導(dǎo)學(xué)生去聯(lián)想本節(jié)課所涉及到的各個(gè)方面,溝通它們之間的聯(lián)系,使學(xué)生能在新的高度上去重新認(rèn)識(shí)和掌握基本概念,并靈活運(yùn)用基本概念.)

  【設(shè)計(jì)反思】

  本設(shè)計(jì)從生活中的數(shù)列模型導(dǎo)入,有助于發(fā)揮學(xué)生學(xué)習(xí)的主動(dòng)性,增強(qiáng)學(xué)生學(xué)習(xí)數(shù)列的興趣.在探索的過程中,學(xué)生通過分析、觀察,歸納出等差數(shù)列定義,然后由定義導(dǎo)出通項(xiàng)公式,強(qiáng)化了由具體到抽象,由特殊到一般的思維過程,有助于提高學(xué)生分析問題和解決問題的能力.本節(jié)課教學(xué)采用啟發(fā)方法,以教師提出問題、學(xué)生探討解決問題為途徑,以相互補(bǔ)充展開教學(xué),總結(jié)科學(xué)合理的知識(shí)體系,形成師生之間的良性互動(dòng),提高課堂教學(xué)效率.

高一數(shù)學(xué)等差數(shù)列教案4

  一、等差數(shù)列

  1、定義

  注:“從第二項(xiàng)起”及

  “同一常數(shù)”用紅色粉筆標(biāo)注

  二、等差數(shù)列的通項(xiàng)公式

  (一)例題與練習(xí)

  通過練習(xí)2和3 引出兩個(gè)具體的等差數(shù)列,初步認(rèn)識(shí)等差數(shù)列的特征,為后面的概念學(xué)習(xí)建立基礎(chǔ),為學(xué)習(xí)新知識(shí)創(chuàng)設(shè)問題情境,激發(fā)學(xué)生的求知欲。由學(xué)生觀察兩個(gè)數(shù)列特點(diǎn),引出等差數(shù)列的概念,對(duì)問題的總結(jié)又培養(yǎng)學(xué)生由具體到抽象、由特殊到一般的認(rèn)知能力。

  (二)新課探究

  1、由引入自然的給出等差數(shù)列的概念:

  如果一個(gè)數(shù)列,從第二項(xiàng)開始它的每一項(xiàng)與前一項(xiàng)之差都等于同一常數(shù),這個(gè)數(shù)列就叫等差數(shù)列, 這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。強(qiáng)調(diào):

  ① “從第二項(xiàng)起”滿足條件; f

  ②公差d一定是由后項(xiàng)減前項(xiàng)所得;

 、勖恳豁(xiàng)與它的前一項(xiàng)的差必須是同一個(gè)常數(shù)(強(qiáng)調(diào)“同一個(gè)常數(shù)” );

  在理解概念的基礎(chǔ)上,由學(xué)生將等差數(shù)列的文字語言轉(zhuǎn)化為數(shù)學(xué)語言,歸納出數(shù)學(xué)表達(dá)式:

  an+1—an=d (n≥1) ;h4z+0"6vG

  同時(shí)為了配合概念的理解,我找了5組數(shù)列,由學(xué)生判斷是否為等差數(shù)列,是等差數(shù)列的找出公差。

  1。 9 ,8,7,6,5,4,……;√ d=—1

  2。 0。70,0。71,0。72,0。73,0。74……;√ d=0。01

  3。 0,0,0,0,0,0,……。; √ d=0

  4。 1,2,3,2,3,4,……;×

  5。 1,0,1,0,1,……×

  其中第一個(gè)數(shù)列公差<0,>0,第三個(gè)數(shù)列公差=0

  由此強(qiáng)調(diào):公差可以是正數(shù)、負(fù)數(shù),也可以是0

  2、第二個(gè)重點(diǎn)部分為等差數(shù)列的通項(xiàng)公式

  在歸納等差數(shù)列通項(xiàng)公式中,我采用討論式的教學(xué)方法。給出等差數(shù)列的首項(xiàng) ,公差d,由學(xué)生研究分組討論a4 的通項(xiàng)公式。通過總結(jié)a4的通項(xiàng)公式由學(xué)生猜想a40的通項(xiàng)公式,進(jìn)而歸納an的通項(xiàng)公式。整個(gè)過程由學(xué)生完成,通過互相討論的方式既培養(yǎng)了學(xué)生的協(xié)作意識(shí)又化解了教學(xué)難點(diǎn)。

  若一等差數(shù)列{an }的首項(xiàng)是a1,公差是d,

  則據(jù)其定義可得:

  a2 — a1 =d 即: a2 =a1 +d

  a3 – a2 =d 即: a3 =a2 +d = a1 +2d

  a4 – a3 =d 即: a4 =a3 +d = a1 +3d

  ……

  猜想: a40 = a1 +39d

  進(jìn)而歸納出等差數(shù)列的通項(xiàng)公式:

  an=a1+(n—1)d

  此時(shí)指出: 這種求通項(xiàng)公式的辦法叫不完全歸納法,這種導(dǎo)出公式的方法不夠嚴(yán)密,為了培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,在這里向?qū)W生介紹另外一種求數(shù)列通項(xiàng)公式的辦法——————迭加法:

  a2 – a1 =d

  a3 – a2 =d

  a4 – a3 =d

  ……

  an+1 – an=d

  將這(n—1)個(gè)等式左右兩邊分別相加,就可以得到 an– a1= (n—1) d即 an= a1+(n—1) d (1)

  當(dāng)n=1時(shí),(1)也成立,

  所以對(duì)一切n∈N﹡,上面的公式都成立

  因此它就是等差數(shù)列{an}的通項(xiàng)公式。

  在迭加法的證明過程中,我采用啟發(fā)式教學(xué)方法。

  利用等差數(shù)列概念啟發(fā)學(xué)生寫出n—1個(gè)等式。

  對(duì)照已歸納出的通項(xiàng)公式啟發(fā)學(xué)生想出將n—1個(gè)等式相加。證出通項(xiàng)公式。

  在這里通過該知識(shí)點(diǎn)引入迭加法這一數(shù)學(xué)思想,逐步達(dá)到“注重方法,凸現(xiàn)思想” 的教學(xué)要求

  接著舉例說明:若一個(gè)等差數(shù)列{an}的首項(xiàng)是1,公差是2,得出這個(gè)數(shù)列的通項(xiàng)公式是:an=1+(n—1)×2 , 即an=2n—1 以此來鞏固等差數(shù)列通項(xiàng)公式運(yùn)用

  同時(shí)要求畫出該數(shù)列圖象,由此說明等差數(shù)列是關(guān)于正整數(shù)n一次函數(shù),其圖像是均勻排開的無窮多個(gè)孤立點(diǎn)。用函數(shù)的思想來研究數(shù)列,使數(shù)列的性質(zhì)顯現(xiàn)得更加清楚。

  (三)應(yīng)用舉例

  這一環(huán)節(jié)是使學(xué)生通過例題和練習(xí),增強(qiáng)對(duì)通項(xiàng)公式含義的理解以及對(duì)通項(xiàng)公式的運(yùn)用,提高解決實(shí)際問題的能力。通過例1和例2向?qū)W生表明:要用運(yùn)動(dòng)變化的觀點(diǎn)看等差數(shù)列通項(xiàng)公式中的a1、d、n、an這4個(gè)量之間的關(guān)系。當(dāng)其中的部分量已知時(shí),可根據(jù)該公式求出另一部分量。

  例1 (1)求等差數(shù)列8,5,2,…的第20項(xiàng);第30項(xiàng);第40項(xiàng)

 。2)—401是不是等差數(shù)列—5,—9,—13,…的項(xiàng)?如果是,是第幾項(xiàng)?

  在第一問中我添加了計(jì)算第30項(xiàng)和第40項(xiàng)以加強(qiáng)鞏固等差數(shù)列通項(xiàng)公式;第二問實(shí)際上是求正整數(shù)解的問題,而關(guān)鍵是求出數(shù)列的通項(xiàng)公式an

  例2 在等差數(shù)列{an}中,已知a5=10,a12 =31,求首項(xiàng)a1與公差d。

  在前面例1的基礎(chǔ)上將例2當(dāng)作練習(xí)作為對(duì)通項(xiàng)公式的鞏固

  例3 是一個(gè)實(shí)際建模問題

  建造房屋時(shí)要設(shè)計(jì)樓梯,已知某大樓第2層的樓底離地面的高度為3米,第三層離地面5。8米,若樓梯設(shè)計(jì)為等高的16級(jí)臺(tái)階,問每級(jí)臺(tái)階高為多少米?

  這道題我采用啟發(fā)式和討論式相結(jié)合的'教學(xué)方法。啟發(fā)學(xué)生注意每級(jí)臺(tái)階“等高”使學(xué)生想到每級(jí)臺(tái)階離地面的高度構(gòu)成等差數(shù)列,引導(dǎo)學(xué)生將該實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)模型——————等差數(shù)列:(學(xué)生討論分析,分別演板,教師評(píng)析問題。問題可能出現(xiàn)在:項(xiàng)數(shù)學(xué)生認(rèn)為是16項(xiàng),應(yīng)明確a1為第2層的樓底離地面的高度,a2表示第一級(jí)臺(tái)階離地面的高度而第16級(jí)臺(tái)階離地面高度為a17,可用展示實(shí)際樓梯圖以化解難點(diǎn))

  設(shè)置此題的目的:

  1。加強(qiáng)同學(xué)們對(duì)應(yīng)用題的綜合分析能力,

  2。通過數(shù)學(xué)實(shí)際問題引出等差數(shù)列問題,激發(fā)了學(xué)生的興趣;

  3。再者通過數(shù)學(xué)實(shí)例展示了“從實(shí)際問題出發(fā)經(jīng)抽象概括建立數(shù)學(xué)模型,最后還原說明實(shí)際問題的“數(shù)學(xué)建!钡臄(shù)學(xué)思想方法

  (四)反饋練習(xí)

  1、小節(jié)后的練習(xí)中的第1題和第2題(要求學(xué)生在規(guī)定時(shí)間內(nèi)完成)。目的:使學(xué)生熟悉通項(xiàng)公式,對(duì)學(xué)生進(jìn)行基本技能訓(xùn)練。

  2、書上例3)梯子的最高一級(jí)寬33c,最低一級(jí)寬110c,中間還有10級(jí),各級(jí)的寬度成等差數(shù)列。計(jì)算中間各級(jí)的寬度。

  目的:對(duì)學(xué)生加強(qiáng)建模思想訓(xùn)練。

  3、若數(shù)例{an} 是等差數(shù)列,若 bn = an ,(為常數(shù))試證明:數(shù)列{bn}是等差數(shù)列

  此題是對(duì)學(xué)生進(jìn)行數(shù)列問題提高訓(xùn)練,學(xué)習(xí)如何用定義證明數(shù)列問題同時(shí)強(qiáng)化了等差數(shù)列的概念。

  (五)歸納小結(jié) (由學(xué)生總結(jié)這節(jié)課的收獲)

  1。等差數(shù)列的概念及數(shù)學(xué)表達(dá)式.

  強(qiáng)調(diào)關(guān)鍵字:從第二項(xiàng)開始它的每一項(xiàng)與前一項(xiàng)之差都等于同一常數(shù)

  2。等差數(shù)列的通項(xiàng)公式 an= a1+(n—1) d會(huì)知三求一

  3.用“數(shù)學(xué)建!彼枷敕椒ń鉀Q實(shí)際問題

  (六)布置作業(yè)

  必做題:課本P114 習(xí)題3。2第2,6 題

  選做題:已知等差數(shù)列{an}的首項(xiàng)a1= —24,從第10項(xiàng)開始為正數(shù),求公差d的取值范圍。(目的:通過分層作業(yè),提高同學(xué)們的求知欲和滿足不同層次的學(xué)生需求)

  五、板書設(shè)計(jì)

  在板書中突出本節(jié)重點(diǎn),將強(qiáng)調(diào)的地方如定義中,“從第二項(xiàng)起”及“同一常數(shù)”等幾個(gè)字用紅色粉筆標(biāo)注,同時(shí)給學(xué)生留有作題的地方,整個(gè)板書充分體現(xiàn)了精講多練的教學(xué)方法。

【高一數(shù)學(xué)等差數(shù)列教案】相關(guān)文章:

高一數(shù)學(xué)等差數(shù)列教案4篇11-04

數(shù)學(xué)等差數(shù)列教案02-25

數(shù)學(xué)教案:等差數(shù)列02-22

數(shù)學(xué)等差數(shù)列教案(精選10篇)04-16

數(shù)學(xué)等差數(shù)列教案9篇02-25

高一數(shù)學(xué)的教案08-26

高一數(shù)學(xué)下冊(cè)教案01-01

高一數(shù)學(xué)優(yōu)秀教案12-27

高一數(shù)學(xué)函數(shù)的教案08-26