丁香婷婷网,黄色av网站裸体无码www,亚洲午夜无码精品一级毛片,国产一区二区免费播放

八年級數(shù)學(xué)教案

時間:2022-08-25 19:14:59 八年級數(shù)學(xué)教案 我要投稿

八年級數(shù)學(xué)教案范文匯編八篇

  作為一名教職工,通常會被要求編寫教案,編寫教案助于積累教學(xué)經(jīng)驗,不斷提高教學(xué)質(zhì)量。怎樣寫教案才更能起到其作用呢?以下是小編為大家整理的八年級數(shù)學(xué)教案8篇,希望能夠幫助到大家。

八年級數(shù)學(xué)教案范文匯編八篇

八年級數(shù)學(xué)教案 篇1

  單元(章)主題第三章 直棱柱任課教師與班級

  本課(節(jié))課題3.1 認識直棱柱第 1 課時 / 共 課時

  教學(xué)目標(含重點、難點)及

  設(shè)置依據(jù)教學(xué)目標

  1、了解多面體、直棱柱的有關(guān)概念.

  2、會認直棱柱的側(cè)棱、側(cè)面、底面.

  3、了解直棱柱的側(cè)棱互相平行且相等,側(cè)面是長方形(含正方形)等特征.

  教學(xué)重點與難點

  教學(xué)重點:直棱柱的有關(guān)概念.

  教學(xué)難點:本節(jié)的例題描述一個物體的形狀,把它看成怎樣的兩個幾何體的組合,都需要一定的空間想象能力和表達能力.

  教學(xué)準備每個學(xué)生準備一個幾何體,(分好學(xué)習(xí)小組)教師準備各種直棱柱和長方體、立方體模型

  教 學(xué) 過 程

  內(nèi)容與環(huán)節(jié)預(yù)設(shè)、簡明設(shè)計意圖二度備課(即時反思與糾正)

  一、創(chuàng)設(shè)情景,引入新課

  師:在現(xiàn)實生活中,像筆筒、西瓜、草莓、禮品盒等都呈現(xiàn)出了立體圖形的形狀,在你身邊,還有沒有這樣類似的立體圖形呢?

  析:學(xué)生很容易回答出更多的答案。

  師:(繼續(xù)補充)有許多著名的建筑,像古埃及的金字塔、巴黎的艾菲爾鐵塔、美國的迪思尼樂園、德國的古堡風光,中國北京的西客站,它們也是由不同的立體圖形組成的;那么立體圖形在生活中有著怎樣的廣泛的應(yīng)用呢?瞧,食物中的冰激凌、櫻桃、端午節(jié)的粽子等。

  二、合作交流,探求新知

  1.多面體、棱、頂點概念:

  師:(出示長方體,立方體模型)這是我們熟悉的立體圖形,它們是有幾個平面圍成的?都有什么相同特點?

  析:一個同學(xué)回答,然后小結(jié)概念:由若干個平面圍成的幾何體,叫做多面體。多面體上相鄰兩個面之間的交線叫做多面體的棱,幾個面的公共頂點叫做多面體的頂點

  2.合作交流

  師:以學(xué)習(xí)小組為單位,拿出事先準備好的幾何體。

  學(xué)生活動:(讓學(xué)生從中閉眼摸出某些幾何體,邊摸邊用語言描

  述其特征。)

  師:同學(xué)們再討論一下,能否把自己的語言轉(zhuǎn)化為數(shù)學(xué)語言。

  學(xué)生活動:分小組討論。

  說明:真正體現(xiàn)了“以生為本”。讓學(xué)生在主動探究中發(fā)現(xiàn)知識,充分發(fā)揮了學(xué)生的主體作用和教師的主導(dǎo)作用,課堂氣氛活躍,教師教的輕松,學(xué)生學(xué)的愉快。

  師:請大家找出與長方體,立方體類似的`物體或模型。

  析:舉出實例。(找出區(qū)別)

  師:(總結(jié))棱柱分為之直棱柱和斜棱柱。(根據(jù)其側(cè)棱與底面是否垂直)根據(jù)底面多邊形的邊數(shù)而分為直三棱柱、直四棱柱……直棱柱有以下特征:

  有上、下兩個底面,底面是平面圖形中的多邊形,而且彼此全等;

  側(cè)面都是長方形含正方形。

  長方體和正方體都是直四棱柱。

  3.反饋鞏固

  完成“做一做”

  析:由第(3)小題可以得到:

  直棱柱的相鄰兩條側(cè)棱互相平行且相等。

  4.學(xué)以至用

  出示例題。(先請學(xué)生單獨考慮,再作講解)

  析:引導(dǎo)學(xué)生著重觀察首飾盒的側(cè)面是什么圖形,上底面是什么圖形,然后與直棱柱的特征作比較。(使學(xué)生養(yǎng)成發(fā)現(xiàn)問題,解決問題的創(chuàng)造性思維習(xí)慣)

  最后完成例題中的“想一想”

  5.鞏固練習(xí)(學(xué)生練習(xí))

  完成“課內(nèi)練習(xí)”

  三、小結(jié)回顧,反思提高

  師:我們這節(jié)課的重點是什么?哪些地方比較難學(xué)呢?

  合作交流后得到:重點直棱柱的有關(guān)概念。

  直棱柱有以下特征:

  有上、下兩個底面,底面是平面圖形中的多邊形,而且彼此全等;

  側(cè)面都是長方形含正方形。

  例題中的把首飾盒看成是由兩個直三棱柱、直四棱柱的組合,或著是兩個直四棱柱的組合需要一定的空間想象能力和表達能力。這一點比較難。

  板書設(shè)計

  作業(yè)布置或設(shè)計作業(yè)本及課時特訓(xùn)

八年級數(shù)學(xué)教案 篇2

  分式方程

  教學(xué)目標

  1.經(jīng)歷分式方程的概念,能將實際問題中的等量關(guān)系用分式方程 表示,體會分式方程的模型作用.

  2.經(jīng)歷實際問題-分式方程方程模型的過程,發(fā)展學(xué)生分析問題、解決問題的能力,滲透數(shù)學(xué)的轉(zhuǎn)化思想人體,培養(yǎng)學(xué)生的應(yīng)用意識。

  3.在活動中培養(yǎng)學(xué)生樂于探究、合作學(xué)習(xí)的習(xí)慣,培養(yǎng)學(xué) 生努力尋找 解決問題的進取心,體會數(shù)學(xué)的應(yīng)用價值.

  教學(xué)重點:

  將實際問題中的等量 關(guān)系用分式方程表示

  教學(xué)難點:

  找實際問題中的等量關(guān)系

  教學(xué)過程:

  情境導(dǎo)入:

  有兩塊面積相同的小麥試驗田,第一塊使用原品種,第二 塊使用新品種,分別收獲小麥9000 kg和15000 kg。已知第一塊試驗田每公頃的產(chǎn)量比第二塊少3000 kg,分別求這兩塊試驗田每 公頃 的產(chǎn)量。你能找出這一問題中的所有等量關(guān)系嗎?(分組交流)

  如果設(shè)第一塊試驗田 每公頃的產(chǎn)量為 kg,那么第二塊試驗田每公頃的'產(chǎn)量是________kg。

  根據(jù)題意,可得方程___________________

  二、講授新課

  從甲地到乙地有兩條公路:一條是全長600 km的普通 公路,另一條是全長480 km的高速公路。某客 車在 高速公路上行駛的平均速度比在普通公路上快45 km/h,由高速 公路從甲地到乙地所需的時間 是由普通公路從甲地到乙地所需時間的一半。求該客車由高速公路從 甲地到乙地所需的時間。

  這 一問題中有哪些等量關(guān)系?

  如果設(shè)客車由高速公路從甲地到乙地 所需的時間為 h,那么它由普通公路從甲地到乙地所需的時間為_________h。

  根據(jù)題意,可得方程_ _____________________。

  學(xué)生分組探討、交流,列出方程.

  三.做一做:

  為了幫助遭受自然災(zāi)害的地區(qū)重建家園,某學(xué)校號召同學(xué)們自愿捐款。已知第一次捐款總額為4800元,第二次捐款總額為5000元,第二次捐款人數(shù)比第一次多20人,而且兩次人均捐款額恰好相等。如果設(shè)第一次捐款人數(shù)為 人,那么 滿足怎樣的方程?

  四.議一議:

  上面所得到的方程有什么共同特點?

  分母中含有未知數(shù)的方程叫做分式方程

  分式方程與整式方程有什么區(qū)別?

  五、 隨堂練習(xí)

  (1)據(jù)聯(lián)合國《20xx年全球投資 報告》指出,中國20xx年吸收外國投資額 達530億美元,比上一年增加了13%。設(shè)20xx年我國吸收外國投資額為 億美元,請你寫出 滿足的方程。你能寫出幾個方程?其中哪一個是分式方程?

  (2)輪船在順水中航行20千米與逆水航行10千米所用時間相同,水流速度為2. 5千米/小時,求輪船的靜水速度

  (3)根據(jù)分式方程 編一道應(yīng)用題,然后同組交流,看誰編得好

  六、學(xué) 習(xí)小結(jié)

  本節(jié)課你學(xué)到了哪些知識?有什么感想?

  七.作業(yè)布置

八年級數(shù)學(xué)教案 篇3

  一、課堂引入

  1.什么叫做平行四邊形?什么叫做矩形?

  2.矩形有哪些性質(zhì)?

  3.矩形與平行四邊形有什么共同之處?有什么不同之處?

  4.事例引入:小華想要做一個矩形像框送給媽媽做生日禮物,于是找來兩根長度相等的短木條和兩根長度相等的長木條制作,你有什么辦法可以檢測他做的是矩形像框嗎?看看誰的方法可行?

  通過討論得到矩形的判定方法.

  矩形判定方法1:對角錢相等的平行四邊形是矩形.

  矩形判定方法2:有三個角是直角的四邊形是矩形.

 。ㄖ赋觯号卸ㄒ粋四邊形是矩形,知道三個角是直角,條件就夠了.因為由四邊形內(nèi)角和可知,這時第四個角一定是直角.)

  二、例習(xí)題分析

  例1(補充)下列各句判定矩形的說法是否正確?為什么?

 。1)有一個角是直角的四邊形是矩形;(×)

 。2)有四個角是直角的四邊形是矩形;(√)

 。3)四個角都相等的'四邊形是矩形;(√)

  (4)對角線相等的四邊形是矩形;(×)

  (5)對角線相等且互相垂直的四邊形是矩形;(×)

 。6)對角線互相平分且相等的四邊形是矩形;(√)

 。7)對角線相等,且有一個角是直角的四邊形是矩形;(×)

  (8)一組鄰邊垂直,一組對邊平行且相等的四邊形是矩形;(√)

  (9)兩組對邊分別平行,且對角線相等的四邊形是矩形.(√)

  指出:

  (l)所給四邊形添加的條件不滿足三個的肯定不是矩形;

 。2)所給四邊形添加的條件是三個獨立條件,但若與判定方法不同,則需要利用定義和判定方法證明或舉反例,才能下結(jié)論.

  例2(補充)已知ABCD的對角線AC、BD相交于點O,△AOB是等邊三角形,AB=4cm,求這個平行四邊形的面積.

  分析:首先根據(jù)△AOB是等邊三角形及平行四邊形對角線互相平分的性質(zhì)判定出ABCD是矩形,再利用勾股定理計算邊長,從而得到面積值.

  解:∵ 四邊形ABCD是平行四邊形,

  ∴AO=AC,BO=BD.

  ∵ AO=BO,

  ∴ AC=BD.

  ∴ ABCD是矩形(對角線相等的平行四邊形是矩形).

  在Rt△ABC中,

  ∵ AB=4cm,AC=2AO=8cm,

  ∴BC=(cm).

  例3(補充)已知:如圖(1),ABCD的四個內(nèi)角的平分線分別相交于點E,F(xiàn),G,H.求證:四邊形EFGH是矩形.

  分析:要證四邊形EFGH是矩形,由于此題目可分解出基本圖形,如圖(2),因此,可選用“三個角是直角的四邊形是矩形”來證明

八年級數(shù)學(xué)教案 篇4

  課時目標

  1.掌握分式、有理式的概念。

  2.掌握分式是否有意義、分式的值是否等于零的識別方法。

  教學(xué)重點

  正確理解分式的意義,分式是否有意義的'條件及分式的值為零的條件。

  教學(xué)難點:

  正確理解分式的意義,分式是否有意義的條件及分式的值為零的條件。

  教學(xué)時間:一課時。

  教學(xué)用具:投影儀等。

  教學(xué)過程:

  一.復(fù)習(xí)提問

  1.什么是整式?什么是單項式?什么是多項式?

  2.判斷下列各式中,哪些是整式?哪些不是整式?

 、伲玬2 ②1+x+y2- ③ ④

  ⑤ ⑥ ⑦

  二.新課講解:

  設(shè)問:不是整工式子中,和整式有什么區(qū)別?

  小結(jié):1.分式的概念:一般地,形如的式子叫做分式,其中A和B均為整式,B中含有字母。

  練習(xí):下列各式中,哪些是分式哪些不是?

 。1)、、(2)、(3)、(4)、(5)x2、(6)+4

  強調(diào):(6)+4帶有是無理式,不是整式,故不是分式。

  2.小結(jié):對整式、分式的正確區(qū)別:分式的分子和分母都是整式,分子可以含有字母,也可以不含有字母,而分母中必須含有字母,這是分式與整式的根本區(qū)別。

  練習(xí):課后練習(xí)P6練習(xí)1、2題

  設(shè)問:(讓學(xué)生看課本上P5“思考”部分,然后回答問題。)

  例題講解:課本P5例題1

  分析:各分式中的分母是:(1)3x(2)x-1(3)5-3b(4)x-y。只要這引起分母不為零,分式便有意義。

 。ò鍟忸}過程。)

  3.小結(jié):分式是否有意義的識別方法:當分式的分母為零時,分式無意義;當分式的分母不等于零時,分式有意義。

  增加例題:當x取什么值時,分式有意義?

  解:由分母x2-4=0,得x=±2。

  ∴ 當x≠±2時,分式有意義。

  設(shè)問:什么時候分式的值為零呢?

  例:

  解:當 ① 分式的值為零

八年級數(shù)學(xué)教案 篇5

  一、知識與技能

  1.從現(xiàn)實情境和已有的知識、經(jīng)驗出發(fā)、討論兩個變量之間的相依關(guān)系,加深對函數(shù)、函數(shù)概念的理解.

  2.經(jīng)歷抽象反比例函數(shù)概念的過程,領(lǐng)會反比例函數(shù)的意義,理解反比例函數(shù)的概念.

  二、過程與方法

  1、經(jīng)歷對兩個變量之間相依關(guān)系的討論,培養(yǎng)學(xué)生的辨別唯物主義觀點.

  2、經(jīng)歷抽象反比例函數(shù)概念的過程,發(fā)展學(xué)生的抽象思維能力,提高數(shù)學(xué)化意識.

  三、情感態(tài)度與價值觀

  1、經(jīng)歷抽象反比例函數(shù)概念的過程,體會數(shù)學(xué)學(xué)習(xí)的重要性,提高學(xué)生的學(xué)習(xí)數(shù)學(xué)的興趣.

  2、通過分組討論,培養(yǎng)學(xué)生合作交流意識和探索精神.

  教學(xué)重點:理解和領(lǐng)會反比例函數(shù)的概念.

  教學(xué)難點:領(lǐng)悟反比例的概念.

  教學(xué)過程

  一、創(chuàng)設(shè)情境,導(dǎo)入新課

  活動1

  問題:下列問題中,變量間的對應(yīng)關(guān)系可用怎樣的函數(shù)關(guān)系式表示?這些函數(shù)有什么共同特點?

  (1)京滬線鐵路全程為1463km,乘坐某次列車所用時間t(單位:h)隨該列車平均速度v(單位:km/h)的變化而變化;

  (2)某住宅小區(qū)要種植一個面積為1000m2的矩形草坪,草坪的長為y隨寬x的變化;

  (3)已知北京市的總面積為1.68×104平方千米,人均占有土地面積S(單位:平方千米/人)隨全市人口n(單位:人)的變化而變化.

  師生行為:

  先讓學(xué)生進行小組合作交流,再進行全班性的問答或交流.學(xué)生用自己的語言說明兩個變量間的關(guān)系為什么可以看著函數(shù),了解所討論的函數(shù)的表達形式.

  教師組織學(xué)生討論,提問學(xué)生,師生互動.

  在此活動中老師應(yīng)重點關(guān)注學(xué)生:

 、倌芊穹e極主動地合作交流.

  ②能否用語言說明兩個變量間的關(guān)系.

 、勰芊窳私馑懻摰暮瘮(shù)表達形式,形成反比例函數(shù)概念的'具體形象.

  分析及解答:(1)

 ;(2)

 ;(3)

  其中v是自變量,t是v的函數(shù);x是自變量,y是x的函數(shù);n是自變量,s是n的函數(shù);

  上面的函數(shù)關(guān)系式,都具有

  的形式,其中k是常數(shù).

  二、聯(lián)系生活,豐富聯(lián)想

  活動2

  下列問題中,變量間的對應(yīng)關(guān)系可用這樣的函數(shù)式表示?

  (1)一個游泳池的容積為20xxm3,注滿游泳池所用的時間隨注水速度u的變化而變化;

 。2)某立方體的體積為1000cm3,立方體的高h隨底面積S的變化而變化;

  (3)一個物體重100牛頓,物體對地面的壓力p隨物體與地面的接觸面積S的變化而變化.

  師生行為

  學(xué)生先獨立思考,在進行全班交流.

  教師操作課件,提出問題,關(guān)注學(xué)生思考的過程,在此活動中,教師應(yīng)重點關(guān)注學(xué)生:

  (1)能否從現(xiàn)實情境中抽象出兩個變量的函數(shù)關(guān)系;

  (2)能否積極主動地參與小組活動;

  (3)能否比較深刻地領(lǐng)會函數(shù)、反比例函數(shù)的概念.

  分析及解答:(1)

 ;(2)

  ;(3)

  概念:如果兩個變量x,y之間的關(guān)系可以表示成

  的形式,那么y是x的反比例函數(shù),反比例函數(shù)的自變量x不能為零.

  活動3

  做一做:

  一個矩形的面積為20cm2, 相鄰的兩條邊長為xcm和ycm.那么變量y是變量x的函數(shù)嗎?是反比例函數(shù)嗎?為什么?

  師生行為:

  學(xué)生先進行獨立思考,再進行全班交流.教師提出問題,關(guān)注學(xué)生思考.此活動中教師應(yīng)重點關(guān)注:

 、偕芊窭斫夥幢壤瘮(shù)的意義,理解反比例函數(shù)的概念;

 、趯W(xué)生能否順利抽象反比例函數(shù)的模型;

 、蹖W(xué)生能否積極主動地合作、交流;

  活動4

  問題1:下列哪個等式中的y是x的反比例函數(shù)?

  問題2:已知y是x的反比例函數(shù),當x=2時,y=6

  (1)寫出y與x的函數(shù)關(guān)系式:

  (2)求當x=4時,y的值.

  師生行為:

  學(xué)生獨立思考,然后小組合作交流.教師巡視,查看學(xué)生完成的情況,并給予及時引導(dǎo).在此活動中教師應(yīng)重點關(guān)注:

  ①學(xué)生能否領(lǐng)會反比例函數(shù)的意義,理解反比例函數(shù)的概念;

 、趯W(xué)生能否積極主動地參與小組活動.

  分析及解答:

  1、只有xy=123是反比例函數(shù).

  2、分析:因為y是x的反比例函數(shù),所以

  ,再把x=2和y=6代入上式就可求出常數(shù)k的值.

  解:(1)設(shè)

  ,因為x=2時,y=6,所以有

  解得k=12

  因此

 。2)把x=4代入

  ,得

  三、鞏固提高

  活動5

  1、已知y是x的反比例函數(shù),并且當x=3時,y=8.

 。1)寫出y與x之間的函數(shù)關(guān)系式.

 。2)求y=2時x的值.

  2、y是x的反比例函數(shù),下表給出了x與y的一些值:

 。1)寫出這個反比例函數(shù)的表達式;

 。2)根據(jù)函數(shù)表達式完成上表.

  學(xué)生獨立練習(xí),而后再與同桌交流,上講臺演示,教師要重點關(guān)注“學(xué)困生”.

  四、課時小結(jié)

  反比例函數(shù)概念形成的過程中,大家充分利用已有的生活經(jīng)驗和背景知識,注意挖掘問題中變量的相依關(guān)系及變化規(guī)律,逐步加深理解.在概念的形成過程中,從感性認識到理發(fā)認識一旦建立概念,即已擺脫其原型成為數(shù)學(xué)對象.反比例函數(shù)具有豐富的數(shù)學(xué)含義,通過舉例、說理、討論等活動,感知數(shù)學(xué)眼光,審視某些實際現(xiàn)象.

八年級數(shù)學(xué)教案 篇6

  [教學(xué)分析]

  勾股定理是揭示三角形三條邊數(shù)量關(guān)系的一條非常重要的性質(zhì),也是幾何中最重要的定理之一。它是解直角三角形的主要依據(jù)之一,同時在實際生活中具有廣泛的用途,“數(shù)學(xué)源于生活,又用于生活”正是這章書所體現(xiàn)的主要思想。教材在編寫時注意培養(yǎng)學(xué)生的動手操作能力和分析問題的能力,通過實際操作,使學(xué)生獲得較為直觀的印象;通過聯(lián)系比較、探索、歸納,幫助學(xué)生理解勾股定理,以利于進行正確的應(yīng)用。

  本節(jié)教科書從畢達哥拉斯觀察地面發(fā)現(xiàn)勾股定理的傳說談起,讓學(xué)生通過觀察計算一些以直角三角形兩條直角邊為邊長的小正方形的面積與以斜邊為邊長的正方形的面積的關(guān)系,發(fā)現(xiàn)兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積,從而發(fā)現(xiàn)勾股定理,這時教科書以命題的形式呈現(xiàn)了勾股定理。關(guān)于勾股定理的證明方法有很多,教科書正文中介紹了我國古人趙爽的證法。之后,通過三個探究欄目,研究了勾股定理在解決實際問題和解決數(shù)學(xué)問題中的應(yīng)用,使學(xué)生對勾股定理的作用有一定的認識。

  [教學(xué)目標]

  一、 知識與技能

  1、探索直角三角形三邊關(guān)系,掌握勾股定理,發(fā)展幾何思維。

  2、應(yīng)用勾股定理解決簡單的實際問題

  3學(xué)會簡單的合情推理與數(shù)學(xué)說理

  二、 過程與方法

  引入兩段中西關(guān)于勾股定理的'史料,激發(fā)同學(xué)們的興趣,引發(fā)同學(xué)們的思考。通過動手操作探索與發(fā)現(xiàn)直角三角形三邊關(guān)系,經(jīng)歷小組協(xié)作與討論,進一步發(fā)展合作交流能力和數(shù)學(xué)表達能力,并感受勾股定理的應(yīng)用知識。

  三、 情感與態(tài)度目標

  通過對勾股定理歷史的了解,感受數(shù)學(xué)文化,激發(fā)學(xué)習(xí)興趣;在探究活動中,學(xué)生親自動手對勾股定理進行探索與驗證,培養(yǎng)學(xué)生的合作交流意識和探索精神,以及自主學(xué)習(xí)的能力。

  四、 重點與難點

  1、探索和證明勾股定理

  2熟練運用勾股定理

  [教學(xué)過程]

  一、創(chuàng)設(shè)情景,揭示課題

  1、教師展示圖片并介紹第一情景

  以中國最早的一部數(shù)學(xué)著作——《周髀算經(jīng)》的開頭為引,介紹周公向商高請教數(shù)學(xué)知識時的對話,為勾股定理的出現(xiàn)埋下伏筆。

  周公問:“竊聞乎大夫善數(shù)也,請問古者包犧立周天歷度.夫天不可階而升,地不可得尺寸而度,請問數(shù)安從出?”商高答:“數(shù)之法出于圓方,圓出于方,方出于矩,矩出九九八十一,故折矩以為勾廣三,股修四,徑隅五。既方其外,半之一矩,環(huán)而共盤.得成三、四、五,兩矩共長二十有五,是謂積矩。故禹之所以治天下者,此數(shù)之所由生也!

  2、教師展示圖片并介紹第二情景

  畢達哥拉斯是古希臘著名的數(shù)學(xué)家。相傳在2500年以前,他在朋友家做客時,發(fā)現(xiàn)朋友家用地磚鋪成的地面反映了直角三角形的某種特性。

  二、師生協(xié)作,探究問題

  1、現(xiàn)在請你也動手數(shù)一下格子,你能有什么發(fā)現(xiàn)嗎?

  2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有這樣的特點呢?

  3、你能得到什么結(jié)論嗎?

  三、得出命題

  勾股定理:如果直角三角形的兩直角邊長分別為a、b,斜邊長為c,那么,即直角三角形兩直角邊的平方和等于斜邊的平方。解釋: 由于我國古代把直角三角形中較短的直角邊稱為勾,較長的邊稱為股,斜邊稱為弦,所以,把它叫做勾股定理。

  四、勾股定理的證明

  趙爽弦圖的證法(圖2)

  第一種方法:邊長為 的正方形可以看作是由4個直角邊分別為 、 ,斜邊為 的直角三角形圍在外面形成的。因為邊長為 的正方形面積加上4個直角三角形的面積等于外圍正方形的面積,所以可以列出等式 ,化簡得 。

  第二種方法:邊長為 的正方形可以看作是由4個直角邊分別為 、 ,斜邊為 的

  角三角形拼接形成的(虛線表示),不過中間缺出一個邊長為 的正方形“小洞”。

  因為邊長為 的正方形面積等于4個直角三角形的面積加上正方形“小洞”的面積,所以可以列出等式 ,化簡得 。

  這種證明方法很簡明,很直觀,它表現(xiàn)了我國古代數(shù)學(xué)家趙爽高超的證題思想和對數(shù)學(xué)的鉆研精神,是我們中華民族的驕傲。

  五、應(yīng)用舉例,拓展訓(xùn)練,鞏固反饋。

  勾股定理的靈活運用勾股定理在實際的生產(chǎn)生活當中有著廣泛的應(yīng)用。勾股定理的發(fā)現(xiàn)和使用解決了許多生活中的問題,今天我們就來運用勾股定理解決一些問題,你可以嗎?試一試。

  例題:小明媽媽買了一部29英寸(74厘米)的電視機,小明量了電視機的屏幕后,發(fā)現(xiàn)屏幕只有58厘長和46厘米寬,他覺得一定是售貨員搞錯了,你同意他的想法嗎?你能解釋這是為什么嗎?

  六、歸納總結(jié)1、內(nèi)容總結(jié):探索直角三角形兩直角邊的平方和等于斜邊的平方,利于勾股定理,解決實際問題

  2、方法歸納:數(shù)方格看圖找關(guān)系,利用面積不變的方法。用直角三角形三邊表示正方形的面積觀察歸納注意畫一個直角三角形表示正方形面積,再次驗證自己的發(fā)現(xiàn)。

  七、討論交流

  讓學(xué)生發(fā)表自己的意見,提出他們模糊不清的概念,給他們一個梳理知識的機會,通過提示性的引導(dǎo),讓學(xué)生對勾股定理的概念豁然開朗,為后面勾股定理的應(yīng)用打下基礎(chǔ)。

  我們班的同學(xué)很聰明。大家很快就通過數(shù)格子發(fā)現(xiàn)了勾股定理的規(guī)律。還有什么地方不懂的嗎?跟大家一起來交流一下。請同學(xué)們課后在反思天地中都發(fā)表一下自己的學(xué)習(xí)心得。

八年級數(shù)學(xué)教案 篇7

  一、平移:在平面內(nèi),將一個圖形沿某個方向移動一定的距離,這樣的圖形運動稱為平移。

  1.平移

  2.平移的性質(zhì):⑴經(jīng)過平移,對應(yīng)點所連的線段平行且相等;⑵對應(yīng)線段平行且相等,對應(yīng)角相等。⑶平移不改變圖形的大小和形狀(只改變圖形的位置)。(4)平移后的圖形與原圖形全等。

  3.簡單的.平移作圖

 、俅_定個圖形平移后的位置的條件:

 、判枰瓐D形的位置;⑵需要平移的方向;⑶需要平移的距離或一個對應(yīng)點的位置。

  ②作平移后的圖形的方法:

 、耪页鲫P(guān)鍵點;⑵作出這些點平移后的對應(yīng)點;⑶將所作的對應(yīng)點按原來方式順次連接,所得的;

  二、旋轉(zhuǎn):在平面內(nèi),將一個圖形繞一個定點沿某個方向轉(zhuǎn)動一個角度,這樣的圖形運動稱為旋轉(zhuǎn),這個定點稱為旋轉(zhuǎn)中心,轉(zhuǎn)動的角稱為旋轉(zhuǎn)角。

  1.旋轉(zhuǎn)

  2.旋轉(zhuǎn)的性質(zhì)

  ⑴旋轉(zhuǎn)變化前后,對應(yīng)線段,對應(yīng)角分別相等,圖形的大小,形狀都不改變(只改變圖形的位置)。

 、菩D(zhuǎn)過程中,圖形上每一個點都繞旋轉(zhuǎn)中心沿相同方向轉(zhuǎn)動了相同的角度。

 、侨我庖粚(yīng)點與旋轉(zhuǎn)中心的連線所成的角都是旋轉(zhuǎn)角,對應(yīng)點到旋轉(zhuǎn)中心的距離相等。

 、刃D(zhuǎn)前后的兩個圖形全等。

  3.簡單的旋轉(zhuǎn)作圖

  ⑴已知原圖,旋轉(zhuǎn)中心和一對對應(yīng)點,求作旋轉(zhuǎn)后的圖形。

 、埔阎瓐D,旋轉(zhuǎn)中心和一對對應(yīng)線段,求作旋轉(zhuǎn)后的圖形。

 、且阎瓐D,旋轉(zhuǎn)中心和旋轉(zhuǎn)角,求作旋轉(zhuǎn)后的圖形。

  三、分析組合圖案的形成

  ①確定組合圖案中的“基本圖案”

 、诎l(fā)現(xiàn)該圖案各組成部分之間的內(nèi)在聯(lián)系

 、厶剿髟搱D案的形成過程,類型有:⑴平移變換;⑵旋轉(zhuǎn)變換;⑶軸對稱變換;⑷旋轉(zhuǎn)變換與平移變換的組合;

 、尚D(zhuǎn)變換與軸對稱變換的組合;⑹軸對稱變換與平移變換的組合。

八年級數(shù)學(xué)教案 篇8

  教學(xué)建議

  知識結(jié)構(gòu)

  重難點分析

  本節(jié)的重點是中位線定理.三角形中位線定理和梯形中位線定理不但給出了三角形或梯形中線段的位置關(guān)系,而且給出了線段的數(shù)量關(guān)系,為平面幾何中證明線段平行和線段相等提供了新的思路.

  本節(jié)的難點是中位線定理的證明.中位線定理的證明教材中采用了同一法,同一法學(xué)生初次接觸,思維上不容易理解,而其他證明方法都需要添加2條或2條以上的輔助線,添加的目的性和必要性,同以前遇到的情況對比有一定的難度.

  教法建議

  1. 對于中位線定理的引入和證明可采用發(fā)現(xiàn)法,由學(xué)生自己觀察、猜想、測量、論證,實際掌握效果比應(yīng)用講授法應(yīng)好些,教師可根據(jù)學(xué)生情況參考采用

  2.對于定理的證明,有條件的教師可考慮利用多媒體課件來進行演示知識的形成及證明過程,效果可能會更直接更易于理解

  教學(xué)設(shè)計示例

  一、教學(xué)目標

  1.掌握中位線的概念和三角形中位線定理

  2.掌握定理“過三角形一邊中點且平行另一邊的直線平分第三邊”

  3.能夠應(yīng)用三角形中位線概念及定理進行有關(guān)的論證和計算,進一步提高學(xué)生的計算能力

  4.通過定理證明及一題多解,逐步培養(yǎng)學(xué)生的分析問題和解決問題的能力

  5. 通過一題多解,培養(yǎng)學(xué)生對數(shù)學(xué)的興趣

  二、教學(xué)設(shè)計

  畫圖測量,猜想討論,啟發(fā)引導(dǎo).

  三、重點、難點

  1.教學(xué)重點:三角形中位線的概論與三角形中位線性質(zhì).

  2.教學(xué)難點:三角形中位線定理的證明.

  四、課時安排

  1課時

  五、教具學(xué)具準備

  投影儀、膠片、常用畫圖工具

  六、教學(xué)步驟

  【復(fù)習(xí)提問】

  1.敘述平行線等分線段定理及推論的內(nèi)容(結(jié)合學(xué)生的敘述,教師畫出草圖,結(jié)合圖形,加以說明).

  2.說明定理的證明思路.

  3.如圖所示,在平行四邊形ABCD中,M、N分別為BC、DA中點,AM、CN分別交BD于點E、F,如何證明 ?

  分析:要證三條線段相等,一般情況下證兩兩線段相等即可.如要證 ,只要 即可.首先證出四邊形AMCN是平行四邊形,然后用平行線等分線段定理即可證出.

  4.什么叫三角形中線?(以上復(fù)習(xí)用投影儀打出)

  【引入新課】

  1.三角形中位線:連結(jié)三角形兩邊中點的線段叫做三角形中位線.

  (結(jié)合三角形中線的定義,讓學(xué)生明確兩者區(qū)別,可做一練習(xí),在 中,畫出中線、中位線)

  2.三角形中位線性質(zhì)

  了解了三角形中位線的定義后,我們來研究一下,三角形中位線有什么性質(zhì).

  如圖所示,DE是 的一條中位線,如果過D作 ,交AC于 ,那么根據(jù)平行線等分線段定理推論2,得 是AC的中點,可見 與DE重合,所以 .由此得到:三角形中位線平行于第三邊.同樣,過D作 ,且DE FC,所以DE .因此,又得出一個結(jié)論,那就是:三角形中位線等于第三邊的一半.由此得到三角形中位線定理.

  三角形中位線定理:三角形中位城平行于第三邊,并且等于它的一半.

  應(yīng)注意的兩個問題:①為便于同學(xué)對定理能更好的掌握和應(yīng)用,可引導(dǎo)學(xué)生分析此定理的特點,即同一個題設(shè)下有兩個結(jié)論,第一個結(jié)論是表明中位線與第三邊的位置關(guān)系,第二個結(jié)論是說明中位線與第三邊的數(shù)量關(guān)系,在應(yīng)用時可根據(jù)需要來選用其中的`結(jié)論(可以單獨用其中結(jié)論).②這個定理的證明方法很多,關(guān)鍵在于如何添加輔助線.可以引導(dǎo)學(xué)生用不同的方法來證明以活躍學(xué)生的思維,開闊學(xué)生思路,從而提高分析問題和解決問題的能力.但也應(yīng)指出,當一個命題有多種證明方法時,要選用比較簡捷的方法證明.

  由學(xué)生討論,說出幾種證明方法,然后教師總結(jié)如下圖所示(用投影儀演示).

  (l)延長DE到F,使 ,連結(jié)CF,由 可得AD FC.

  (2)延長DE到F,使 ,利用對角線互相平分的四邊形是平行四邊形,可得AD FC.

  (3)過點C作 ,與DE延長線交于F,通過證 可得AD FC.

  上面通過三種不同方法得出AD FC,再由 得BD FC,所以四邊形DBCF是平行四邊形,DF BC,又因DE ,所以DE .

  (證明過程略)

  例 求證:順次連結(jié)四邊形四條邊的中點,所得的四邊形是平行四邊形.

  (由學(xué)生根據(jù)命題,說出已知、求證)

  已知:如圖所示,在四邊形ABCD中,E、F、G、H分別是AB、BC、CD、DA的中點.

  求證:四邊形EFGH是平行四邊形.‘

  分析:因為已知點分別是四邊形各邊中點,如果連結(jié)對角線就可以把四邊形分成三角形,這樣就可以用三角形中位線定理來證明出四邊形EFGH對邊的關(guān)系,從而證出四邊形EFGH是平行四邊形.

  證明:連結(jié)AC.

  ∴ (三角形中位線定理).

  同理,

  ∴GH EF

  ∴四邊形EFGH是平行四邊形.

  【小結(jié)】

  1.三角形中位線及三角形中位線與三角形中線的區(qū)別.

  2.三角形中位線定理及證明思路.

  七、布置作業(yè)

  教材P188中1(2)、4、7

【八年級數(shù)學(xué)教案】相關(guān)文章:

八年級的數(shù)學(xué)教案12-14

八年級數(shù)學(xué)教案06-18

【熱門】八年級數(shù)學(xué)教案11-29

八年級數(shù)學(xué)教案人教版01-03

八年級下冊數(shù)學(xué)教案01-01

八年級數(shù)學(xué)教案【熱】11-29

【薦】八年級數(shù)學(xué)教案12-03

八年級數(shù)學(xué)教案【薦】12-06

八年級的數(shù)學(xué)教案15篇12-14

八年級數(shù)學(xué)教案【推薦】12-04