丁香婷婷网,黄色av网站裸体无码www,亚洲午夜无码精品一级毛片,国产一区二区免费播放

八年級數(shù)學(xué)教案

時間:2022-08-22 17:17:40 八年級數(shù)學(xué)教案 我要投稿

關(guān)于八年級數(shù)學(xué)教案合集8篇

  在教學(xué)工作者實際的教學(xué)活動中,編寫教案是必不可少的,借助教案可以更好地組織教學(xué)活動。我們應(yīng)該怎么寫教案呢?以下是小編幫大家整理的八年級數(shù)學(xué)教案8篇,歡迎閱讀與收藏。

關(guān)于八年級數(shù)學(xué)教案合集8篇

八年級數(shù)學(xué)教案 篇1

  教材分析

  因式分解是代數(shù)式的一種重要恒等變形。《數(shù)學(xué)課程標(biāo)準(zhǔn)》雖然降低了因式分解的特殊技巧的要求,也對因式分解常用的四種方法減少為兩種,且公式法的應(yīng)用中,也減少為兩個公式,但絲毫沒有否定因式分解的教育價值及其在代數(shù)運算中的重要作用。本章教材是在學(xué)生學(xué)習(xí)了整式運算的基礎(chǔ)上提出來的,事實上,它是整式乘法的逆向運用,與整式乘法運算有密切的聯(lián)系。分解因式的變形不僅體現(xiàn)了一種“化歸”的思想,而且也是解決后續(xù)—分式的化簡、解方程等—恒等變形的.基礎(chǔ),為數(shù)學(xué)交流提供了有效的途徑。分解因式這一章在整個教材中起到了承上啟下的作用。本章的教育價值還體現(xiàn)在使學(xué)生接受對立統(tǒng)一的觀點,培養(yǎng)學(xué)生善于觀察、善于分析、正確預(yù)見、解決問題的能力。

  學(xué)情分析

  通過探究平方差公式和運用平方差公式分解因式的活動中,讓學(xué)生發(fā)表自己的觀點,從交流中獲益,讓學(xué)生獲得成功的體驗,鍛煉克服困難的意志建立自信心。

  教學(xué)目標(biāo)

  1、在分解因式的過程中體會整式乘法與因式分解之間的聯(lián)系。

  2、通過公式a -b =(a+b)(a-b)的逆向變形,進一步發(fā)展觀察、歸納、類比、等能力,發(fā)展有條理地思考及語言表達能力。

  3、能運用提公因式法、公式法進行綜合運用。

  4、通過活動4,能將高偶指數(shù)冪轉(zhuǎn)化為2次指數(shù)冪,培養(yǎng)學(xué)生的化歸思想。

  教學(xué)重點和難點

  重點: 靈活運用平方差公式進行分解因式。

  難點:平方差公式的推導(dǎo)及其運用,兩種因式分解方法(提公因式法、平方差公式)的綜合運用。

八年級數(shù)學(xué)教案 篇2

  數(shù)據(jù)的波動

  教學(xué)目標(biāo):

  1、經(jīng)歷數(shù)據(jù)離散程度的探索過程

  2、了解刻畫數(shù)據(jù)離散程度的三個量度極差、標(biāo)準(zhǔn)差和方差,能借助計算器求出相應(yīng)的數(shù)值。

  教學(xué)重點:會計算某些數(shù)據(jù)的極差、標(biāo)準(zhǔn)差和方差。

  教學(xué)難點:理解數(shù)據(jù)離散程度與三個差之間的關(guān)系。

  教學(xué)準(zhǔn)備:計算器,投影片等

  教學(xué)過程:

  一、創(chuàng)設(shè)情境

  1、投影課本P138引例。

  (通過對問題串的解決,使學(xué)生直觀地估計從甲、乙兩廠抽取的20只雞腿的平均質(zhì)量,同時讓學(xué)生初步體會平均水平相近時,兩者的離散程度未必相同,從而順理成章地引入刻畫數(shù)據(jù)離散程度的一個量度極差)

  2、極差:是指一組數(shù)據(jù)中最大數(shù)據(jù)與最小數(shù)據(jù)的'差,極差是用來刻畫數(shù)據(jù)離散程度的一個統(tǒng)計量。

  二、活動與探究

  如果丙廠也參加了競爭,從該廠抽樣調(diào)查了20只雞腿,數(shù)據(jù)如圖(投影課本159頁圖)

  問題:1、丙廠這20只雞腿質(zhì)量的平均數(shù)和極差是多少?

  2、如何刻畫丙廠這20只雞腿質(zhì)量與其平均數(shù)的差距?分別求出甲、丙兩廠的20只雞腿質(zhì)量與對應(yīng)平均數(shù)的差距。

  3、在甲、丙兩廠中,你認(rèn)為哪個廠雞腿質(zhì)量更符合要求?為什么?

  (在上面的情境中,學(xué)生很容易比較甲、乙兩廠被抽取雞腿質(zhì)量的極差,即可得出結(jié)論。這里增加一個丙廠,其平均質(zhì)量和極差與甲廠相同,此時導(dǎo)致學(xué)生思想認(rèn)識上的矛盾,為引出另兩個刻畫數(shù)據(jù)離散程度的量度標(biāo)準(zhǔn)差和方差作鋪墊。

  三、講解概念:

  方差:各個數(shù)據(jù)與平均數(shù)之差的平方的平均數(shù),記作s2

  設(shè)有一組數(shù)據(jù):x1, x2, x3,,xn,其平均數(shù)為

  則s2= ,

  而s= 稱為該數(shù)據(jù)的標(biāo)準(zhǔn)差(既方差的算術(shù)平方根)

  從上面計算公式可以看出:一組數(shù)據(jù)的極差,方差或標(biāo)準(zhǔn)差越小,這組數(shù)據(jù)就越穩(wěn)定。

  四、做一做

  你能用計算器計算上述甲、丙兩廠分別抽取的20只雞腿質(zhì)量的方差和標(biāo)準(zhǔn)差嗎?你認(rèn)為選哪個廠的雞腿規(guī)格更好一些?說說你是怎樣算的?

  (通過對此問題的解決,使學(xué)生回顧了用計算器求平均數(shù)的步驟,并自由探索求方差的詳細步驟)

  五、鞏固練習(xí):課本第172頁隨堂練習(xí)

  六、課堂小結(jié):

  1、怎樣刻畫一組數(shù)據(jù)的離散程度?

  2、怎樣求方差和標(biāo)準(zhǔn)差?

  七、布置作業(yè):習(xí)題5.5第1、2題。

八年級數(shù)學(xué)教案 篇3

  教學(xué)目標(biāo):

  1。經(jīng)歷探索平行四邊形有關(guān)概念和性質(zhì)的過程,在活動中發(fā)展學(xué)生的探究意識和合作交流的習(xí)慣;

  2。索并掌握平行四邊形的性質(zhì),并能簡單應(yīng)用;

  3。在探索活動過程中發(fā)展學(xué)生的探究意識。

  教學(xué)重點:平行四邊形性質(zhì)的探索。

  教學(xué)難點:平行四邊形性質(zhì)的理解。

  教學(xué)準(zhǔn)備:多媒體課件

  教學(xué)過程

  第一環(huán)節(jié):實踐探索,直觀感知(5分鐘,動手實踐、探索、感知,學(xué)生進一步探索了平行四邊形的概念,明確了平行四邊形的本質(zhì)特征。)

  1。小組活動一

  內(nèi)容:

  問題1:同學(xué)們拿出準(zhǔn)備好的剪刀、彩紙或白紙一張。將一張紙對折,剪下兩張疊放的三角形紙片,將它們相等的一邊重合,得到一個四邊形。

  (1)你拼出了怎樣的四邊形?與同桌交流一下;

 。2)給出小明拼出的四邊形,它們的對邊有怎樣的位置關(guān)系?說說你的理由,請用簡捷的語言刻畫這個圖形的特征。

  2。小組活動二

  內(nèi)容:生活中常見到平行四邊形的實例有什么呢?你能舉例說明嗎?

  第二環(huán)節(jié) 探索歸納、合作交流(5分鐘,學(xué)生動手、動嘴,全班交流)

  小組活動3:

  用 一張半透明的紙復(fù)制你剛才畫的平行四邊形,并將復(fù)制 后的四邊形繞一個頂點旋轉(zhuǎn)180,你能平移該紙片,使它與你畫的平行四邊形重合嗎?由此你能得到哪些結(jié)論?四邊形的對邊、對角分別有什么關(guān)系?能用別的方法驗證你的結(jié)論嗎?

  (1)讓學(xué)生動手操作、復(fù)制、旋轉(zhuǎn) 、觀察、分析;

 。2)學(xué)生交流、議論;

 。3)教師利用多媒體展示實踐的過程。

  第三環(huán)節(jié) 推理論證、感悟升華(10分鐘,學(xué)生通過說理,由直觀感受上升到理性分析,在操作層面感知的基礎(chǔ)上提升,并了解圖形具有的數(shù)學(xué)本質(zhì)。)

  實踐 探索內(nèi)容

 。1)通過剪紙,拼紙片,及旋轉(zhuǎn),可以觀察到平行四邊行的對角線把它分成的兩個三角形全等。

  (2)可以通過推理來證明這個結(jié)論,如圖連結(jié)AC。

  ∵ 四邊形ABCD是平行四邊形

  AD // BC, AB // CD

  2,4

  △AB C和△CDA中

  1

  AC=C A

  4

  △ABC≌△CDA(ASA)

  AB=DC, AD=CB,B

  又∵2

  4

  3=4

  即BAD=DCB

  第四環(huán)節(jié) 應(yīng)用鞏固 深化提高(10分鐘,通過議一議,練一練,學(xué)生進一步理解平行四邊形的性質(zhì),并進行簡單合情推理,體現(xiàn)性質(zhì)的.應(yīng)用,同時從不同角度平移、旋轉(zhuǎn)等再一次認(rèn)識平行四邊形的本質(zhì)特征。)

  1;顒觾(nèi)容:

 。1)議一議:如果已知平行四邊形的一個內(nèi)角度數(shù),能確定其它三個內(nèi)角的度數(shù)嗎?

  A(學(xué)生思考、議論)

  B總結(jié)歸納:可以確定其它三個內(nèi)角的度數(shù)。

  由平行四邊形對 邊分邊平行 得到鄰角互補;又由于平行四邊形對角相等,由此已知平行四邊形的一個內(nèi)角的度數(shù),可以確定其它三個角度數(shù)。

 。2)練一練(P99隨堂練習(xí))

  練1 如圖:四邊形ABCD是平行四邊形。

 。1)求ADC、BCD度數(shù)

 。2)邊AB、BC的度數(shù)、長度。

  練2 四邊形ABCD是平行四邊形

 。1)它的四條邊中哪些 線段可以通過平移相到得到?

  (2)設(shè)對角線AC、BD交于O;AO與OC、BO與OD有何關(guān)系?說說理由。

  歸 納:平行四邊形的性質(zhì):平行四邊形的對角線互相平分。

  第五環(huán)節(jié) 評價反思 概括總結(jié)(8分鐘,學(xué)生踴躍談感受和收獲)

  活動內(nèi)容

  師生相互交流、反思、總結(jié)。

  (1)經(jīng)歷了對平行四邊形的特征探索,你有什么感受和收獲?給自己一個評價。

 。2)在與同伴合作交流中練表現(xiàn),優(yōu)秀方面有哪些?你看到同伴哪些優(yōu)點?

  (3)本節(jié)學(xué)習(xí)到了什么?(知識上、方法上)

  考一考:

  1。 ABCD中,B=60,則A= ,C= ,D= 。

  2。 ABCD中,A比B大20,則C= 。

  3。 ABCD中,AB=3,BC=5,則AD= CD= 。

  4。 ABCD中,周長為40cm,△ABC周長為25,則對角線AC=( )cm。

  布置作業(yè)

  課本習(xí)題4。1

  A組(學(xué)優(yōu)生)1 、2

  B組(中等生)1、2

  C組(后三分之一生)1、2

  教學(xué)反思

八年級數(shù)學(xué)教案 篇4

  教材分析

  本章屬于“數(shù)與代數(shù)”領(lǐng)域,整式的乘除運算和因式分解是基本而重要的代數(shù)初步知識,在后續(xù)的數(shù)學(xué)學(xué)習(xí)中具有重要的意義。本章內(nèi)容建立在已經(jīng)學(xué)習(xí)了有理數(shù)的運算,列簡單的代數(shù)式、一次方程及不等式、整式的加減運算等知識的基礎(chǔ)上,而本節(jié)課的.知識是學(xué)習(xí)本章的基礎(chǔ),為后續(xù)章節(jié)的學(xué)習(xí)作鋪墊,因此,學(xué)得好壞直接關(guān)乎到后續(xù)章節(jié)的學(xué)習(xí)效果。

  學(xué)情分析

  本節(jié)課知識是學(xué)習(xí)整章的基礎(chǔ),因此,教學(xué)的好壞直接影響了后續(xù)章節(jié)的學(xué)習(xí)。學(xué)生在學(xué)習(xí)本章前,已經(jīng)掌握了用字母表示數(shù),列簡單的代數(shù)式,掌握了乘方的意義及相關(guān)概念,并且本節(jié)課的知識相對較簡單,學(xué)生比較容易理解和掌握,但是教師在教學(xué)中要注意引導(dǎo)學(xué)生導(dǎo)出同底數(shù)冪的乘法的運算性質(zhì)的過程是一個由特殊到一般的認(rèn)識過程,并且注意導(dǎo)出這一性質(zhì)的每一步的根據(jù)。

  從學(xué)生做練習(xí)和作業(yè)來看,大部分學(xué)生都已經(jīng)掌握本節(jié)課的知識,并且掌握的很好,但是還是存在一些問題,那就是符號問題,這方面還有待加強。

  教學(xué)目標(biāo)

  1、知識與技能:

  掌握同底數(shù)冪乘法的運算性質(zhì),能熟練運用性質(zhì)進行同底數(shù)冪乘法運算。

  2、過程與方法:

 。1)通過同底數(shù)冪乘法性質(zhì)的推導(dǎo)過程,體會不完全歸納法的運用,進一步發(fā)展演繹推理能力;

 。2)通過性質(zhì)運用幫助學(xué)生理解字母表達式所代表的數(shù)量關(guān)系,進一步積累選擇適當(dāng)?shù)某绦蚝退惴ń鉀Q用符號所表達問題的經(jīng)驗。

  3、情感態(tài)度與價值觀:

 。1)通過引例問題情境的創(chuàng)設(shè),誘發(fā)學(xué)生的求知欲,進一步認(rèn)識數(shù)學(xué)與生活的密切聯(lián)系;

  (2)通過性質(zhì)的推導(dǎo)體會“特殊。

八年級數(shù)學(xué)教案 篇5

  教學(xué)目標(biāo):

  1.了解算術(shù)平方根的概念,會用根號表示正數(shù)的算術(shù)平方根,并了解算術(shù)平方根的非負性。

  2.了解開方與乘方互為逆運算,會用平方運算求某些非負數(shù)的算術(shù)平方根。

  教學(xué)重點:

  算術(shù)平方根的概念。

  教學(xué)難點:

  根據(jù)算術(shù)平方根的概念正確求出非負數(shù)的算術(shù)平方根。

  教學(xué)過程

  一、情境導(dǎo)入

  請同學(xué)們欣賞本節(jié)導(dǎo)圖,并回答問題,學(xué)校要舉行金秋美術(shù)作品比賽,小歐很高興,他想裁出一塊面積為25 的正方形畫布,畫上自己的得意之作參加比賽,這塊正方形畫布的邊長應(yīng)取多少 ?如果這塊畫布的面積是 ?這個問題實際上是已知一個正數(shù)的平方,求這個正數(shù)的問題?

  這就要用到平方根的概念,也就是本章的主要學(xué)習(xí)內(nèi)容.這節(jié)課我們先學(xué)習(xí)有關(guān)算術(shù)平方根的概念.

  二、導(dǎo)入新課:

  1、提出問題:(書P68頁的問題)

  你是怎樣算出畫框的邊長等于5dm的呢?(學(xué)生思考并交流解法)

  這個問題相當(dāng)于在等式擴=25中求出正數(shù)x的值.

  一般地,如果一個正數(shù)x的平方等于a,即 =a,那么這個正數(shù)x叫做a的算術(shù)平方根.a的算術(shù)平方根記為 ,讀作根號a,a叫做被開方數(shù).規(guī)定:0的算術(shù)平方根是0.

  也就是,在等式 =a (x0)中,規(guī)定x = .

  2、 試一試:你能根據(jù)等式: =144說出144的算術(shù)平方根是多少嗎?并用等式表示出來.

  3、 想一想:下列式子表示什么意思?你能求出它們的值嗎?

  建議:求值時,要按照算術(shù)平方根的意義,寫出應(yīng)該滿足的關(guān)系式,然后按照算術(shù)平方根的記法寫出對應(yīng)的值.例如 表示25的算術(shù)平方根。

  4、例1 求下列各數(shù)的算術(shù)平方根:

  (1)100;(2)1;(3) ;(4)0.0001

  三、練習(xí)

  P69練習(xí) 1、2

  四、探究:(課本第69頁)

  怎樣用兩個面積為1的小正方形拼成一個面積為2的大正方形?

  方法1:課本中的方法,略;

  方法2:

  可還有其他方法,鼓勵學(xué)生探究。

  問題:這個大正方形的邊長應(yīng)該是多少呢?

  大正方形的邊長是 ,表示2的`算術(shù)平方根,它到底是個多大的數(shù)?你能求出它的值嗎?

  建議學(xué)生觀察圖形感受 的大小.小正方形的對角線的長是多少呢?(用刻度尺測量它與大正方形的邊長的大小)它的近似值我們將在下節(jié)課探究.

  五、小結(jié):

  1、這節(jié)課學(xué)習(xí)了什么呢?

  2、算術(shù)平方根的具體意義是怎么樣的?

  3、怎樣求一個正數(shù)的算術(shù)平方根

  六、課外作業(yè):

  P75習(xí)題13.1活動第1、2、3題

八年級數(shù)學(xué)教案 篇6

  一、教學(xué)目標(biāo)

 。ㄒ唬、知識與技能:

 。1)使學(xué)生了解因式分解的意義,理解因式分解的概念。

 。2)認(rèn)識因式分解與整式乘法的相互關(guān)系——互逆關(guān)系,并能運用這種關(guān)系尋求因式分解的方法。

 。ǘ、過程與方法:

 。1)由學(xué)生自主探索解題途徑,在此過程中,通過觀察、類比等手段,尋求因式分解與因數(shù)分解之間的關(guān)系,培養(yǎng)學(xué)生的觀察能力,進一步發(fā)展學(xué)生的類比思想。

 。2)由整式乘法的逆運算過渡到因式分解,發(fā)展學(xué)生的逆向思維能力。

 。3)通過對分解因式與整式的乘法的觀察與比較,培養(yǎng)學(xué)生的分析問題能力與綜合應(yīng)用能力。

 。ㄈ、情感態(tài)度與價值觀:讓學(xué)生初步感受對立統(tǒng)一的辨證觀點以及實事求是的科學(xué)態(tài)度。

  二、教學(xué)重點和難點

  重點:因式分解的概念及提公因式法。

  難點:正確找出多項式各項的公因式及分解因式與整式乘法的區(qū)別和聯(lián)系。

  三、教學(xué)過程

  教學(xué)環(huán)節(jié):

  活動1:復(fù)習(xí)引入

  看誰算得快:用簡便方法計算:

  (1)7/9 ×13-7/9 ×6+7/9 ×2= ;

 。2)-2.67×132+25×2.67+7×2.67= ;

 。3)992–1= 。

  設(shè)計意圖:

  如果說學(xué)生對因式分解還相當(dāng)陌生的話,相信學(xué)生對用簡便方法進行計算應(yīng)該相當(dāng)熟悉.引入這一步的目的旨在讓學(xué)生通過回顧用簡便方法計算——因數(shù)分解這一特殊算法,使學(xué)生通過類比很自然地過渡到正確理解因式分解的概念上,從而為因式分解的掌握掃清障礙,本環(huán)節(jié)設(shè)計的計算992–1的值是為了降低下一環(huán)節(jié)的難度,為下一環(huán)節(jié)的`理解搭一個臺階.

  注意事項:學(xué)生對于(1)(2)兩小題逆向利用乘法的分配律進行運算的方法是很熟悉,對于第(3)小題的逆向利用平方差公式的運算則有一定的困難,因此,有必要引導(dǎo)學(xué)生復(fù)習(xí)七年級所學(xué)過的整式的乘法運算中的平方差公式,幫助他們順利地逆向運用平方差公式。

  活動2:導(dǎo)入課題

  P165的探究(略);

  2. 看誰想得快:993–99能被哪些數(shù)整除?你是怎么得出來的?

  設(shè)計意圖:

  引導(dǎo)學(xué)生把這個式子分解成幾個數(shù)的積的形式,繼續(xù)強化學(xué)生對因數(shù)分解的理解,為學(xué)生類比因式分解提供必要的精神準(zhǔn)備。

  活動3:探究新知

  看誰算得準(zhǔn):

  計算下列式子:

 。1)3x(x-1)= ;

 。2)(a+b+c)= ;

 。3)(+4)(-4)= ;

 。4)(-3)2= ;

 。5)a(a+1)(a-1)= ;

  根據(jù)上面的算式填空:

 。1)a+b+c= ;

 。2)3x2-3x= ;

 。3)2-16= ;

 。4)a3-a= ;

 。5)2-6+9= 。

  在第一組的整式乘法的計算上,學(xué)生通過對第一組式子的觀察得出第二組式子的結(jié)果,然后通過對這兩組式子的結(jié)果的比較,使學(xué)生對因式分解有一個初步的意識,由整式乘法的逆運算逐步過渡到因式分解,發(fā)展學(xué)生的逆向思維能力。

  活動4:歸納、得出新知

  比較以下兩種運算的聯(lián)系與區(qū)別:

  a(a+1)(a-1)= a3-a

  a3-a= a(a+1)(a-1)

  在第三環(huán)節(jié)的運算中還有其它類似的例子嗎?除此之外,你還能找到類似的例子嗎?

八年級數(shù)學(xué)教案 篇7

  一、教學(xué)目標(biāo)

  1.理解一個數(shù)平方根和算術(shù)平方根的意義;

  2.理解根號的意義,會用根號表示一個數(shù)的平方根和算術(shù)平方根;

  3.通過本節(jié)的訓(xùn)練,提高學(xué)生的邏輯思維能力;

  4.通過學(xué)習(xí)乘方和開方運算是互為逆運算,體驗各事物間的對立統(tǒng)一的辯證關(guān)系,激發(fā)學(xué)生探索數(shù)學(xué)奧秘的興趣。

  二、教學(xué)重點和難點

  教學(xué)重點:平方根和算術(shù)平方根的概念及求法。

  教學(xué)難點:平方根與算術(shù)平方根聯(lián)系與區(qū)別。

  三、教學(xué)方法

  講練結(jié)合

  四、教學(xué)手段

  幻燈片

  五、教學(xué)過程

 。ㄒ唬┨釂

  1、已知一正方形面積為50平方米,那么它的邊長應(yīng)為多少?

  2、已知一個數(shù)的平方等于1000,那么這個數(shù)是多少?

  3、一只容積為0。125立方米的正方體容器,它的棱長應(yīng)為多少?

  這些問題的共同特點是:已知乘方的結(jié)果,求底數(shù)的值,如何解決這些問題呢?這就是本節(jié)內(nèi)容所要學(xué)習(xí)的。下面作一個小練習(xí):填空

  1、()2=9; 2、()2 =0、25;

  3、

  5、()2=0、0081

  學(xué)生在完成此練習(xí)時,最容易出現(xiàn)的錯誤是丟掉負數(shù)解,在教學(xué)時應(yīng)注意糾正。

  由練習(xí)引出平方根的概念。

 。ǘ┢椒礁拍

  如果一個數(shù)的平方等于a,那么這個數(shù)就叫做a的平方根(二次方根)。

  用數(shù)學(xué)語言表達即為:若x2=a,則x叫做a的平方根。

  由練習(xí)知:±3是9的平方根;

  ±0.5是0。25的平方根;

  0的平方根是0;

  ±0.09是0。0081的平方根。

  由此我們看到+3與—3均為9的'平方根,0的平方根是0,下面看這樣一道題,填空:

 。 )2=—4

  學(xué)生思考后,得到結(jié)論此題無答案。反問學(xué)生為什么?因為正數(shù)、0、負數(shù)的平方為非負數(shù)。由此我們可以得到結(jié)論,負數(shù)是沒有平方根的。下面總結(jié)一下平方根的性質(zhì)(可由學(xué)生總結(jié),教師整理)。

 。ㄈ┢椒礁再|(zhì)

  1.一個正數(shù)有兩個平方根,它們互為相反數(shù)。

  2.0有一個平方根,它是0本身。

  3.負數(shù)沒有平方根。

  (四)開平方

  求一個數(shù)a的平方根的運算,叫做開平方的運算。

  由練習(xí)我們看到+3與—3的平方是9,9的平方根是+3和—3,可見平方運算與開平方運算互為逆運算。根據(jù)這種關(guān)系,我們可以通過平方運算來求一個數(shù)的平方根。與其他運算法則不同之處在于只能對非負數(shù)進行運算,而且正數(shù)的運算結(jié)果是兩個。

 。ㄎ澹┢椒礁谋硎痉椒

  一個正數(shù)a的正的平方根,用符號“ ”表示,a叫做被開方數(shù),2叫做根指數(shù),正數(shù)a的負的平方根用符號“— ”表示,a的平方根合起來記作 ,其中 讀作“二次根號”, 讀作“二次根號下a”。根指數(shù)為2時,通常將這個2省略不寫,所以正數(shù)a的平方根也可記作“ ”讀作“正、負根號a”。

  練習(xí):1.用正確的符號表示下列各數(shù)的平方根:

  ①26 ②247 ③0。2 ④3 ⑤

  解:①26 的平方根是

 、247的平方根是

 、0。2的平方根是

 、3的平方根是

 、 的平方根是

  由學(xué)生說出上式的讀法。

  例1。下列各數(shù)的平方根:

 。1)81; (2) ; (3) ; (4)0。49

  解:(1)∵(±9)2=81,

  ∴81的平方根為±9。即:

  (2)

  的平方根是 ,即

  (3)

  的平方根是 ,即

 。4)∵(±0。7)2=0。49,

  ∴0。49的平方根為±0。7。

  小結(jié):讓學(xué)生熟悉平方根的概念,掌握一個正數(shù)的平方根有兩個。

  六、總結(jié)

  本節(jié)課主要學(xué)習(xí)了平方根的概念、性質(zhì),以及表示方法,回去后要仔細閱讀教科書,鞏固所學(xué)知識。

  七、作業(yè)

  教材P。127練習(xí)1、2、3、4。

  八、板書設(shè)計

  平方根

  (一)概念 (四)表示方法 例1

 。ǘ┬再|(zhì)

 。ㄈ╅_平方

  探究活動

  求平方根近似值的一種方法

  求一個正數(shù)的平方根的近似值,通常是查表。這里研究一種筆算求法。

  例1。求 的值。

  解 ∵92102,

  兩邊平方并整理得

  ∵x1為純小數(shù)。

  18x1≈16,解得x1≈0。9,

  便可依次得到精確度

  為0。01,0。001,……的近似值,如:

  兩邊平方,舍去x2得19.8x2≈—1.01

八年級數(shù)學(xué)教案 篇8

  一、課堂引入

  1.什么叫做平行四邊形?什么叫做矩形?

  2.矩形有哪些性質(zhì)?

  3.矩形與平行四邊形有什么共同之處?有什么不同之處?

  4.事例引入:小華想要做一個矩形像框送給媽媽做生日禮物,于是找來兩根長度相等的短木條和兩根長度相等的長木條制作,你有什么辦法可以檢測他做的是矩形像框嗎?看看誰的方法可行?

  通過討論得到矩形的判定方法.

  矩形判定方法1:對角錢相等的平行四邊形是矩形.

  矩形判定方法2:有三個角是直角的四邊形是矩形.

 。ㄖ赋觯号卸ㄒ粋四邊形是矩形,知道三個角是直角,條件就夠了.因為由四邊形內(nèi)角和可知,這時第四個角一定是直角.)

  二、例習(xí)題分析

  例1(補充)下列各句判定矩形的說法是否正確?為什么?

 。1)有一個角是直角的四邊形是矩形;(×)

 。2)有四個角是直角的四邊形是矩形;(√)

 。3)四個角都相等的四邊形是矩形;(√)

  (4)對角線相等的四邊形是矩形;(×)

  (5)對角線相等且互相垂直的四邊形是矩形;(×)

  (6)對角線互相平分且相等的四邊形是矩形;(√)

  (7)對角線相等,且有一個角是直角的四邊形是矩形;(×)

  (8)一組鄰邊垂直,一組對邊平行且相等的四邊形是矩形;(√)

 。9)兩組對邊分別平行,且對角線相等的四邊形是矩形.(√)

  指出:

 。╨)所給四邊形添加的.條件不滿足三個的肯定不是矩形;

 。2)所給四邊形添加的條件是三個獨立條件,但若與判定方法不同,則需要利用定義和判定方法證明或舉反例,才能下結(jié)論.

  例2(補充)已知ABCD的對角線AC、BD相交于點O,△AOB是等邊三角形,AB=4cm,求這個平行四邊形的面積.

  分析:首先根據(jù)△AOB是等邊三角形及平行四邊形對角線互相平分的性質(zhì)判定出ABCD是矩形,再利用勾股定理計算邊長,從而得到面積值.

  解:∵ 四邊形ABCD是平行四邊形,

  ∴AO=AC,BO=BD.

  ∵ AO=BO,

  ∴ AC=BD.

  ∴ ABCD是矩形(對角線相等的平行四邊形是矩形).

  在Rt△ABC中,

  ∵ AB=4cm,AC=2AO=8cm,

  ∴BC=(cm).

  例3(補充)已知:如圖(1),ABCD的四個內(nèi)角的平分線分別相交于點E,F(xiàn),G,H.求證:四邊形EFGH是矩形.

  分析:要證四邊形EFGH是矩形,由于此題目可分解出基本圖形,如圖(2),因此,可選用“三個角是直角的四邊形是矩形”來證明

【八年級數(shù)學(xué)教案】相關(guān)文章:

八年級的數(shù)學(xué)教案12-14

八年級數(shù)學(xué)教案06-18

初中八年級數(shù)學(xué)教案11-03

八年級的數(shù)學(xué)教案15篇12-14

【熱門】八年級數(shù)學(xué)教案11-29

八年級數(shù)學(xué)教案【熱】11-29

八年級數(shù)學(xué)教案【薦】12-06

【熱】八年級數(shù)學(xué)教案12-07

八年級上冊數(shù)學(xué)教案11-09

人教版八年級數(shù)學(xué)教案11-04