丁香婷婷网,黄色av网站裸体无码www,亚洲午夜无码精品一级毛片,国产一区二区免费播放

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學教案>八年級數(shù)學教案>八年級數(shù)學教案

八年級數(shù)學教案

時間:2022-08-21 20:04:39 八年級數(shù)學教案 我要投稿

有關八年級數(shù)學教案合集8篇

  在教學工作者實際的教學活動中,時常需要用到教案,借助教案可以恰當?shù)剡x擇和運用教學方法,調動學生學習的積極性。那么問題來了,教案應該怎么寫?下面是小編精心整理的八年級數(shù)學教案8篇,歡迎大家分享。

有關八年級數(shù)學教案合集8篇

八年級數(shù)學教案 篇1

  教學目標:

  情意目標:培養(yǎng)學生團結協(xié)作的精神,體驗探究成功的樂趣。

  能力目標:能利用等腰梯形的性質解簡單的幾何計算、證明題;培養(yǎng)學生探究問題、自主學習的能力。

  認知目標:了解梯形的概念及其分類;掌握等腰梯形的性質。

  教學重點、難點

  重點:等腰梯形性質的探索;

  難點:梯形中輔助線的添加。

  教學課件:PowerPoint演示文稿

  教學方法:啟發(fā)法、

  學習方法:討論法、合作法、練習法

  教學過程:

  (一)導入

  1、出示圖片,說出每輛汽車車窗形狀(投影)

  2、板書課題:5梯形

  3、練習:下列圖形中哪些圖形是梯形?(投影)

  結梯形概念:只有4、總結梯形概念:一組對邊平行另以組對邊不平行的四邊形是梯形。

  5、指出圖形中各部位的名稱:上底、下底、腰、高、對角線。(投影)

  6、特殊梯形的分類:(投影)

 。ǘ┑妊菪涡再|的探究

  【探究性質一】

  思考:在等腰梯形中,如果將一腰AB沿AD的`方向平移到DE的位置,那么所得的△DEC是怎樣的三角形?(投影)

  猜想:由此你能得到等腰梯形的內角有什么樣的性質?(學生操作、討論、作答)

  如圖,等腰梯形ABCD中,AD∥BC,AB=CD。求證:∠B=∠C

  想一想:等腰梯形ABCD中,∠A與∠D是否相等?為什么?

  等腰梯形性質:等腰梯形的同一條底邊上的兩個內角相等。

  【操練】

 。1)如圖,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,則腰AB=cm。(投影)

 。2)如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延長線于點E,CA平分∠BCD,求證:∠B=2∠E.(投影)

  【探究性質二】

  如果連接等腰梯形的兩條對角線,圖中有哪幾對全等三角形?哪些線段相等?(學生操作、討論、作答)

  如上圖,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求證:AC=BD。(投影)

  等腰梯形性質:等腰梯形的兩條對角線相等。

  【探究性質三】

  問題一:延長等腰梯形的兩腰,哪些三角形是軸對稱圖形?為什么?對稱軸呢?(學生操作、作答)

  問題二:等腰梯是否軸對稱圖形?為什么?對稱軸是什么?(重點討論)

  等腰梯形性質:同以底上的兩個內角相等,對角線相等

 。ㄈ┵|疑反思、小結

  讓學生回顧本課教學內容,并提出尚存問題;

  學生小結,教師視具體情況給予提示:性質(從邊、角、對角線、對稱性等角度總結)、解題方法(化梯形問題為三角形及平行四邊形問題)、梯形中輔助線的添加方法。

八年級數(shù)學教案 篇2

  一、教學目標

 。ㄒ唬、知識與技能:

 。1)使學生了解因式分解的意義,理解因式分解的概念。

 。2)認識因式分解與整式乘法的相互關系——互逆關系,并能運用這種關系尋求因式分解的方法。

 。ǘ、過程與方法:

 。1)由學生自主探索解題途徑,在此過程中,通過觀察、類比等手段,尋求因式分解與因數(shù)分解之間的關系,培養(yǎng)學生的觀察能力,進一步發(fā)展學生的類比思想。

 。2)由整式乘法的逆運算過渡到因式分解,發(fā)展學生的逆向思維能力。

  (3)通過對分解因式與整式的乘法的觀察與比較,培養(yǎng)學生的分析問題能力與綜合應用能力。

 。ㄈ、情感態(tài)度與價值觀:讓學生初步感受對立統(tǒng)一的辨證觀點以及實事求是的科學態(tài)度。

  二、教學重點和難點

  重點:因式分解的概念及提公因式法。

  難點:正確找出多項式各項的公因式及分解因式與整式乘法的.區(qū)別和聯(lián)系。

  三、教學過程

  教學環(huán)節(jié):

  活動1:復習引入

  看誰算得快:用簡便方法計算:

 。1)7/9 ×13-7/9 ×6+7/9 ×2= ;

 。2)-2.67×132+25×2.67+7×2.67= ;

 。3)992–1= 。

  設計意圖:

  如果說學生對因式分解還相當陌生的話,相信學生對用簡便方法進行計算應該相當熟悉.引入這一步的目的旨在讓學生通過回顧用簡便方法計算——因數(shù)分解這一特殊算法,使學生通過類比很自然地過渡到正確理解因式分解的概念上,從而為因式分解的掌握掃清障礙,本環(huán)節(jié)設計的計算992–1的值是為了降低下一環(huán)節(jié)的難度,為下一環(huán)節(jié)的理解搭一個臺階.

  注意事項:學生對于(1)(2)兩小題逆向利用乘法的分配律進行運算的方法是很熟悉,對于第(3)小題的逆向利用平方差公式的運算則有一定的困難,因此,有必要引導學生復習七年級所學過的整式的乘法運算中的平方差公式,幫助他們順利地逆向運用平方差公式。

  活動2:導入課題

  P165的探究(略);

  2. 看誰想得快:993–99能被哪些數(shù)整除?你是怎么得出來的?

  設計意圖:

  引導學生把這個式子分解成幾個數(shù)的積的形式,繼續(xù)強化學生對因數(shù)分解的理解,為學生類比因式分解提供必要的精神準備。

  活動3:探究新知

  看誰算得準:

  計算下列式子:

  (1)3x(x-1)= ;

 。2)(a+b+c)= ;

  (3)(+4)(-4)= ;

 。4)(-3)2= ;

  (5)a(a+1)(a-1)= ;

  根據(jù)上面的算式填空:

  (1)a+b+c= ;

 。2)3x2-3x= ;

  (3)2-16= ;

 。4)a3-a= ;

 。5)2-6+9= 。

  在第一組的整式乘法的計算上,學生通過對第一組式子的觀察得出第二組式子的結果,然后通過對這兩組式子的結果的比較,使學生對因式分解有一個初步的意識,由整式乘法的逆運算逐步過渡到因式分解,發(fā)展學生的逆向思維能力。

  活動4:歸納、得出新知

  比較以下兩種運算的聯(lián)系與區(qū)別:

  a(a+1)(a-1)= a3-a

  a3-a= a(a+1)(a-1)

  在第三環(huán)節(jié)的運算中還有其它類似的例子嗎?除此之外,你還能找到類似的例子嗎?

八年級數(shù)學教案 篇3

  單元(章)主題第三章 直棱柱任課教師與班級

  本課(節(jié))課題3.1 認識直棱柱第 1 課時 / 共 課時

  教學目標(含重點、難點)及

  設置依據(jù)教學目標

  1、了解多面體、直棱柱的有關概念.

  2、會認直棱柱的側棱、側面、底面.

  3、了解直棱柱的側棱互相平行且相等,側面是長方形(含正方形)等特征.

  教學重點與難點

  教學重點:直棱柱的有關概念.

  教學難點:本節(jié)的例題描述一個物體的形狀,把它看成怎樣的兩個幾何體的組合,都需要一定的空間想象能力和表達能力.

  教學準備每個學生準備一個幾何體,(分好學習小組)教師準備各種直棱柱和長方體、立方體模型

  教 學 過 程

  內容與環(huán)節(jié)預設、簡明設計意圖二度備課(即時反思與糾正)

  一、創(chuàng)設情景,引入新課

  師:在現(xiàn)實生活中,像筆筒、西瓜、草莓、禮品盒等都呈現(xiàn)出了立體圖形的形狀,在你身邊,還有沒有這樣類似的立體圖形呢?

  析:學生很容易回答出更多的答案。

  師:(繼續(xù)補充)有許多著名的建筑,像古埃及的金字塔、巴黎的艾菲爾鐵塔、美國的迪思尼樂園、德國的古堡風光,中國北京的西客站,它們也是由不同的立體圖形組成的;那么立體圖形在生活中有著怎樣的廣泛的應用呢?瞧,食物中的冰激凌、櫻桃、端午節(jié)的粽子等。

  二、合作交流,探求新知

  1.多面體、棱、頂點概念:

  師:(出示長方體,立方體模型)這是我們熟悉的立體圖形,它們是有幾個平面圍成的?都有什么相同特點?

  析:一個同學回答,然后小結概念:由若干個平面圍成的幾何體,叫做多面體。多面體上相鄰兩個面之間的交線叫做多面體的棱,幾個面的.公共頂點叫做多面體的頂點

  2.合作交流

  師:以學習小組為單位,拿出事先準備好的幾何體。

  學生活動:(讓學生從中閉眼摸出某些幾何體,邊摸邊用語言描

  述其特征。)

  師:同學們再討論一下,能否把自己的語言轉化為數(shù)學語言。

  學生活動:分小組討論。

  說明:真正體現(xiàn)了“以生為本”。讓學生在主動探究中發(fā)現(xiàn)知識,充分發(fā)揮了學生的主體作用和教師的主導作用,課堂氣氛活躍,教師教的輕松,學生學的愉快。

  師:請大家找出與長方體,立方體類似的物體或模型。

  析:舉出實例。(找出區(qū)別)

  師:(總結)棱柱分為之直棱柱和斜棱柱。(根據(jù)其側棱與底面是否垂直)根據(jù)底面多邊形的邊數(shù)而分為直三棱柱、直四棱柱……直棱柱有以下特征:

  有上、下兩個底面,底面是平面圖形中的多邊形,而且彼此全等;

  側面都是長方形含正方形。

  長方體和正方體都是直四棱柱。

  3.反饋鞏固

  完成“做一做”

  析:由第(3)小題可以得到:

  直棱柱的相鄰兩條側棱互相平行且相等。

  4.學以至用

  出示例題。(先請學生單獨考慮,再作講解)

  析:引導學生著重觀察首飾盒的側面是什么圖形,上底面是什么圖形,然后與直棱柱的特征作比較。(使學生養(yǎng)成發(fā)現(xiàn)問題,解決問題的創(chuàng)造性思維習慣)

  最后完成例題中的“想一想”

  5.鞏固練習(學生練習)

  完成“課內練習”

  三、小結回顧,反思提高

  師:我們這節(jié)課的重點是什么?哪些地方比較難學呢?

  合作交流后得到:重點直棱柱的有關概念。

  直棱柱有以下特征:

  有上、下兩個底面,底面是平面圖形中的多邊形,而且彼此全等;

  側面都是長方形含正方形。

  例題中的把首飾盒看成是由兩個直三棱柱、直四棱柱的組合,或著是兩個直四棱柱的組合需要一定的空間想象能力和表達能力。這一點比較難。

  板書設計

  作業(yè)布置或設計作業(yè)本及課時特訓

八年級數(shù)學教案 篇4

  教學任務分析

  教學目標

  知識技能

  一、類比同分母分數(shù)的加減,熟練掌握同分母分式的加減運算.

  二、類比異分母分數(shù)的加減及通分過程,熟練掌握異分母分式的加減及通分過程與方法.

  數(shù)學思考

  在分式的加減運算中,體驗知識的化歸聯(lián)系和思維靈活性,培養(yǎng)學生整體思考的分析問題能力.

  解決問題

  一、會進行同分母和異分母分式的加減運算.

  二、會解決與分式的加減有關的簡單實際問題.

  三、能進行分式的加、剪、乘、除、乘方的混合運算.

  情感態(tài)度

  通過師生活動、學生自我探究,讓學生充分參與到數(shù)學學習的過程中來,使學生在整體思考中開闊視野,養(yǎng)成良好品德,滲透化歸對立統(tǒng)一的辯證觀點.

  重點

  分式的加減法.

  難點

  異分母分式的加減法及簡單的分式混合運算.

  教學流程安排

  活動流程圖

  活動內容和目的

  活動1:問題引入

  活動2:學習同分母分式的加減

  活動3:探究異分母分式的加減

  活動4:發(fā)現(xiàn)分式加減運算法則

  活動5:鞏固練習、總結、作業(yè)

  向學生提出兩個實際問題,使學生體會學習分式加減的必要性及迫切性,創(chuàng)始問題情境,激發(fā)學生的學習熱情.

  類比同分母分數(shù)的加減,讓學生歸納同分母分式的加減的方法并進行簡單運算.

  回憶異分母分數(shù)的加減,使學生歸納異分母分式的加減的方法.

  通過以上探究過程,讓學生發(fā)現(xiàn)分式加減運算的法則,通過分式在物理學的應用及簡單混合運算,使學生深化對分式加減運算法則的理解.

  通過練習、作業(yè)進一步鞏固分式的運算.

  課前準備

  教具

  學具

  補充材料

  課件

  教學過程設計

  問題與情境

  師生行為

  設計意圖

 。刍顒樱保

  1.問題一:比較電腦與手抄的錄入時間.

  2.問題二;幫幫小明算算時間

  所需時間為,

  如何求出的值?

  3.這里用到了分式的加減,提出本節(jié)課的'主題.

  教師通過課件展示問題.學生積極動腦解決問題,提出困惑:

  分式如何進行加減?

  通過實際問題中要用到分式的加減,從而提出問題,讓學生思考,可以激發(fā)學生探究的熱情.

 。刍顒樱玻

  1.提出小學數(shù)學中一道簡單的分數(shù)加法題目.

  2.用課件引導學生用類比法,歸納總結同分母分式加法法則.

  3.教師使用課件展示[例1]

  4.教師通過課件出兩個小練習.

  教師提出問題,學生回答,進一步回憶同分母分數(shù)加減的運算法則.

  學生在教師的引導下,探索同分母分式加減的運算方法.

  通過例題,讓學生和教師一起體會同分母分式加減運算,同時教師指出運算中的.注意事項.

  由兩個學生板書自主完成練習,教師巡視指導學生練習.

  運用類比的方法,從學生熟知的知識入手,有利于學生接受新知識.

  師生共同完成例題,使學生感受到自己很棒,自己能夠通過思考學會新知識,提高自信心.

  讓學生進一步體會同分母分式的加減運算.

 。刍顒樱常

  1.教師以練習的形式通過“自我發(fā)展的平臺”,向學生展示這樣一道題.

  2.教師提出思考題:

  異分母的分式加減法要遵守什么法則呢?

  教師展示一道異分母分式的加減題目,學生自然就想到異分母分數(shù)的加減.

  教師通過課件引導學生思考,學生會想到小學數(shù)學中,異分母分數(shù)的加減法則,從而聯(lián)想到異分母分式的加減法則,教師引導學生歸納出異分母分式加減運算的方法思路.

  由學生主動提出解決問題的方法,從而激發(fā)了學生探究問題的興趣.

  通過學生的自我探究、歸納總結,讓學生充分參與到數(shù)學學習的過程中來,體會學習的樂趣.

 。刍顒樱矗

  1.在語言敘述分式加減法則的基礎上,用字母表示分式的加減法法則.

  2.教師使用課件展示[例2]

  3.教師通過課件出4個小練習.

  4.[例3]在圖的電路中,已測定CAD支路的電阻是R1歐姆,又知CBD支路的電阻R2比R1大50歐姆,根據(jù)電學的有關定律可知總電阻R與R1R2滿足關系式 ;

  試用含有R1的式子表示總電阻R

 。担處熓褂谜n件展示[例4]

  教師提出要求,由學生說出分式加減法則的字母表示形式.

  通過例題,讓學生和教師一起體會異分母分式加減運算,同時教師重點演示通分的過程.

  教師引導學生找出每道題的方法、如何找最簡公分母及時指出學生在通分中出現(xiàn)的問題,由學生自己完成.

  教師引導學生尋找解決問題的突破口,由師生共同完成,對比物理學中的計算,體會各學科知識之間的聯(lián)系.

  分式的混合運算,師生共同完成,教師提醒學生注意運算順序,通分要仔細.

  由此練習學生的抽象表達能力,讓學生體會數(shù)學符號語言的精練.

  讓學生體會運用的公式解決問題的過程.

  鍛煉學生運用法則解決問題的能力,既準確又有速度.

  提高學生的計算能力.

  通過分式在物理學中的應用,加強了學科之間的聯(lián)系,使學生開闊了視野,讓學生體會到學習數(shù)學的重要性,體會各學科全面發(fā)展的重要性,提高學習的興趣.

  提高學生綜合應用知識的能力.

 。刍顒樱担

  1.教師通過課件出2個分式混合運算的小練習.

  2.總結:

  a)這節(jié)課我們學習了哪些知識?你能說一說嗎?

  b)⑴方法思路;

  c)⑵計算中的主意事項;

  d)⑶結果要化簡.

  3.作業(yè):

  a)教科書習題16.2第4、5、6題.

  學生練習、鞏固.

  教師巡視指導.

  學生完成、交流.,師生評價.

  教師引導學生回憶本節(jié)課所學內容,學生回憶交流,師生共同補充完善.

  教師布置作業(yè).

  鍛煉學生運用法則進行運算的能力,提高準確性及速度.

  提高學生歸納總結的能力.

八年級數(shù)學教案 篇5

  課題:三角形全等的判定(三)

  教學目標:

  1、知識目標:

  (1)掌握已知三邊畫三角形的方法;

  (2)掌握邊邊邊公理,能用邊邊邊公理證明兩個三角形全等;

  (3)會添加較明顯的輔助線.

  2、能力目標:

  (1)通過尺規(guī)作圖使學生得到技能的訓練;

  (2)通過公理的初步應用,初步培養(yǎng)學生的邏輯推理能力.

  3、情感目標:

  (1)在公理的形成過程中滲透:實驗、觀察、歸納;

  (2)通過變式訓練,培養(yǎng)學生“舉一反三”的學習習慣.

  教學重點:SSS公理、靈活地應用學過的各種判定方法判定三角形全等。

  教學難點:如何根據(jù)題目條件和求證的結論,靈活地選擇四種判定方法中最適當?shù)姆椒ㄅ卸▋蓚三角形全等。

  教學用具:直尺,微機

  教學方法:自學輔導

  教學過程:

  1、新課引入

  投影顯示

  問題:有一塊三角形玻璃窗戶破碎了,要去配一塊新的,你最少要對窗框測量哪幾個數(shù)據(jù)?如果你手頭沒有測量角度的儀器,只有尺子,你能保證新配的玻璃恰好不大不小嗎?

  這個問題讓學生議論后回答,他們的答案或許只是一種感覺。于是教師要引導學生,抓住問題的本質:三角形的三個元素――三條邊。

  2、公理的獲得

  問:通過上面問題的分析,滿足什么條件的兩個三角形全等?

  讓學生粗略地概括出邊邊邊的公理。然后和學生一起畫圖做實驗,根據(jù)三角形全等定義對公理進行驗證。(這里用尺規(guī)畫圖法)

  公理:有三邊對應相等的`兩個三角形全等。

  應用格式: (略)

  強調說明:

  (1)、格式要求:先指出在哪兩個三角形中證全等;再按公理順序列出三個條件,并用括號把它們括在一起;寫出結論。

  (2)、在應用時,怎樣尋找已知條件:已知條件包含兩部分,一是已知中給出的,二時圖形中隱含的(如公共邊)

  (3)、此公理與前面學過的公理區(qū)別與聯(lián)系

  (4)、三角形的穩(wěn)定性:演示三角形的穩(wěn)定性與四邊形的不穩(wěn)定性。在演示中,其實可以去掉組成三角形的一根小木條,以顯示三角形條件不可減少,這也為下面總結“三角形全等需要有3全獨立的條件”做好了準備,進行了溝通。

  (5)說明AAA與SSA不能判定三角形全等。

  3、公理的應用

  (1) 講解例1。學生分析完成,教師注重完成后的點評。

  例1 如圖△ABC是一個鋼架,AB=ACAD是連接點A與BC中點D的支架

  求證:AD⊥BC

  分析:(設問程序)

  (1)要證AD⊥BC只要證什么?

  (2)要證∠1=

  只要證什么?(3)要證∠1=∠2只要證什么?

  (4)△ABD和△ACD全等的條件具備嗎?依據(jù)是什么?

  證明:(略)

八年級數(shù)學教案 篇6

  5 14.3.2.2 等邊三角形(二)

  教學目標

  掌握等邊三角形的性質和判定方法.

  培養(yǎng)分析問題、解決問題的能力.

  教學重點

  等邊三角形的性質和判定方法.

  教學難點

  等邊三角形性質的應用

  教學過程

  I創(chuàng)設情境,提出問題

  回顧上節(jié)課講過的等邊三角形的有關知識

  1.等邊三角形是軸對稱圖形,它有三條對稱軸.

  2.等邊三角形每一個角相等,都等于60°

  3.三個角都相等的三角形是等邊三角形.

  4.有一個角是60°的等腰三角形是等邊三角形.

  其中1、2是等邊三角形的.性質;3、4的等邊三角形的判斷方法.

  II例題與練習

  1.△ABC是等邊三角形,以下三種方法分別得到的△ADE都是等邊三角形嗎,為什么?

 、僭谶匒B、AC上分別截取AD=AE.

 、谧鳌螦DE=60°,D、E分別在邊AB、AC上.

  ③過邊AB上D點作DE∥BC,交邊AC于E點.

  2.已知:如右圖,P、Q是△ABC的邊BC上的兩點,,并且PB=PQ=QC=AP=AQ.求∠BAC的大。

  分析:由已知顯然可知三角形APQ是等邊三角形,每個角都是60°.又知△APB與△AQC都是等腰三角形,兩底角相等,由三角形外角性質即可推得∠PAB=30°.

  III課堂小結

  1、等腰三角形和性質

  2、等腰三角形的條件

  V布置作業(yè)

  1.教科書第147頁練習1、2

  2.選做題:

  (1)教科書第150頁習題14.3第ll題.

  (2)已知等邊△ABC,求平面內一點P,滿足A,B,C,P四點中的任意三點連線都構成等腰三角形.這樣的點有多少個?

 。3)《課堂感悟與探究》

  5

八年級數(shù)學教案 篇7

  教學建議

  1、平行線等分線段定理

  定理:如果一組平行線在一條直線上截得的線段相等,那么在其他需直線上截得的線段也相等。

  注意事項:定理中的平行線組是指每相鄰的兩條距離都相等的特殊的平行線組;它是由三條或三條以上的平行線組成。

  定理的作用:可以用來證明同一直線上的線段相等;可以等分線段。

  2、平行線等分線段定理的推論

  推論1:經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰。

  推論2:經(jīng)過三角形一邊的中點與另一邊平行的直線,必平分第三邊。

  記憶方法:“中點”+“平行”得“中點”。

  推論的用途:(1)平分已知線段;(2)證明線段的倍分。

  重難點分析

  本節(jié)的重點是平行線等分線段定理。因為它不僅是推證三角形、梯形中位線定理的基礎,而且是第五章中“平行線分線段成比例定理”的基礎。

  本節(jié)的難點也是平行線等分線段定理。由于學生初次接觸到平行線等分線段定理,在認識和理解上有一定的難度,在加上平行線等分線段定理的兩個推論以及各種變式,學生難免會有應接不暇的感覺,往往會有感覺新鮮有趣但掌握不深的情況發(fā)生,教師在教學中要加以注意。

  教法建議

  平行線等分線段定理的引入

  生活中有許多平行線等分線段定理的例子,并不陌生,平行線等分線段定理的引入可從下面幾個角度考慮:

 、購纳顚嵗,如刻度尺、作業(yè)本、柵欄、等等;

 、诳捎脝栴}式引入,開始時設計一系列與平行線等分線段定理概念相關的問題由學生進行思考、研究,然后給出平行線等分線段定理和推論。

  教學設計示例

  一、教學目標

  1、使學生掌握平行線等分線段定理及推論。

  2、能夠利用平行線等分線段定理任意等分一條已知線段,進一步培養(yǎng)學生的作圖能力。

  3、通過定理的變式圖形,進一步提高學生分析問題和解決問題的能力。

  4、通過本節(jié)學習,體會圖形語言和符號語言的和諧美

  二、教法設計

  學生觀察發(fā)現(xiàn)、討論研究,教師引導分析

  三、重點、難點

  1、教學重點:平行線等分線段定理

  2、教學難點:平行線等分線段定理

  四、課時安排

  l課時

  五、教具學具

  計算機、投影儀、膠片、常用畫圖工具

  六、師生互動活動設計

  教師復習引入,學生畫圖探索;師生共同歸納結論;教師示范作圖,學生板演練習

  七、教學步驟

  【復習提問】

  1、什么叫平行線?平行線有什么性質。

  2、什么叫平行四邊形?平行四邊形有什么性質?

  【引入新課】

  由學生動手做一實驗:每個同學拿一張橫格紙,首先觀察橫線之間有什么關系?(橫線是互相平等的,并且它們之間的距離是相等的),然后在橫格紙上畫一條垂直于橫線的直線 ,看看這條直線被相鄰橫線截成的各線段有什么關系?(相等,為什么?)這時在橫格紙上再任畫一條與橫線相交的直線 ,測量它被相鄰橫線截得的線段是否也相等?

 。ㄒ龑W生把做實驗的條件和得到的結論寫成一個命題,教師總結,由此得到平行線等分線段定理)

  平行線等分線段定理:如果一組平行線在一條直線上掛得的線段相等,那么在其他直線上截得的線段也相等。

  注意:定理中的“一組平行線”指的是一組具有特殊條件的平行線,即每相鄰兩條平行線間的距離都相等的特殊平行線組,這一點必須使學生明確。

  下面我們以三條平行線為例來證明這個定理(由學生口述已知,求證)。

  已知:如圖,直線 , 。

  求證: 。

  分析1:如圖把已知相等的線段平移,與要求證的兩條線段組成三角形(也可應用平行線間的平行線段相等得 ),通過全等三角形性質,即可得到要證的結論。

 。ㄒ龑W生找出另一種證法)

  分析2:要證的兩條線段分別是梯形的腰,我們借助于前面常用的輔助線,把梯形轉化為平行四邊形和三角形,然后再利用這些熟悉的知識即可證得 。

  證明:過 點作 分別交 、 于點 、 ,得 和 ,如圖。

  ∴

  ∵ ,

  ∴

  又∵ , ,

  ∴

  ∴

  為使學生對定理加深理解和掌握,把知識學活,可讓學生認識幾種定理的變式圖形,如圖(用計算機動態(tài)演示)。

  引導學生觀察下圖,在梯形 中, , ,則可得到 ,由此得出推論 1。

  推論1:經(jīng)過梯形一腰的.中點與底平行的直線,必平分另一腰。

  再引導學生觀察下圖,在 中, , ,則可得到 ,由此得出推論2。

  推論2:經(jīng)過三角形一邊的中點與另一邊平行的直線必平分第三邊。

  注意:推論1和推論2也都是很重要的定理,在今后的論證和計算中經(jīng)常用到,因此,要求學生必須掌握好。

  接下來講如何利用平行線等分線段定理來任意等分一條線段。

  例 已知:如圖,線段 。

  求作:線段 的五等分點。

  作法:①作射線 。

 、谠谏渚 上以任意長順次截取 。

 、圻B結 。

 、苓^點 。 、 、 分別作 的平行線 、 、 、 ,分別交 于點 、 、 、 。

  、 、 、 就是所求的五等分點。

 。ㄕf明略,由學生口述即可)

  【總結、擴展】

  小結:

 。╨)平行線等分線段定理及推論。

  (2)定理的證明只取三條平行線,是在較簡單的情況下證明的,對于多于三條的平行線的情況,也可用同樣方法證明。

 。3)定理中的“平行線組”,是指每相鄰兩條平行線間的距離都相等的特殊平行線組。

 。4)應用定理任意等分一條線段。

  八、布置作業(yè)

  教材P188中A組2、9

  九、板書設計

  十、隨堂練習

  教材P182中1、2

八年級數(shù)學教案 篇8

  活動一、創(chuàng)設情境

  引入:首先我們來看幾道練習題(幻燈片)

  (復習:平行線及三角形全等的知識)

  下面我們一起來欣賞一組圖片(幻燈片)

  [學生活動]觀看后答問題:你看到了哪些圖形?

  (各式各樣的圖案裝點著我們的生活,使我們這個世界變得如此美麗,那么,請你用兩個相同的300的三角板,看能拼出哪些圖案?)

  [學生活動]小組合作交流,拼出圖案的類型。

  同學們所拼的圖形中,除了有我們學過的三角形,還有很多四邊形,今天,我們一起來研究四邊形,探索四邊形的性質。(幻燈片出示課題)

  活動二、合作交流,探求新知

  問題(1):為什么我們把(甲)圖叫平行四邊形,而(乙)圖不是平行四邊形呢?你怎么知道這些四邊形是平行四邊形?(拿一模型,幻燈片)

  [學生活動]認真觀察、討論、思考、推理。

  鼓勵學生交流,并是試著用自己的語言概括出平行四邊形的定義。

  學生交流,歸納:有兩組對邊分別平行的四邊形叫做平行四邊形。

  并說明:平行四邊形不相鄰的兩個頂點連成的線段叫它的對角線。

  平行四邊形用“”表示,如圖平行四邊形ABCD記作“ABCD”讀作:平行四邊形ABCD。(幻燈片出示揭示課題)

  問題(2):由平行四邊形的定義,我們知道平行四邊形的兩組對邊分別平行,平行四邊形還有什么特征呢?

  [學生活動]動手操作,小組演示交流。鼓勵學生用多種方法探究。

  小結平行四邊形的性質:

  平行四邊形的.對邊相等

  平行四邊形的對角相等(這里要弄清對角、對邊兩個名詞)

  你能演示你的結論是如何得到的嗎?(學生演示)

  你能證明嗎?(幻燈片出示證明題)

  [學生活動]先分析思路尤其是輔助線,請學生上黑板證明。

  自己完成性質2的證明。

  活動三、運用新知

  性質掌握了嗎?一起來看一道題目:

  嘗試練習(幻燈片)例1

  [學生活動]作嘗試性解答。

【八年級數(shù)學教案】相關文章:

八年級的數(shù)學教案12-14

八年級數(shù)學教案06-18

【薦】八年級數(shù)學教案12-03

【熱】八年級數(shù)學教案12-07

【精】八年級數(shù)學教案12-04

八年級數(shù)學教案【精】12-04

八年級數(shù)學教案【熱門】12-03

八年級數(shù)學教案【薦】12-06

八年級數(shù)學教案【推薦】12-04

【推薦】八年級數(shù)學教案12-05