丁香婷婷网,黄色av网站裸体无码www,亚洲午夜无码精品一级毛片,国产一区二区免费播放

八年級數(shù)學(xué)教案

時間:2022-08-21 11:47:21 八年級數(shù)學(xué)教案 我要投稿

精選八年級數(shù)學(xué)教案集合7篇

  作為一名為他人授業(yè)解惑的教育工作者,時常需要編寫教案,教案有助于學(xué)生理解并掌握系統(tǒng)的知識。那么教案應(yīng)該怎么寫才合適呢?下面是小編收集整理的八年級數(shù)學(xué)教案7篇,歡迎大家分享。

精選八年級數(shù)學(xué)教案集合7篇

八年級數(shù)學(xué)教案 篇1

  [教學(xué)分析]

  勾股定理是揭示三角形三條邊數(shù)量關(guān)系的一條非常重要的性質(zhì),也是幾何中最重要的定理之一。它是解直角三角形的主要依據(jù)之一,同時在實際生活中具有廣泛的用途,“數(shù)學(xué)源于生活,又用于生活”正是這章書所體現(xiàn)的主要思想。教材在編寫時注意培養(yǎng)學(xué)生的動手操作能力和分析問題的能力,通過實際操作,使學(xué)生獲得較為直觀的印象;通過聯(lián)系比較、探索、歸納,幫助學(xué)生理解勾股定理,以利于進(jìn)行正確的應(yīng)用。

  本節(jié)教科書從畢達(dá)哥拉斯觀察地面發(fā)現(xiàn)勾股定理的傳說談起,讓學(xué)生通過觀察計算一些以直角三角形兩條直角邊為邊長的小正方形的面積與以斜邊為邊長的正方形的面積的關(guān)系,發(fā)現(xiàn)兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積,從而發(fā)現(xiàn)勾股定理,這時教科書以命題的形式呈現(xiàn)了勾股定理。關(guān)于勾股定理的證明方法有很多,教科書正文中介紹了我國古人趙爽的證法。之后,通過三個探究欄目,研究了勾股定理在解決實際問題和解決數(shù)學(xué)問題中的應(yīng)用,使學(xué)生對勾股定理的作用有一定的認(rèn)識。

  [教學(xué)目標(biāo)]

  一、 知識與技能

  1、探索直角三角形三邊關(guān)系,掌握勾股定理,發(fā)展幾何思維。

  2、應(yīng)用勾股定理解決簡單的實際問題

  3學(xué)會簡單的合情推理與數(shù)學(xué)說理

  二、 過程與方法

  引入兩段中西關(guān)于勾股定理的史料,激發(fā)同學(xué)們的興趣,引發(fā)同學(xué)們的思考。通過動手操作探索與發(fā)現(xiàn)直角三角形三邊關(guān)系,經(jīng)歷小組協(xié)作與討論,進(jìn)一步發(fā)展合作交流能力和數(shù)學(xué)表達(dá)能力,并感受勾股定理的應(yīng)用知識。

  三、 情感與態(tài)度目標(biāo)

  通過對勾股定理歷史的了解,感受數(shù)學(xué)文化,激發(fā)學(xué)習(xí)興趣;在探究活動中,學(xué)生親自動手對勾股定理進(jìn)行探索與驗證,培養(yǎng)學(xué)生的合作交流意識和探索精神,以及自主學(xué)習(xí)的能力。

  四、 重點與難點

  1、探索和證明勾股定理

  2熟練運用勾股定理

  [教學(xué)過程]

  一、創(chuàng)設(shè)情景,揭示課題

  1、教師展示圖片并介紹第一情景

  以中國最早的一部數(shù)學(xué)著作——《周髀算經(jīng)》的開頭為引,介紹周公向商高請教數(shù)學(xué)知識時的對話,為勾股定理的出現(xiàn)埋下伏筆。

  周公問:“竊聞乎大夫善數(shù)也,請問古者包犧立周天歷度.夫天不可階而升,地不可得尺寸而度,請問數(shù)安從出?”商高答:“數(shù)之法出于圓方,圓出于方,方出于矩,矩出九九八十一,故折矩以為勾廣三,股修四,徑隅五。既方其外,半之一矩,環(huán)而共盤.得成三、四、五,兩矩共長二十有五,是謂積矩。故禹之所以治天下者,此數(shù)之所由生也!

  2、教師展示圖片并介紹第二情景

  畢達(dá)哥拉斯是古希臘著名的數(shù)學(xué)家。相傳在2500年以前,他在朋友家做客時,發(fā)現(xiàn)朋友家用地磚鋪成的地面反映了直角三角形的某種特性。

  二、師生協(xié)作,探究問題

  1、現(xiàn)在請你也動手?jǐn)?shù)一下格子,你能有什么發(fā)現(xiàn)嗎?

  2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有這樣的特點呢?

  3、你能得到什么結(jié)論嗎?

  三、得出命題

  勾股定理:如果直角三角形的兩直角邊長分別為a、b,斜邊長為c,那么,即直角三角形兩直角邊的平方和等于斜邊的平方。解釋: 由于我國古代把直角三角形中較短的`直角邊稱為勾,較長的邊稱為股,斜邊稱為弦,所以,把它叫做勾股定理。

  四、勾股定理的證明

  趙爽弦圖的證法(圖2)

  第一種方法:邊長為 的正方形可以看作是由4個直角邊分別為 、 ,斜邊為 的直角三角形圍在外面形成的。因為邊長為 的正方形面積加上4個直角三角形的面積等于外圍正方形的面積,所以可以列出等式 ,化簡得 。

  第二種方法:邊長為 的正方形可以看作是由4個直角邊分別為 、 ,斜邊為 的

  角三角形拼接形成的(虛線表示),不過中間缺出一個邊長為 的正方形“小洞”。

  因為邊長為 的正方形面積等于4個直角三角形的面積加上正方形“小洞”的面積,所以可以列出等式 ,化簡得 。

  這種證明方法很簡明,很直觀,它表現(xiàn)了我國古代數(shù)學(xué)家趙爽高超的證題思想和對數(shù)學(xué)的鉆研精神,是我們中華民族的驕傲。

  五、應(yīng)用舉例,拓展訓(xùn)練,鞏固反饋。

  勾股定理的靈活運用勾股定理在實際的生產(chǎn)生活當(dāng)中有著廣泛的應(yīng)用。勾股定理的發(fā)現(xiàn)和使用解決了許多生活中的問題,今天我們就來運用勾股定理解決一些問題,你可以嗎?試一試。

  例題:小明媽媽買了一部29英寸(74厘米)的電視機,小明量了電視機的屏幕后,發(fā)現(xiàn)屏幕只有58厘長和46厘米寬,他覺得一定是售貨員搞錯了,你同意他的想法嗎?你能解釋這是為什么嗎?

  六、歸納總結(jié)1、內(nèi)容總結(jié):探索直角三角形兩直角邊的平方和等于斜邊的平方,利于勾股定理,解決實際問題

  2、方法歸納:數(shù)方格看圖找關(guān)系,利用面積不變的方法。用直角三角形三邊表示正方形的面積觀察歸納注意畫一個直角三角形表示正方形面積,再次驗證自己的發(fā)現(xiàn)。

  七、討論交流

  讓學(xué)生發(fā)表自己的意見,提出他們模糊不清的概念,給他們一個梳理知識的機會,通過提示性的引導(dǎo),讓學(xué)生對勾股定理的概念豁然開朗,為后面勾股定理的應(yīng)用打下基礎(chǔ)。

  我們班的同學(xué)很聰明。大家很快就通過數(shù)格子發(fā)現(xiàn)了勾股定理的規(guī)律。還有什么地方不懂的嗎?跟大家一起來交流一下。請同學(xué)們課后在反思天地中都發(fā)表一下自己的學(xué)習(xí)心得。

八年級數(shù)學(xué)教案 篇2

  一、教學(xué)目標(biāo):

  1、理解極差的定義,知道極差是用來反映數(shù)據(jù)波動范圍的一個量.

  2、會求一組數(shù)據(jù)的極差.

  二、重點、難點和難點的突破方法

  1、重點:會求一組數(shù)據(jù)的極差.

  2、難點:本節(jié)課內(nèi)容較容易接受,不存在難點.

  三、課堂引入:

  下表顯示的是上海20xx年2月下旬和20xx年同期的每日最高氣溫,如何對這兩段時間的氣溫進(jìn)行比較呢?

  從表中你能得到哪些信息?

  比較兩段時間氣溫的高低,求平均氣溫是一種常用的方法.

  經(jīng)計算可以看出,對于2月下旬的'這段時間而言,20xx年和20xx年上海地區(qū)的平均氣溫相等,都是12度.

  這是不是說,兩個時段的氣溫情況沒有什么差異呢?

  根據(jù)兩段時間的氣溫情況可繪成的折線圖.

  觀察一下,它們有區(qū)別嗎?說說你觀察得到的結(jié)果.

  用一組數(shù)據(jù)中的最大值減去最小值所得到的差來反映這組數(shù)據(jù)的變化范圍.用這種方法得到的差稱為極差(range).

  四、例習(xí)題分析

  本節(jié)課在教材中沒有相應(yīng)的例題,教材P152習(xí)題分析

  問題1可由極差計算公式直接得出,由于差值較大,結(jié)合本題背景可以說明該村貧富差距較大.問題2涉及前一個學(xué)期統(tǒng)計知識首先應(yīng)回憶復(fù)習(xí)已學(xué)知識.問題3答案并不唯一,合理即可。

八年級數(shù)學(xué)教案 篇3

  教學(xué)指導(dǎo)思想與理論依據(jù)

  《基礎(chǔ)教育課程改革綱要(試行)》指出:“大力推進(jìn)多媒體信息技術(shù)在教學(xué)過程中的普遍應(yīng)用,促進(jìn)信息技術(shù)與學(xué)科課程的整合,逐步實現(xiàn)教學(xué)內(nèi)容的呈現(xiàn)方式、學(xué)生的學(xué)習(xí)方式、教師的教學(xué)方式和師生互動方式的變革,充分發(fā)揮信息技術(shù)的優(yōu)勢,為學(xué)生的學(xué)習(xí)和發(fā)展提供豐富多彩的教育環(huán)境和有力的學(xué)習(xí)工具! 教師運用現(xiàn)代多媒體信息技術(shù)對教學(xué)活動進(jìn)行創(chuàng)造性設(shè)計,發(fā)揮計算機輔助教學(xué)的特有功能,把信息技術(shù)和數(shù)學(xué)教學(xué)的學(xué)科特點結(jié)合起來,可以使教學(xué)的表現(xiàn)形式更加形象化、多樣化、視覺化,有利于充分揭示數(shù)學(xué)概念的形成與發(fā)展,數(shù)學(xué)思維的過程和實質(zhì),展示數(shù)學(xué)思維的形成過程,使數(shù)學(xué)課堂教學(xué)收到事半功倍的效果。

  教學(xué)內(nèi)容分析:

  本節(jié)課內(nèi)容是學(xué)生在小學(xué)階段初步了解特殊四邊形以及學(xué)過《三角形》這章的基礎(chǔ)上進(jìn)行的,在知識結(jié)構(gòu)上打破了教材的編寫順序,從整體的角度探究特殊四邊形性質(zhì)。運用多媒體教學(xué)體現(xiàn)出直觀、課容量大、容易接受的特點,為進(jìn)一步的理論證明及應(yīng)用起著提供數(shù)據(jù)和宏觀指導(dǎo)作用,使學(xué)生學(xué)習(xí)本章具體內(nèi)容時知道身在何處,使知識體系更加系統(tǒng)。本節(jié)課內(nèi)容是四邊形這章的理論基礎(chǔ),在該章占有非常重要的地位。

  學(xué)生情況分析:

  本班經(jīng)歷了一年多課改實踐,學(xué)生對運用現(xiàn)代多媒體信息技術(shù)的教學(xué)方式有濃厚的興趣,能運用《幾何畫板》這一工具進(jìn)行簡單的操作,形成自主探索和合作交流的學(xué)風(fēng),從而樂于在教師的指導(dǎo)下主動與同學(xué)探索、發(fā)現(xiàn)、歸納、經(jīng)歷數(shù)學(xué)知識于實踐的過程。

  教學(xué)方式與教學(xué)手段說明:

  本節(jié)課充分利用現(xiàn)有的先進(jìn)教學(xué)設(shè)備(兩名學(xué)生一臺電腦),利用筆者自制,借助《幾何畫板》把學(xué)生帶入數(shù)學(xué)模擬實驗室,以研究電動門的機械原理為切入點,從學(xué)生已有的生活經(jīng)驗出發(fā),讓學(xué)生親身經(jīng)歷數(shù)學(xué)知識的形成并進(jìn)行解釋與應(yīng)用過程。組員相互配合分別測量、搜集、分析、整理特殊四邊形的`邊長、角度、對角線長度等數(shù)據(jù),并總結(jié)其性質(zhì),通過人機對話方式把靜態(tài)、抽象的幾何圖形變?yōu)閯討B(tài)、直觀地演示出來。在此過程中教師當(dāng)好課堂教學(xué)的組織者、決策者、創(chuàng)造者和參與者,教給學(xué)生自覺主動地探究新知識的方法,激發(fā)學(xué)生的思維,培養(yǎng)學(xué)生的科學(xué)精神和創(chuàng)新思維習(xí)慣,使學(xué)生獲得對數(shù)學(xué)理解的同時,在思維能力、情感態(tài)度與價值觀等多方面得到發(fā)展。

  知識與技能:

  1、初步理解特殊四邊形性質(zhì);

  2、培養(yǎng)學(xué)生自主收集、描述和分析數(shù)據(jù)的能力;

  過程與方法:

  1、了解特殊四邊形性質(zhì)的形成過程;

  2、初步了解探究新知識的一些方法;

  情感與價值觀:

  1、了解特殊四邊形在日常生活中的應(yīng)用;

  2、學(xué)生在觀察、歸納、類比及實驗教學(xué)活動中,體會成功后的喜悅;

  3、初步具有感性認(rèn)識上升到理性認(rèn)識的辯證唯物主義思想。

  教學(xué)環(huán)境:

  多媒體計算機網(wǎng)絡(luò)教室

  教學(xué)課型:

  試驗探究式

  教學(xué)重點:

  特殊四邊形性質(zhì)

  教學(xué)難點:

  特殊四邊形性質(zhì)的發(fā)現(xiàn)

  一、設(shè)置情景,提出問題

  提出問題:

  知識已生活,又服務(wù)于生活。我們經(jīng)過校門時,是否注意到電動門的機械工作原理(教師用幾何畫板演示)?

  1、電動門的網(wǎng)格和結(jié)點能組成哪些四邊形?

  2、在開(關(guān))門過程中這些四邊形是如何變化的?

  3、你還發(fā)現(xiàn)了什么?

  解決問題:

  學(xué)生猜想:包括平行四邊形、矩形、菱形、等腰梯形、直角梯形……;

  當(dāng)我們學(xué)習(xí)完本節(jié)知識后,其他問題就容易解決了。

 。ㄒ鈭D:用《幾何畫板》的動態(tài)演示生活事例,充分展示了數(shù)學(xué)的美妙,可以使學(xué)生容易進(jìn)入情境和保持積極學(xué)習(xí)狀態(tài),激起學(xué)生探究解決問題的求知欲望。)

  二、整體了解,形成系統(tǒng)

  本節(jié)課從整體角度研究特殊四邊形性質(zhì),為今后的個體研究打下良好的基礎(chǔ)。我們先研究四邊形中的特殊與一般的關(guān)系。

  提出問題:

  1、本章主要研究哪些特殊四邊形?

  2、從哪幾方面研究這些特殊四邊形?

  3、矩形、菱形后面有正方形,那么等腰梯形和直角梯形后面是否有圖形呢?假設(shè)有是什么圖形呢?如果沒有,為什么?

  解決問題:

  學(xué)生操作電腦(用幾何畫板),了解本章研究的主要圖形;教師個別指導(dǎo)。

  1、包括:平行四邊形、矩形、菱形、梯形、等腰梯形、直角梯形

  2、從邊、角、對角線、面積、周長、……等方面研究。本節(jié)課主要從邊、角、對角線三方面考慮;

  3、等腰梯形和直角梯形后面應(yīng)該是矩形,但不符合梯形定義,所以沒有圖形。

 。ㄒ鈭D: 學(xué)生自主觀察、分組討論了解本章知識結(jié)構(gòu),從而形成系統(tǒng);通過假設(shè)、猜想、推理、論證、否定假設(shè)獲得新知識)

  三、個體研究、總結(jié)性質(zhì)

  1、平行四邊形性質(zhì)

  提出問題:

  在平行四邊形的形狀、位置、大小變化過程中,請觀察數(shù)據(jù)并找出邊長、角度、對角線長度相對不變的性質(zhì)。

  解決問題:

  教師引導(dǎo)學(xué)生拖動B點(學(xué)生操作電腦),改變平行四邊形的形狀、位置、大小,并觀察數(shù)據(jù)的變化,從中找出相對不變的要素。

  在圖形變化過程中,

 。1)對邊相等;

 。2)對角相等;

 。3)通過AO=CO 、BO=DO,可得對角線互相平分;

 。4)通過鄰角互補,可得對邊平行;

 。5)內(nèi)外角和都等于360度;

 。6)鄰角互補;

  ……

  指導(dǎo)學(xué)生填表:

  平行四邊形性質(zhì)矩形性質(zhì)正方形性質(zhì)

  菱形性質(zhì)

  梯形性質(zhì)等腰梯形性質(zhì)

  直角梯形性質(zhì)

 。葘儆谄叫兴倪呅涡再|(zhì)又屬于矩形性質(zhì)可以畫箭頭)

  按照平行四邊形性質(zhì)的探索思路,分別研究:

  2、矩形性質(zhì);

  3、菱形性質(zhì);

  4、正方形性質(zhì);

  5、梯形性質(zhì);

  6、等腰梯形性質(zhì);

  7、直角梯形的性質(zhì)。

 。ㄒ鈭D: 學(xué)生運用電腦自主收集、描述、分析數(shù)據(jù),把抽象的性質(zhì)變?yōu)橹庇^化、形象化,培養(yǎng)獨立探究,自主自信,使學(xué)生體驗到科學(xué)探索的樂趣。)

  教師總結(jié):

 。ㄒ鈭D: 掌握畫箭頭的方法,使學(xué)生了解事物個體既有該事物一般性質(zhì),又有自己的特點。既清楚地表達(dá),又節(jié)省時間。)

  四、聯(lián)系生活,解決問題

  解決問題:

  學(xué)生操作電腦,觀察圖形、分組討論,教師個別指導(dǎo)。

  學(xué)生在分別演示開(關(guān))門過程中,觀察數(shù)據(jù)并總結(jié):邊長、角度、對角線長度的變化引起四邊形的形狀、大小、位置的變化。

  四邊形具有不穩(wěn)定性,而三角形沒有這個特點……

 。ㄒ鈭D:使學(xué)生體會到數(shù)學(xué)于生活、又服務(wù)于生活,更重要的是培養(yǎng)學(xué)生應(yīng)用知識解決實際問題的能力,體會成功后的喜悅。)

  五、小結(jié)

  1.研究問題從整體到局部的方法;

  2.主要從邊長、角度、對角線長度三方面研究特殊四邊形性質(zhì)。

  六、作業(yè)

  1.平行四邊形內(nèi)角中,既有兩個相鄰的角相等,又有一組鄰邊相等,試判斷它是什么圖形。

  2.觀察實際生活中的電動門,在開(關(guān))門過程中特殊四邊形的變化。

  學(xué)習(xí)效果評價

  針對教學(xué)內(nèi)容、學(xué)生特點及設(shè)計方案,預(yù)計下列學(xué)習(xí)效果:

  利用多媒體信息技術(shù)圖文并茂、形象直觀的特點,通過學(xué)生自主測量、分析、整理數(shù)據(jù)并總結(jié)其性質(zhì),培養(yǎng)學(xué)生收集、描述和分析數(shù)據(jù)的能力,并達(dá)到初步理解特殊四邊形性質(zhì)的目標(biāo)。

  在問題引入、了解整體、測量個體、總結(jié)性質(zhì)的過程中,符合事物的認(rèn)識規(guī)律及探究新知識的一般方法,初步形成感性認(rèn)識上升到理性認(rèn)識的辯證唯物主義思想。

  學(xué)生演示開(關(guān))門過程中,了解特殊四邊形在日常生活中的應(yīng)用,并用所學(xué)的知識解釋實際問題,使自身價值得以實現(xiàn)并體會成功后的喜悅;

  由于個體差異,針對教學(xué)目標(biāo)難以達(dá)到的個別學(xué)生,根據(jù)教學(xué)的進(jìn)展,通過師生之間、學(xué)生之間的對話交流及時指導(dǎo),使教學(xué)目標(biāo)得以實現(xiàn)。

八年級數(shù)學(xué)教案 篇4

  教學(xué)目標(biāo):

  1。經(jīng)歷探索平行四邊形有關(guān)概念和性質(zhì)的過程,在活動中發(fā)展學(xué)生的探究意識和合作交流的習(xí)慣;

  2。索并掌握平行四邊形的性質(zhì),并能簡單應(yīng)用;

  3。在探索活動過程中發(fā)展學(xué)生的探究意識。

  教學(xué)重點:平行四邊形性質(zhì)的探索。

  教學(xué)難點:平行四邊形性質(zhì)的理解。

  教學(xué)準(zhǔn)備:多媒體課件

  教學(xué)過程

  第一環(huán)節(jié):實踐探索,直觀感知(5分鐘,動手實踐、探索、感知,學(xué)生進(jìn)一步探索了平行四邊形的概念,明確了平行四邊形的本質(zhì)特征。)

  1。小組活動一

  內(nèi)容:

  問題1:同學(xué)們拿出準(zhǔn)備好的剪刀、彩紙或白紙一張。將一張紙對折,剪下兩張疊放的三角形紙片,將它們相等的一邊重合,得到一個四邊形。

  (1)你拼出了怎樣的四邊形?與同桌交流一下;

 。2)給出小明拼出的四邊形,它們的對邊有怎樣的位置關(guān)系?說說你的理由,請用簡捷的語言刻畫這個圖形的特征。

  2。小組活動二

  內(nèi)容:生活中常見到平行四邊形的實例有什么呢?你能舉例說明嗎?

  第二環(huán)節(jié) 探索歸納、合作交流(5分鐘,學(xué)生動手、動嘴,全班交流)

  小組活動3:

  用 一張半透明的紙復(fù)制你剛才畫的平行四邊形,并將復(fù)制 后的四邊形繞一個頂點旋轉(zhuǎn)180,你能平移該紙片,使它與你畫的平行四邊形重合嗎?由此你能得到哪些結(jié)論?四邊形的對邊、對角分別有什么關(guān)系?能用別的方法驗證你的.結(jié)論嗎?

 。1)讓學(xué)生動手操作、復(fù)制、旋轉(zhuǎn) 、觀察、分析;

 。2)學(xué)生交流、議論;

 。3)教師利用多媒體展示實踐的過程。

  第三環(huán)節(jié) 推理論證、感悟升華(10分鐘,學(xué)生通過說理,由直觀感受上升到理性分析,在操作層面感知的基礎(chǔ)上提升,并了解圖形具有的數(shù)學(xué)本質(zhì)。)

  實踐 探索內(nèi)容

 。1)通過剪紙,拼紙片,及旋轉(zhuǎn),可以觀察到平行四邊行的對角線把它分成的兩個三角形全等。

  (2)可以通過推理來證明這個結(jié)論,如圖連結(jié)AC。

  ∵ 四邊形ABCD是平行四邊形

  AD // BC, AB // CD

  2,4

  △AB C和△CDA中

  1

  AC=C A

  4

  △ABC≌△CDA(ASA)

  AB=DC, AD=CB,B

  又∵2

  4

  3=4

  即BAD=DCB

  第四環(huán)節(jié) 應(yīng)用鞏固 深化提高(10分鐘,通過議一議,練一練,學(xué)生進(jìn)一步理解平行四邊形的性質(zhì),并進(jìn)行簡單合情推理,體現(xiàn)性質(zhì)的應(yīng)用,同時從不同角度平移、旋轉(zhuǎn)等再一次認(rèn)識平行四邊形的本質(zhì)特征。)

  1;顒觾(nèi)容:

 。1)議一議:如果已知平行四邊形的一個內(nèi)角度數(shù),能確定其它三個內(nèi)角的度數(shù)嗎?

  A(學(xué)生思考、議論)

  B總結(jié)歸納:可以確定其它三個內(nèi)角的度數(shù)。

  由平行四邊形對 邊分邊平行 得到鄰角互補;又由于平行四邊形對角相等,由此已知平行四邊形的一個內(nèi)角的度數(shù),可以確定其它三個角度數(shù)。

 。2)練一練(P99隨堂練習(xí))

  練1 如圖:四邊形ABCD是平行四邊形。

 。1)求ADC、BCD度數(shù)

 。2)邊AB、BC的度數(shù)、長度。

  練2 四邊形ABCD是平行四邊形

 。1)它的四條邊中哪些 線段可以通過平移相到得到?

  (2)設(shè)對角線AC、BD交于O;AO與OC、BO與OD有何關(guān)系?說說理由。

  歸 納:平行四邊形的性質(zhì):平行四邊形的對角線互相平分。

  第五環(huán)節(jié) 評價反思 概括總結(jié)(8分鐘,學(xué)生踴躍談感受和收獲)

  活動內(nèi)容

  師生相互交流、反思、總結(jié)。

 。1)經(jīng)歷了對平行四邊形的特征探索,你有什么感受和收獲?給自己一個評價。

  (2)在與同伴合作交流中練表現(xiàn),優(yōu)秀方面有哪些?你看到同伴哪些優(yōu)點?

 。3)本節(jié)學(xué)習(xí)到了什么?(知識上、方法上)

  考一考:

  1。 ABCD中,B=60,則A= ,C= ,D= 。

  2。 ABCD中,A比B大20,則C= 。

  3。 ABCD中,AB=3,BC=5,則AD= CD= 。

  4。 ABCD中,周長為40cm,△ABC周長為25,則對角線AC=( )cm。

  布置作業(yè)

  課本習(xí)題4。1

  A組(學(xué)優(yōu)生)1 、2

  B組(中等生)1、2

  C組(后三分之一生)1、2

  教學(xué)反思

八年級數(shù)學(xué)教案 篇5

  教學(xué)建議

  知識結(jié)構(gòu)

  重難點分析

  本節(jié)的重點是中位線定理.三角形中位線定理和梯形中位線定理不但給出了三角形或梯形中線段的位置關(guān)系,而且給出了線段的數(shù)量關(guān)系,為平面幾何中證明線段平行和線段相等提供了新的思路.

  本節(jié)的難點是中位線定理的證明.中位線定理的證明教材中采用了同一法,同一法學(xué)生初次接觸,思維上不容易理解,而其他證明方法都需要添加2條或2條以上的輔助線,添加的目的性和必要性,同以前遇到的情況對比有一定的難度.

  教法建議

  1. 對于中位線定理的引入和證明可采用發(fā)現(xiàn)法,由學(xué)生自己觀察、猜想、測量、論證,實際掌握效果比應(yīng)用講授法應(yīng)好些,教師可根據(jù)學(xué)生情況參考采用

  2.對于定理的證明,有條件的教師可考慮利用多媒體課件來進(jìn)行演示知識的.形成及證明過程,效果可能會更直接更易于理解

  教學(xué)設(shè)計示例

  一、教學(xué)目標(biāo)

  1.掌握中位線的概念和三角形中位線定理

  2.掌握定理“過三角形一邊中點且平行另一邊的直線平分第三邊”

  3.能夠應(yīng)用三角形中位線概念及定理進(jìn)行有關(guān)的論證和計算,進(jìn)一步提高學(xué)生的計算能力

  4.通過定理證明及一題多解,逐步培養(yǎng)學(xué)生的分析問題和解決問題的能力

  5. 通過一題多解,培養(yǎng)學(xué)生對數(shù)學(xué)的興趣

  二、教學(xué)設(shè)計

  畫圖測量,猜想討論,啟發(fā)引導(dǎo).

  三、重點、難點

  1.教學(xué)重點:三角形中位線的概論與三角形中位線性質(zhì).

  2.教學(xué)難點:三角形中位線定理的證明.

  四、課時安排

  1課時

  五、教具學(xué)具準(zhǔn)備

  投影儀、膠片、常用畫圖工具

  六、教學(xué)步驟

  【復(fù)習(xí)提問】

  1.敘述平行線等分線段定理及推論的內(nèi)容(結(jié)合學(xué)生的敘述,教師畫出草圖,結(jié)合圖形,加以說明).

  2.說明定理的證明思路.

  3.如圖所示,在平行四邊形ABCD中,M、N分別為BC、DA中點,AM、CN分別交BD于點E、F,如何證明 ?

  分析:要證三條線段相等,一般情況下證兩兩線段相等即可.如要證 ,只要 即可.首先證出四邊形AMCN是平行四邊形,然后用平行線等分線段定理即可證出.

  4.什么叫三角形中線?(以上復(fù)習(xí)用投影儀打出)

  【引入新課】

  1.三角形中位線:連結(jié)三角形兩邊中點的線段叫做三角形中位線.

  (結(jié)合三角形中線的定義,讓學(xué)生明確兩者區(qū)別,可做一練習(xí),在 中,畫出中線、中位線)

  2.三角形中位線性質(zhì)

  了解了三角形中位線的定義后,我們來研究一下,三角形中位線有什么性質(zhì).

  如圖所示,DE是 的一條中位線,如果過D作 ,交AC于 ,那么根據(jù)平行線等分線段定理推論2,得 是AC的中點,可見 與DE重合,所以 .由此得到:三角形中位線平行于第三邊.同樣,過D作 ,且DE FC,所以DE .因此,又得出一個結(jié)論,那就是:三角形中位線等于第三邊的一半.由此得到三角形中位線定理.

  三角形中位線定理:三角形中位城平行于第三邊,并且等于它的一半.

  應(yīng)注意的兩個問題:①為便于同學(xué)對定理能更好的掌握和應(yīng)用,可引導(dǎo)學(xué)生分析此定理的特點,即同一個題設(shè)下有兩個結(jié)論,第一個結(jié)論是表明中位線與第三邊的位置關(guān)系,第二個結(jié)論是說明中位線與第三邊的數(shù)量關(guān)系,在應(yīng)用時可根據(jù)需要來選用其中的結(jié)論(可以單獨用其中結(jié)論).②這個定理的證明方法很多,關(guān)鍵在于如何添加輔助線.可以引導(dǎo)學(xué)生用不同的方法來證明以活躍學(xué)生的思維,開闊學(xué)生思路,從而提高分析問題和解決問題的能力.但也應(yīng)指出,當(dāng)一個命題有多種證明方法時,要選用比較簡捷的方法證明.

  由學(xué)生討論,說出幾種證明方法,然后教師總結(jié)如下圖所示(用投影儀演示).

  (l)延長DE到F,使 ,連結(jié)CF,由 可得AD FC.

  (2)延長DE到F,使 ,利用對角線互相平分的四邊形是平行四邊形,可得AD FC.

  (3)過點C作 ,與DE延長線交于F,通過證 可得AD FC.

  上面通過三種不同方法得出AD FC,再由 得BD FC,所以四邊形DBCF是平行四邊形,DF BC,又因DE ,所以DE .

  (證明過程略)

  例 求證:順次連結(jié)四邊形四條邊的中點,所得的四邊形是平行四邊形.

  (由學(xué)生根據(jù)命題,說出已知、求證)

  已知:如圖所示,在四邊形ABCD中,E、F、G、H分別是AB、BC、CD、DA的中點.

  求證:四邊形EFGH是平行四邊形.‘

  分析:因為已知點分別是四邊形各邊中點,如果連結(jié)對角線就可以把四邊形分成三角形,這樣就可以用三角形中位線定理來證明出四邊形EFGH對邊的關(guān)系,從而證出四邊形EFGH是平行四邊形.

  證明:連結(jié)AC.

  ∴ (三角形中位線定理).

  同理,

  ∴GH EF

  ∴四邊形EFGH是平行四邊形.

  【小結(jié)】

  1.三角形中位線及三角形中位線與三角形中線的區(qū)別.

  2.三角形中位線定理及證明思路.

  七、布置作業(yè)

  教材P188中1(2)、4、7

八年級數(shù)學(xué)教案 篇6

  一、教學(xué)目標(biāo)

  1.靈活應(yīng)用勾股定理及逆定理解決實際問題.

  2.進(jìn)一步加深性質(zhì)定理與判定定理之間關(guān)系的認(rèn)識.

  二、重點、難點

  1.重點:靈活應(yīng)用勾股定理及逆定理解決實際問題.

  2.難點:靈活應(yīng)用勾股定理及逆定理解決實際問題.

  3.難點的突破方法:

  三、課堂引入

  創(chuàng)設(shè)情境:在軍事和航海上經(jīng)常要確定方向和位置,從而使用一些數(shù)學(xué)知識和數(shù)學(xué)方法.

  四、例習(xí)題分析

  例1(P83例2)

  分析:⑴了解方位角,及方位名詞;

 、埔李}意畫出圖形;

 、且李}意可得PR=12×1。5=18,PQ=16×1。5=24,QR=30;

 、纫驗242+182=302,PQ2+PR2=QR2,根據(jù)勾股定理的逆定理,知∠QPR=90°;

 、伞螾RS=∠QPR—∠QPS=45°.

  小結(jié):讓學(xué)生養(yǎng)成“已知三邊求角,利用勾股定理的逆定理”的意識.

  例2(補充)一根30米長的細(xì)繩折成3段,圍成一個三角形,其中一條邊的長度比較短邊長7米,比較長邊短1米,請你試判斷這個三角形的形狀.

  分析:⑴若判斷三角形的形狀,先求三角形的三邊長;

 、圃O(shè)未知數(shù)列方程,求出三角形的三邊長5、12、13;

 、歉鶕(jù)勾股定理的.逆定理,由52+122=132,知三角形為直角三角形.

  解略.

  本題幫助培養(yǎng)學(xué)生利用方程思想解決問題,進(jìn)一步養(yǎng)成利用勾股定理的逆定理解決實際問題的意識.

八年級數(shù)學(xué)教案 篇7

  教學(xué)任務(wù)分析

  教學(xué)目標(biāo)

  知識技能

  一、類比同分母分?jǐn)?shù)的加減,熟練掌握同分母分式的加減運算.

  二、類比異分母分?jǐn)?shù)的加減及通分過程,熟練掌握異分母分式的加減及通分過程與方法.

  數(shù)學(xué)思考

  在分式的加減運算中,體驗知識的化歸聯(lián)系和思維靈活性,培養(yǎng)學(xué)生整體思考的分析問題能力.

  解決問題

  一、會進(jìn)行同分母和異分母分式的加減運算.

  二、會解決與分式的加減有關(guān)的簡單實際問題.

  三、能進(jìn)行分式的加、剪、乘、除、乘方的混合運算.

  情感態(tài)度

  通過師生活動、學(xué)生自我探究,讓學(xué)生充分參與到數(shù)學(xué)學(xué)習(xí)的過程中來,使學(xué)生在整體思考中開闊視野,養(yǎng)成良好品德,滲透化歸對立統(tǒng)一的辯證觀點.

  重點

  分式的加減法.

  難點

  異分母分式的加減法及簡單的分式混合運算.

  教學(xué)流程安排

  活動流程圖

  活動內(nèi)容和目的

  活動1:問題引入

  活動2:學(xué)習(xí)同分母分式的加減

  活動3:探究異分母分式的加減

  活動4:發(fā)現(xiàn)分式加減運算法則

  活動5:鞏固練習(xí)、總結(jié)、作業(yè)

  向?qū)W生提出兩個實際問題,使學(xué)生體會學(xué)習(xí)分式加減的必要性及迫切性,創(chuàng)始問題情境,激發(fā)學(xué)生的學(xué)習(xí)熱情.

  類比同分母分?jǐn)?shù)的加減,讓學(xué)生歸納同分母分式的加減的方法并進(jìn)行簡單運算.

  回憶異分母分?jǐn)?shù)的加減,使學(xué)生歸納異分母分式的加減的方法.

  通過以上探究過程,讓學(xué)生發(fā)現(xiàn)分式加減運算的法則,通過分式在物理學(xué)的應(yīng)用及簡單混合運算,使學(xué)生深化對分式加減運算法則的理解.

  通過練習(xí)、作業(yè)進(jìn)一步鞏固分式的運算.

  課前準(zhǔn)備

  教具

  學(xué)具

  補充材料

  課件

  教學(xué)過程設(shè)計

  問題與情境

  師生行為

  設(shè)計意圖

 。刍顒樱保

  1.問題一:比較電腦與手抄的錄入時間.

  2.問題二;幫幫小明算算時間

  所需時間為,

  如何求出的值?

  3.這里用到了分式的加減,提出本節(jié)課的主題.

  教師通過課件展示問題.學(xué)生積極動腦解決問題,提出困惑:

  分式如何進(jìn)行加減?

  通過實際問題中要用到分式的加減,從而提出問題,讓學(xué)生思考,可以激發(fā)學(xué)生探究的熱情.

 。刍顒樱玻

  1.提出小學(xué)數(shù)學(xué)中一道簡單的分?jǐn)?shù)加法題目.

  2.用課件引導(dǎo)學(xué)生用類比法,歸納總結(jié)同分母分式加法法則.

  3.教師使用課件展示[例1]

  4.教師通過課件出兩個小練習(xí).

  教師提出問題,學(xué)生回答,進(jìn)一步回憶同分母分?jǐn)?shù)加減的運算法則.

  學(xué)生在教師的引導(dǎo)下,探索同分母分式加減的運算方法.

  通過例題,讓學(xué)生和教師一起體會同分母分式加減運算,同時教師指出運算中的.注意事項.

  由兩個學(xué)生板書自主完成練習(xí),教師巡視指導(dǎo)學(xué)生練習(xí).

  運用類比的方法,從學(xué)生熟知的知識入手,有利于學(xué)生接受新知識.

  師生共同完成例題,使學(xué)生感受到自己很棒,自己能夠通過思考學(xué)會新知識,提高自信心.

  讓學(xué)生進(jìn)一步體會同分母分式的加減運算.

 。刍顒樱常

  1.教師以練習(xí)的形式通過“自我發(fā)展的平臺”,向?qū)W生展示這樣一道題.

  2.教師提出思考題:

  異分母的分式加減法要遵守什么法則呢?

  教師展示一道異分母分式的加減題目,學(xué)生自然就想到異分母分?jǐn)?shù)的加減.

  教師通過課件引導(dǎo)學(xué)生思考,學(xué)生會想到小學(xué)數(shù)學(xué)中,異分母分?jǐn)?shù)的加減法則,從而聯(lián)想到異分母分式的加減法則,教師引導(dǎo)學(xué)生歸納出異分母分式加減運算的方法思路.

  由學(xué)生主動提出解決問題的方法,從而激發(fā)了學(xué)生探究問題的興趣.

  通過學(xué)生的自我探究、歸納總結(jié),讓學(xué)生充分參與到數(shù)學(xué)學(xué)習(xí)的過程中來,體會學(xué)習(xí)的樂趣.

 。刍顒樱矗

 。保谡Z言敘述分式加減法則的基礎(chǔ)上,用字母表示分式的加減法法則.

  2.教師使用課件展示[例2]

  3.教師通過課件出4個小練習(xí).

  4.[例3]在圖的電路中,已測定CAD支路的電阻是R1歐姆,又知CBD支路的電阻R2比R1大50歐姆,根據(jù)電學(xué)的有關(guān)定律可知總電阻R與R1R2滿足關(guān)系式 ;

  試用含有R1的式子表示總電阻R

 。担處熓褂谜n件展示[例4]

  教師提出要求,由學(xué)生說出分式加減法則的字母表示形式.

  通過例題,讓學(xué)生和教師一起體會異分母分式加減運算,同時教師重點演示通分的過程.

  教師引導(dǎo)學(xué)生找出每道題的方法、如何找最簡公分母及時指出學(xué)生在通分中出現(xiàn)的.問題,由學(xué)生自己完成.

  教師引導(dǎo)學(xué)生尋找解決問題的突破口,由師生共同完成,對比物理學(xué)中的計算,體會各學(xué)科知識之間的聯(lián)系.

  分式的混合運算,師生共同完成,教師提醒學(xué)生注意運算順序,通分要仔細(xì).

  由此練習(xí)學(xué)生的抽象表達(dá)能力,讓學(xué)生體會數(shù)學(xué)符號語言的精練.

  讓學(xué)生體會運用的公式解決問題的過程.

  鍛煉學(xué)生運用法則解決問題的能力,既準(zhǔn)確又有速度.

  提高學(xué)生的計算能力.

  通過分式在物理學(xué)中的應(yīng)用,加強了學(xué)科之間的聯(lián)系,使學(xué)生開闊了視野,讓學(xué)生體會到學(xué)習(xí)數(shù)學(xué)的重要性,體會各學(xué)科全面發(fā)展的重要性,提高學(xué)習(xí)的興趣.

  提高學(xué)生綜合應(yīng)用知識的能力.

 。刍顒樱担

  1.教師通過課件出2個分式混合運算的小練習(xí).

  2.總結(jié):

  a)這節(jié)課我們學(xué)習(xí)了哪些知識?你能說一說嗎?

  b)⑴方法思路;

  c)⑵計算中的主意事項;

  d)⑶結(jié)果要化簡.

  3.作業(yè):

  a)教科書習(xí)題16.2第4、5、6題.

  學(xué)生練習(xí)、鞏固.

  教師巡視指導(dǎo).

  學(xué)生完成、交流.,師生評價.

  教師引導(dǎo)學(xué)生回憶本節(jié)課所學(xué)內(nèi)容,學(xué)生回憶交流,師生共同補充完善.

  教師布置作業(yè).

  鍛煉學(xué)生運用法則進(jìn)行運算的能力,提高準(zhǔn)確性及速度.

  提高學(xué)生歸納總結(jié)的能力.

【八年級數(shù)學(xué)教案】相關(guān)文章:

八年級的數(shù)學(xué)教案12-14

八年級數(shù)學(xué)教案06-18

八年級下冊數(shù)學(xué)教案01-01

八年級數(shù)學(xué)教案人教版01-03

人教版八年級數(shù)學(xué)教案11-04

八年級上冊數(shù)學(xué)教案11-09

八年級數(shù)學(xué)教案【熱】11-29

八年級數(shù)學(xué)教案【熱門】12-03

【薦】八年級數(shù)學(xué)教案12-03

【熱】八年級數(shù)學(xué)教案12-07