人教版六年級下冊數學教案合集6篇
在教學工作者開展教學活動前,時常需要編寫教案,教案有利于教學水平的提高,有助于教研活動的開展。教案應該怎么寫呢?以下是小編為大家收集的人教版六年級下冊數學教案6篇,僅供參考,歡迎大家閱讀。
人教版六年級下冊數學教案 篇1
教材分析:
本課是一節(jié)數學綜合應用的實踐活動課,是課程標準實驗教材新增加的一個內容。培養(yǎng)學生用數學解決問題的能力是義務教育階段數學課程的重要目標之一,因此解決問題教學在數學教學中有著重要的作用。它既是發(fā)展學生數學思維的過程,又是培養(yǎng)學生應用意識、創(chuàng)新意識的重要途徑。本冊教材設計了確定起跑線這個數學綜合運用活動,讓學生通過小組合作的探究性活動,綜合運用所學的數學知識和方法(如:圓的知識),動手實踐解決問題,體會數學在日常生活中的應用價值,增強學生應用數學的意識,不斷提高學生的實踐能力和解決問題的能力。
學生分析:
在教學本課之前,大部分學生已經掌握圓的.概念、圓的畫法還有圓周長的計算方法等知識。學生具備一定的小組自我探究的能力,可以利用小組合作的形式進行學習。
學生對體育活動也很喜歡,相當一部分學生去過體育場,對體育場的跑道和起跑線并不陌生。通過電視節(jié)目學生對起跑時運動員不能站在同一起跑線的現象也有一定的認識,但具體這樣做是為什么、相鄰兩跑道起跑線該相差多遠呢?學生可能很少從數學的角度去認真的思考。也很難通過經驗和觀察得到,需要學生收集相關的數據,具體分析起跑線的位子與什么有關。所以在教學中學生可能會在相鄰跑道相差多遠這一點上有些困難。
教學目標:
1、通過該活動讓學生了解橢圓式田徑場跑道的結構,學會確定起跑線的方法。
2、通過活動培養(yǎng)學生利用小組合作,探究解決問題的能力。
3、通過活動讓學生切實體會到探索的樂趣,感受到數學在體育等領域的廣泛應用。
教學重點:運用圓的有關知識計算。
教學難點:
結合具體問題,讓學生獨立思考,提高解決簡單問題的能力。
關鍵:體會數學知識在體育中的應用。
教學過程:
一、匯報調查,引入課題(8分鐘)
1、匯報調查情況
課前,我讓大家調查運動場的情況,你們得到了哪些信息?
2、課件顯示如下情境圖:
師:圖上畫的是什么?指名學生回答,并引導得出:運動員進行跑步比賽。
師:在一些短跑比賽中,運動員所在的起跑位置是不一樣的,你知道為什么嗎?引導學生回答:彎道處外圈比內圈長一些。
3、揭示課題,下面我們就用幾個具體的例子來驗證同學們想法是否正確。
二、結合實例、探究問題(24分鐘)
實例一:
課件顯示:
淘氣和笑笑分別從A,B處出發(fā),沿半圓走到C,D。他們兩人走過的路程一樣長嗎?
(1)笑笑所走路線的半徑為10米,她走過的路程是()米。
(2)淘氣所走的路線半徑為()米,他走過的路程為()米。
(3)兩人走過的路相差()米。
1、理解題意
根據這幅情境圖,你能獲得哪些信息?指名回答。
2、小組討論
先讓學生獨立思考,待大多數學生基本解決上面3個小題后,在組織學生在小組內交流。
3、全班交流
抽生匯報,教師板書。
實例2:
課件顯示: (一)了解跑道結構:出示完整跑道圖(跑道最內圈為400米)
1、觀察跑道由哪幾部分組成?
2、在跑道上跑一圈的長度可以看成是哪幾部分的和?
(板書:跑道一圈長度=圓周長+2個直道長度)
(二)簡化研究問題:
1、85.96米是指哪部分的長度?一條直道嗎?
2、討論:運動員沿跑道跑一圈,各跑道之間的差距會在跑道的哪一部分呢?
3、小結:既然與直道無關,為了便于我們更好的觀察,暫時將直道拿走看看差距在那里,好嗎?(課件:直道消失,屏幕上只剩下左右兩個彎道。)
(三)尋求解決方法:
1、左右兩個半圓形的彎道合起來是一個什么?
2、討論:你怎樣找出相鄰彎道的差距?相鄰彎道差距其實就是誰的長度之差?
3、交流小結:只要計算出各圓的周長,算出相鄰兩圓相差多少米,就是相鄰跑道的差距,也就是相鄰起跑線相差多少米。
(四)、動手解決問題:
1、計算圓的周長要知道什么?(直徑)
2、課件出示:第一道的直徑為72.6米,第二道是多少?第三道呢?
3、教師帶領學生填寫表格的前兩道,注意計算第1道和第2道相差米數,應指導學生完成。
引導學生將3.14159換成進行計算
匯報結論:相鄰起跑線相差都是2.5,也就是道寬2。說明起跑線的確定與道寬最有關系。
4、計算相鄰起跑線相差的具體長度:2.5=2.53.14=7.85米
師:同學們通過努力找到了起跑線的秘密,運動員們的比賽應該把起跑線依次提前7.85米才公平。
三、鞏固練習、實踐應用(3分鐘)
400米的跑步比賽,道寬為1.5米,起跑線該依次提前多少米?
四、拓展延伸、自我評價(5分鐘)
1、解決問題:在運動場上還有200米的比賽,道寬為1.25米,起跑線又該依次提前多少米?
2、課后自學課本第45頁你知道嗎?
五、全課小結:
談一談,這節(jié)課你有什么收獲?
六、布置作業(yè)
人教版六年級下冊數學教案 篇2
教學內容:
比較正數和負數的大小。
教學目的:
1、借助數軸初步學會比較正數、0和負數之間的大小。
2、初步體會數軸上數的順序,完成對數的結構的初步構建。
教學重、難點:負數與負數的比較。
教學過程:
一、復習:
1、讀數,指出哪些是正數,哪些是負數?
-8 5.6 +0.9 - + 0 -82
2、如果+20%表示增加20%,那么-6%表示 。
二、新授:
。ㄒ唬┙虒W例3:
1、怎樣在數軸上表示數?(1、2、3、4、5、6、7)
2、出示例3:
。1)提問你能在一條直線上表示他們運動后的情況嗎?
。2)讓學生確定好起點(原點)、方向和單位長度。學生畫完交流。
(3)教師在黑板上話好直線,在相應的點上用小圖片代表大樹和學生,在問怎樣用數表示這些學生和大樹的相對位置關系?(讓學生把直線上的點和正負數對應起來。
。4)學生回答,教師在相應點的下方標出對應的`數,再讓學生說說直線上其他幾個點代表的數,讓學生對數軸上的點表示的正負數形成相對完整的認識。
(5)總結:我們可以像這樣在直線上表示出正數、0和負數,像這樣的直線我們叫數軸。
(6)引導學生觀察:
A、從0起往右依次是?從0起往左依次是?你發(fā)現什么規(guī)律?
B、在數軸上除可以表示整數外,還可以表示分數和小數。請學生在數軸上分別找到1.5和-1.5對應的點。如果從起點分別到1.5和-1.5處,應如何運動?
。7)練習:做一做的第1、2題。
。ǘ┙虒W例4:
1、出示未來一周的天氣情況,讓學生把未來一周每天的最低氣溫在數軸上表示出來,并比較他們的大小。
2、學生交流比較的方法。
3、通過小精靈的話,引出利用數軸比較數的大小規(guī)定:在數軸上,從左到右的順序就是數從小到大的順序。
4、再讓學生進行比較,利用學生的具體比較來說明“-8在-6的左邊,所以-8〈-6”
5、再通過讓另一學生比較“8〉6,但是-8〈-6”,使學生初步體會兩負數比較大小時,絕對值大的負數反而小。
6、總結:負數比0小,所有的負數都在0的左邊,也就是負數都比0小,而正數比0大,負數比正數小。
7、練習:做一做第3題。
三、鞏固練習
1、練習一第4、5題。
2、練習一第6題。
3、某日傍晚,黃山的氣溫由上午的零上2攝氏度下降7攝氏度,這天傍晚黃山的氣溫是 攝氏度。
四、全課總結
。1)在數軸上,從左到右的順序就是數從小到大的順序。
(2)負數比0小,正數比0大,負數比正數小。
第二課教學反思:
許多教師認為“負數”這個單元的內容很簡單,不需要花過多精力學生就能基本能掌握?扇绻钊脬@研教材,其實會發(fā)現還有不少值得挖掘的內容可以向學生補充介紹。
例3——兩個不同層面的拓展:
1、在數軸上表示數要求的拓展。
數軸除可以表示整數,還可以表示小數和分數。教材例3只表示出正、負整數,最后一個自然段要求學生表示出—1.5。建議此處教師補充要求學生表示出“+1.5”的位置,因為這樣便于對比發(fā)現兩個數離原點的距離相等,只不過分別在0的左右兩端,滲透+1.5和—1.5絕對值相等。
同時,還應補充在數軸上表示分數,如—1/3、—3/2等,提升學生數形結合能力,為例4的教學打下夯實的基礎。
2、滲透負數加減法
教材中所呈現的數軸可以充分加以應用,如可補充提問:在“—2”位置的同學如果接著向西走1米,將會到達數軸什么位置?如果是向東走1米呢?如果他從“—2”的位置要走到“—4”,應該如何運動?如果他想從“—2”的位置到達“+3”,又該如何運動?其實,這些問題就是解決—2—1;2+1;—4—(—2);3—(—2)等于幾,這樣的設計對于學生初中進一步學習代數知識是極為有利的。
例4——薄書讀厚、厚書讀薄。
薄書讀厚——負數大小比較的三種類型(正數和負數、0和負數、負數和負數)
例4教材只提出一個大的問題“比較它們的大小”,這些數的大小比較可以分為幾類?每類比較又有什么方法,教材則沒有明確標明。所以教學中,當學生明確數軸從左到右的順序就是數從小到大的順序基礎上,我還挖掘三種不同類型,一一請學生介紹比較方法,將薄書讀厚。
將厚書讀薄——無論哪種類型,比較方法萬變不離其宗。
人教版六年級下冊數學教案 篇3
設計說明
“反比例”是在學生學習了“比和比例”和“正比例”的基礎上進行教學的。本著“學生是學習的主體”的理念,在本節(jié)課的教學中,最大限度地為學生提供了自主探究的機會。
1.借助定義、實例,滲透函數思想。
教學伊始,借助正比例的意義和生活實例,使學生進一步體會函數思想,充分理解成正比例關系的兩種量的比值不變的特點,為學生探究成反比例關系的兩種量之間的關系以及理解反比例的意義和特點奠定良好的基礎。
2.借助具體情境,在觀察、討論中發(fā)現規(guī)律。
教學中,通過具體情境,引導學生在觀察、討論中發(fā)現“把相同體積的水倒入底面積不同的杯子中,水面的高度不同”及“杯子的底面積×水的高度=水的體積”這一規(guī)律,使學生通過自己的努力,歸納、概括出反比例的意義及特點。
3.借助已有的學習經驗總結反比例關系式。
因為正、反比例體現的都是兩種相關聯的量之間的關系,且正比例關系表達式學生已經掌握,所以在總結反比例關系表達式時,教師要引導學生根據已有的`經驗自己總結出反比例關系表達式,體驗成功的喜悅。
課前準備
教師準備 PPT課件
學生準備 玻璃杯 直尺 水 實驗記錄單
教學過程
⊙復習引入
1.復習。
課件出示:一個圓柱形水箱,底面積是0.78平方米,高是1.2米,這個水箱能裝水多少立方米?
(1)引導學生獨立解決問題。
(2)提問:你是根據什么公式進行計算的?
預設
生:圓柱的體積=底面積×高。
(3)師追問:圓柱的體積、底面積和高之間還有怎樣的數量關系呢?在什么情況下其中的兩種量成正比例關系?
預設
生1:底面積=圓柱的體積÷高,高=圓柱的體積÷底面積。
生2:如果底面積一定,圓柱的體積與高就成正比例;如果高一定,圓柱的體積與底面積就成正比例。
2.引入課題。
如果圓柱的體積一定,那么底面積與高又成怎樣的關系呢?這就是本節(jié)課我們要學習的內容。(板書課題:反比例)
設計意圖:通過復習有關圓柱的體積問題以及列舉圓柱的體積、底面積和高之間的關系,在培養(yǎng)學生思維完整性的同時,為新知的學習作鋪墊。
⊙探究新知
1.在具體情境中初步感知成反比例關系的量。
(1)課件出示教材47頁例2,引導學生結合問題進行觀察。
師:觀察情境圖,理解圖意后,觀察下表,先一行一行地觀察,再一列一列地觀察,并思考下面的問題。
杯子的底面積與水的高度的變化情況如下表。
杯子的底面積/cm2 | 10 | 15 | 20 | 30 | 60 | … |
水的高度/cm | 30 | 20 | 15 | 10 | 5 | … |
、俦碇杏心膬煞N量?
②水的高度是怎樣隨著杯子底面積的大小變化而變化的?
、巯鄬谋拥牡酌娣e與水的高度的乘積分別是多少?
(2)學生思考后在小組內交流。
(3)全班交流。
預設
生1:有杯子的底面積和水的高度這兩種量。
生2:杯子的底面積增大,水的高度降低;杯子的底面積減小,水的高度升高。
生3:相對應的杯子的底面積與水的高度的乘積都是300,是一定的,也就是杯子的底面積×水的高度=水的體積(一定)。
(4)明確什么是成反比例的量。
因為水的體積一定,所以水的高度隨著杯子的底面積的變化而變化。杯子的底面積增大,水的高度反而降低;杯子的底面積減小,水的高度反而升高。但是無論怎樣變化,杯子的底面積和水的高度的乘積總是一定的,所以我們就把杯子的底面積和水的高度這兩種量叫做成反比例的量,它們的關系叫做反比例關系。
人教版六年級下冊數學教案 篇4
教學目標:
1、加深對圓錐體積計算公式的理解,能應用有關知識解決生活實際問題。
2、進一步理解等底等高的圓柱和圓錐之間的關系。
3、進一步培養(yǎng)學生的思維能力和綜合應用所學知識解決實際問題的能力。
教學重難點:綜合應用所學知識解決實際問題。
教學過程:
一、復習回顧
1、等底等高的圓柱與圓錐體積之間有怎樣的關系?
2、圓錐的體積怎樣計算?
二、基本練習
1、填空
。1)等底等高的圓柱和圓錐的體積相差12立方分米,這個圓錐的體積是()立方分米,圓柱的體積是()立方分米。
。2)等底等高的一個圓柱和一個圓錐的體積和是96立方分米,圓錐的體積是()立方分米,圓柱的體積是()立方分米。
(3)把一個體積是18立方厘米的.圓柱削成一個最大的圓錐,削成的圓錐體積是()立方厘米,削去()立方厘米。
。4)一個圓柱的體積、底面積與一個圓錐相等,圓錐的高是9厘米,圓柱的高是()厘米。
。5)圓錐的底面半徑是3厘米,體積是6.28立方厘米,這個圓錐的高是()厘米。
2、判斷。
。1)圓錐的底面半徑擴大3倍,體積也擴大3倍。()
。2)一個正方體和一個圓錐的底面積和高相等,這個正方體的體積是是圓錐體積的3倍。()
。3)圓錐的底面周長是12.56分米,高是4分米,它的體積是(12.56×4×1/3)立方分米。()
三、綜合應用
1、一塊圓錐形巧克力,體積是6立方厘米,底面積是4立方厘米,它的高是多少?
2、一個圓錐體積是640立方厘米,高是20厘米,它的底面積是多少平方厘米?
第八課時教學反思
教材中圓錐體積的相對練習較少,但在實際解決問題中卻常常需要學生能夠靈活應用,所以特別增加了一課時練習。
教學中的一組填空題,對于幫助學生深入理解等底等高圓柱與圓錐的聯系很有價值。通過練習,學生們明確了圓柱與等底等高的圓錐體積和為4個圓錐的體積(或4/3個圓柱的體積),而它們的體積相差2個圓錐的體積(或2/3個圓柱的體積)……。掌握這些知識對于解決實際問題很有幫助,如將圓柱削成最大的圓錐,求削去部分的體積是多少,就可直接用圓柱的體積乘2/3(1—1/3)從而使計算簡便。
教學中,我也遇到一些阻力——就是學生不愿用方程去解答需要逆向思考的問題,可用算術方法列式又常常對“1/3”發(fā)憷。為了更好與初中銜接,我在本節(jié)課綜合應用環(huán)節(jié)儼然是一位“推銷員”,不斷給學生強化方程解法的優(yōu)勢,但在實際應用中全班不足五人愿意采納這種方法。而用算術方法解答,則必須首先明確:若圓柱和圓錐體積和高(或者是底面積)相等,那么圓錐的底面積(或高)是圓錐的3倍。
[再教建議]針對學生思維習慣,在教學填空第4小題時不僅要講清原因,而且應要舉一反三,促使學生在深入理解的基礎上切實掌握體積相等的圓柱與圓錐之間的聯系。
人教版六年級下冊數學教案 篇5
一、游戲導入
1、游戲:我們來玩?zhèn)游戲輕松一下,游戲叫做《我反 我反 我反反反》。游戲規(guī)則:老師說一句話,請你說出與它相反意思的話。
、傧蛏峡矗ㄏ蛳驴矗谙蚯白200米(向后走200米)③電梯上升15層(下降15層)。
2、下面我們來難度大些的,看誰反應最快。
①我在銀行存入了500元(取出了500元)。②知識競賽中,五(1)班得了20分(扣了20分)。
、10月份,學校小賣部賺了500元。(虧了500元)。④零上10攝氏度(零下10攝氏度)。
說明什么是相反意義的量(意義正好相反)
3、談話:周老師的一位朋友喜歡旅游, 11月下旬,他又打算去幾個旅游城市走一走。我呢,特意幫他留意了一下這幾個地方在未來某天的最低氣溫,以便做好出門前衣物的準備。下面就請大家一起和我走進天氣預報。(天氣預報片頭)
二、教學例1
1、認識溫度計,理解用正負數來表示零上和零下的溫度。
課件出示地圖:點擊南京出示溫度計和南京的圖片。首先來看一下南京的氣溫。
這里有個溫度計。我們先來認識溫度計,請大家仔細觀察:這樣的一小格表示多少攝氏度呢?5小格呢?10小格呢?
B、現在你能看出南京是多少攝氏度嗎? (是0℃。)你是怎么知道的?(那里有個0,表示0攝氏度)。
。2)上海的氣溫:上海的最低氣溫是多少攝氏度呢?(在溫度計上撥一撥)撥的時候是怎樣想的呢?(在零刻度線以上四格)
指出:上海的氣溫比0℃要高,是零上4攝氏度。(教師結合課件,突出上海的氣溫在零刻度線以上)。
。3)了解首都北京的最低氣溫:北京又是多少攝氏度呢?與南京的`0℃比起來,又怎樣了呢?(比南京的0℃要低)你能用一個手勢來表示它和0℃的關系嗎?(對,北京的氣溫比0度低,是零下4攝氏度)你能在溫度計上撥出來嗎?
。4)比較:“4℃”和“—4℃”的意義相同嗎?有什么不同?(不一樣,一個在0℃以上,一個在0℃以下)。
、 上海的氣溫比0℃高,是零上4攝氏度,我們可以記作+4℃,讀作正四攝氏度,寫的時候先寫一個正號(指出是正號不是加號,意義和讀法都不同了)再寫一個4(板書),大家跟我一起來比劃一下。+4也可以直接寫成4,把正號省略了。所以同學們所說的4℃也就是+4℃。(板書)
負號能不能省略不寫?為什么?
② 北京的氣溫比0℃低,是零下4攝氏度。我們可以用-4℃來表示零下4攝氏度(板書-4)。跟老師一起來讀一下。寫的時候可以先寫一個負號(指出是負號不是減號)再寫一個4就可以了,同桌互相比劃一下。
。5)小結:通過剛才對三個城市的溫度的了解,我們知道記錄溫度時,以0℃為界線,用象+4或4這些數可以來表示零上溫度,用-4這樣的數可以表示零下溫度。
2、試一試:學生看溫度計,寫出各地的溫度,并讀一讀。(寫在卡片上)
3、聽一段中央臺的天氣預報,將你聽到城市的最低和最高溫度記錄下來。
4、小結:通過剛才的學習,我們得出:以零攝氏度為界線,零上溫度用正幾或直接用幾來表示,零下溫度用負幾來表示。
三、學習珠峰、吐魯番盆地的海拔表達方法
1、同學們你們知道嗎?世界第一高峰——珠穆朗瑪峰從山腳到山頂,氣溫相差很大,這是和它的海拔高度有關的。最近經國家測繪局公布了珠峰的最新海拔高度。老師把有關網頁帶來了。(課件出現網頁,上面有簡單的文字介紹)。誰來讀一讀這段介紹。
2、今天老師還帶來一張珠穆朗瑪峰的海拔圖,請看。(課件動態(tài)地演示珠穆朗瑪峰的海拔圖)。從圖上,你看懂了些什么?
3、我們再來看新疆的吐魯番盆地的海拔圖。(動態(tài)演示吐魯番盆地的海拔情況)。
你又能從圖上看懂些什么呢?(引導學生交流,回答珠穆朗瑪峰比海平面高8844.43米;吐魯番盆地比海平面低155米)。
4、珠穆朗瑪峰比海平面高,吐魯番盆地比海平面低。大家再想想:你能用一種簡單的方法來記錄一下這兩個地方的海拔嗎?
。1)交流:珠穆朗瑪峰的海拔可以記作:+8844.43米或8844.43米。
吐魯番盆地的海拔可以記作:-155米。(板書)
(2)小小結:以海平面為界線,+8844.43米或8844.43米這樣的數可以表示海平面以上的高度,-155米這樣的數可以表示海平面以下的高度。
人教版六年級下冊數學教案 篇6
教學內容:
教科書P23-26的內容,P24做一做,完成練習四的第1、2題。
教學目標:
1、認識圓錐,圓錐的高和側面,掌握圓錐的特征,會看圓錐的平面圖,會正確測量圓錐的高,能根據實驗材料正確制作圓錐。
2、過動手制作圓錐和測量圓錐的高,培養(yǎng)學生的動手操作能力和一定的空間想象能力。
3、養(yǎng)學生的自主探索意識,激發(fā)學生強烈的求知欲望。
教學重點:
掌握圓錐的特征。
教學難點:
正確理解圓錐的組成。
教具準備:
每人一個圓錐,師準備一個大的圓錐模型。
教學過程:
一、復習
1、圓柱體積的計算公式是什么?
2、圓柱的特征是什么?
二、新課
1、圓錐的認識 (直觀感受觀察討論匯報)
。1)讓學生拿著圓錐模型觀察和擺弄后,指定幾名學生說出自己觀察的結果,從而使學生認識到圓錐有一個曲面,一個頂點和一個面是圓的,等等。
。2)圓錐有一個頂點,它的底面是一個圓、(在圖上標出頂點,底面及其圓心O)
。3)圓錐有一個曲面,圓錐的這個曲面叫做側面。(在圖上標出側面)
。4)讓學生看著教具,指出:從圓錐的頂點到底面圓心的距離叫做高。 (沿著曲面上的`線都不是圓錐的高,由于圓錐只有一個頂點,所以圓錐只有一條高)
2、小結
圓錐的特征(可以啟發(fā)學生總結),強調底面和高的特點,使學生弄清圓錐的特征是:底面是圓,側面是一個曲面,有一個頂點和一條高.
3、測量圓錐的高(組織學生分組進行測量)
由于圓錐的高在它的內部,我們不能直接量出它的長度,這就需要借助一塊平板來測量。
(1)先把圓錐的底面放平;
(2)用一塊平板水平地放在圓錐的頂點上面;
(3)豎直地量出平板和底面之間的距離。
4、教學圓錐側面的展開圖
。1)學生猜想圓錐的側面展開后會是什么圖形呢?
。2)實驗來得出圓錐的側面展開后是一個扇形。
三、課堂練習
1、做第24頁做一做的題目。
讓學生拿出課前準備好的模型紙樣,先做成圓錐,然后讓學生試著獨立量出它的底面直徑.教師行間巡視,對有困難的學生及時輔導。
2、練習四的第1題。
。1)讓學生自由地觀察,只要是接近于圓柱、圓錐的都可以指出。
。2)讓學生說說自己周圍還有哪些物體是由圓柱、圓錐組成的。
3.完成練習四的第2題。
補充習題
1出示一組圖形,辨認指出哪些是圓錐。
2出示一組圖形,指出哪個是圓錐的高。
3出示一組組合圖形,指出是由哪些圖形組成的。
四、總結
關于圓錐你知道了些什么?你能向同學介紹你手中的圓錐嗎?
教學反思:
觀察、感知中認識并掌握圓錐的特點,經歷探究測量圓錐高的方法的過程,加深了對圓錐高的認識。在旋轉,對比圓柱和圓錐的過程中,加深對圓錐特點的認識,發(fā)展學生的思維。
【人教版六年級下冊數學教案】相關文章:
人教版六年級下冊數學教案03-14
人教版六年級下冊數學教案06-30
人教版六年級下冊數學教案06-17
人教版六年級下冊數學教案(通用)08-26
【精選】人教版六年級下冊數學教案四篇08-22
人教版六年級下冊數學教案(精選10篇)06-07
【精選】人教版六年級下冊數學教案三篇08-22
人教版六年級下冊數學教案(精選9篇)03-01
人教版六年級下冊數學教案(6篇)02-18
關于人教版六年級下冊數學教案范文09-02