勾股定理
教學(xué)目標:
1、知識目標:
。1)掌握勾股定理;
。2)學(xué)會利用勾股定理進行計算、證明與作圖;
。3)了解有關(guān)勾股定理的歷史.
2、能力目標:
(1)在定理的證明中培養(yǎng)學(xué)生的拼圖能力;
。2)通過問題的解決,提高學(xué)生的運算能力
3、情感目標:
。1)通過自主學(xué)習(xí)的發(fā)展體驗獲取數(shù)學(xué)知識的感受;
(2)通過有關(guān)勾股定理的歷史講解,對學(xué)生進行德育教育.
教學(xué)重點:勾股定理及其應(yīng)用
教學(xué)難點:通過有關(guān)勾股定理的歷史講解,對學(xué)生進行德育教育
教學(xué)用具:直尺,微機
教學(xué)方法:以學(xué)生為主體的討論探索法
教學(xué)過程:
1、新課背景知識復(fù)習(xí)
。1)三角形的三邊關(guān)系
。2)問題:(投影顯示)
直角三角形的三邊關(guān)系,除了滿足一般關(guān)系外,還有另外的特殊關(guān)系嗎?
2、定理的獲得
讓學(xué)生用文字語言將上述問題表述出來.
勾股定理:直角三角形兩直角邊 的平方和等于斜邊 的平方
強調(diào)說明:
。1)勾――最短的邊、股――較長的直角邊、弦――斜邊
。2)學(xué)生根據(jù)上述學(xué)習(xí),提出自己的問題(待定)
學(xué)習(xí)完一個重要知識點,給學(xué)生留有一定的時間和機會,提出問題,然后大家共同分析討論.
3、定理的證明方法
方法一:將四個全等的直角三角形拼成如圖1所示的正方形.
方法二:將四個全等的直角三角形拼成如圖2所示的正方形,
方法三:“總統(tǒng)”法.如圖所示將兩個直角三角形拼成直角梯形
以上證明方法都由學(xué)生先分組討論獲得,教師只做指導(dǎo).最后總結(jié)說明
4、定理與逆定理的應(yīng)用
例1 已知:如圖,在△ABC中,∠ACB= ,AB=5cm,BC=3cm,CD⊥AB于D,求CD的長.
解:∵△ABC是直角三角形,AB=5,BC=3,由勾股定理有
∴ ∠2=∠C
又
∴
∴CD的長是2.4cm
例2 如圖,△ABC中,AB=AC,∠BAC= ,D是BC上任一點,
求證:
證法一:過點A作AE⊥BC于E
則在Rt△ADE中,
又∵AB=AC,∠BAC=
∴AE=BE=CE
即
證法二:過點D作DE⊥AB于E, DF⊥AC于F
則DE∥AC,DF∥AB
又∵AB=AC,∠BAC=
∴EB=ED,F(xiàn)D=FC=AE
在Rt△EBD和Rt△FDC中
在Rt△AED中,
∴
例3 設(shè)
求證:
證明:構(gòu)造一個邊長 的矩形ABCD,如圖
在Rt△ABE中
在Rt△BCF中
在Rt△DEF中
在△BEF中,BE+EF>BF
即
例4 國家電力總公司為了改善農(nóng)村用電電費過高的現(xiàn)狀,目前正在全國各地農(nóng)村進行電網(wǎng)改造,某村六組有四個村莊A、B、C、D正好位于一個正方形的四個頂點,現(xiàn)計劃在四個村莊聯(lián)合架設(shè)一條線路,他們設(shè)計了四種架設(shè)方案,如圖實線部分.請你幫助計算一下,哪種架設(shè)方案最省電線.
解:不妨設(shè)正方形的邊長為1,則圖1、圖2中的總線路長分別為
AD+AB+BC=3,AB+BC+CD=3
圖3中,在Rt△DGF中
同理
∴圖3中的路線長為
圖4中,延長EF交BC于H,則FH⊥BC,BH=CH
由∠FBH= 及勾股定理得:
EA=ED=FB=FC=
∴EF=1-2FH=1-
∴此圖中總線路的長為4EA+EF=
∵3>2.828>2.732
∴圖4的連接線路最短,即圖4的架設(shè)方案最省電線.
5、課堂小結(jié):
。1)勾股定理的內(nèi)容
(2)勾股定理的作用
已知直角三角形的兩邊求第三邊
已知直角三角形的一邊,求另兩邊的關(guān)系
6、布置作業(yè):
a、書面作業(yè)P130#1、2、3
b、上交作業(yè)P132#1、3
板書設(shè)計:
探究活動
臺風(fēng)是一種自然災(zāi)害,它以臺風(fēng)中心為圓心在周圍數(shù)十千米范圍內(nèi)形成氣旋風(fēng)暴,有極強的破壞力,如圖,據(jù)氣象觀測,距沿海某城市A的正南方向220千米B處有一臺風(fēng)中心,其中心最大風(fēng)力為12級,每遠離臺風(fēng)中心20千米,風(fēng)力就會減弱一級,該臺風(fēng)中心現(xiàn)正以15千米/時的速度沿北偏東 方向往C移動,且臺風(fēng)中心風(fēng)力不變,若城市所受風(fēng)力達到或走過四級,則稱為受臺風(fēng)影響
。1)該城市是否會受到這交臺風(fēng)的影響?請說明理由
。2)若會受到臺風(fēng)影響,那么臺風(fēng)影響該城市持續(xù)時間有多少?
。3)該城市受到臺風(fēng)影響的最大風(fēng)力為幾級?
解:(1)由點A作AD⊥BC于D,
則AD就為城市A距臺風(fēng)中心的最短距離
在Rt△ABD中,∠B= ,AB=220
∴
由題意知,當A點距臺風(fēng)(12-4)20=160(千米)時,將會受到臺風(fēng)影響.
故該城市會受到這次臺風(fēng)的影響.
。2)由題意知,當A點距臺風(fēng)中心不超過60千米時,
將會受到臺風(fēng)的影響,則AE=AF=160.當臺風(fēng)中心從E到F處時,
該城市都會受到這次臺風(fēng)的影響
由勾股定理得
∴EF=2DE=
因為這次臺風(fēng)中心以15千米/時的速度移動
所以這次臺風(fēng)影響該城市的持續(xù)時間為 小時
(3)當臺風(fēng)中心位于D處時,A城市所受這次臺風(fēng)的風(fēng)力最大,其最大風(fēng)力為 級.
【勾股定理】相關(guān)文章:
勾股定理說課稿04-18
《勾股定理》的說課稿01-18
數(shù)學(xué)勾股定理教案04-28
勾股定理的教學(xué)反思04-22
《勾股定理》教學(xué)反思范文04-27
數(shù)學(xué)《勾股定理》教學(xué)反思04-22
精選勾股定理說課稿三篇09-12
《勾股定理的逆定理》的教學(xué)反思08-18
【推薦】勾股定理說課稿4篇09-13
勾股定理的逆定理應(yīng)用探究08-20