- 相關(guān)推薦
第二冊(cè)平行四邊形及其性質(zhì)
教學(xué)目標(biāo)
1、知識(shí)目標(biāo)
(1)使學(xué)生掌握平行四邊形的概念,理解兩條平行線間的距離的概念。
(2)掌握平行四邊形的性質(zhì)定理1、2,并能運(yùn)用這些知識(shí)進(jìn)行有關(guān)的證明或計(jì)算.
2、能力目標(biāo)
(1)通過啟發(fā)、引導(dǎo),讓學(xué)生猜想結(jié)論,培養(yǎng)學(xué)生的觀察能力和猜想能力。
(2)驗(yàn)證猜想結(jié)論,培養(yǎng)學(xué)生的論證和邏輯思維能力。
(3)通過開放式教學(xué),培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和實(shí)踐能力。
3、非智力目標(biāo)
滲透從具體到抽象、化未知為已知的數(shù)學(xué)思想及事物之間相互轉(zhuǎn)化的辯證唯物主義觀點(diǎn).
教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):平行四邊形的概念及其性質(zhì).
難點(diǎn):正確理解兩條平行線間的距離的概念和性質(zhì)定理2的推論。
平行四邊形的概念及性質(zhì)的靈活運(yùn)用
教學(xué)方法:講解、分析、轉(zhuǎn)化
教學(xué)過程設(shè)計(jì)
一、利用分類、特殊化的方法引出平行四邊形的概念
1.復(fù)習(xí)四邊形的知識(shí).
(1)引導(dǎo)學(xué)生畫任意凸四邊形,指出它的主要元素——頂點(diǎn)、邊、角、對(duì)角線的性質(zhì),強(qiáng)調(diào)對(duì)角線的作用:將四邊形分割化歸為三角形來研究.
(2)將四邊形的邊角按位置關(guān)系分為兩類:
教學(xué)時(shí)應(yīng)結(jié)合圖形,讓學(xué)生識(shí)別清楚,并注意與三角形中角的對(duì)邊、邊的對(duì)角及第一章中的鄰角相區(qū)別.
2.教師提問:四邊形中的兩組對(duì)邊按位置關(guān)系分為幾種情況?
引導(dǎo)學(xué)生畫圖回答,并出示投影片顯示四邊形與特殊四邊形的關(guān)系,如圖4-11.
3.對(duì)比引出平行四邊形的概念.
(1)引導(dǎo)學(xué)生根據(jù)圖4-11,敘述平行四邊形的概念,引出課題.
(2)注意它與梯形的對(duì)比,及它與四邊形的特殊與一般的關(guān)系:平行四邊形是特殊的四邊形,因此它具有四邊形的一切性質(zhì)(共性).同時(shí)它還具有一般四邊形不具備的特殊性質(zhì)(個(gè)性).
(3)強(qiáng)調(diào)定義既是平行四邊形的一個(gè)判定方法,同時(shí)又是平行四邊形的一個(gè)性質(zhì).
(4)介紹平行四邊形的符號(hào)表示及定義的使用方法:如圖4-12.
①∵
②∵AD∥BC,AB∥CD,∴四邊形ABCD是平行四邊形.(平行四邊形的定義)
練習(xí)1(投影)
如圖4-13,DC∥EF∥AB,DA∥GH∥CB,圖中的平行四邊形共有__個(gè),它們是__.
二、探索平行四邊形的性質(zhì)并證明
1.探索性質(zhì).
啟發(fā)學(xué)生從平行四邊形的主要元素——邊、角、對(duì)角線的位置關(guān)系及數(shù)量關(guān)系入手,來觀察、探索、猜想平行四邊形的特有的性質(zhì)如下:
(3)對(duì)角線
⑤對(duì)角線互相平分(性質(zhì)定理3)
教師注意解釋并強(qiáng)調(diào)對(duì)角線互相平分的含義及表示方法.
2.利用化歸的方法對(duì)性質(zhì)逐一進(jìn)行證明.
(1)由平行四邊形的定義及平行線的性質(zhì)很快證出性質(zhì)①,④,③.
(2)啟發(fā)學(xué)生添加一條或兩條對(duì)角線,將四邊形分割、化歸為三角形;利用全等三角形的知識(shí)證出性質(zhì)②,⑤.
(3)寫出證明過程.
3.關(guān)于“兩條平行線間的平行線段和距離”的教學(xué).
(1)利用性質(zhì)定理2
導(dǎo)出推論:夾在兩條平行線間的平行線段相等.
①提問:在圖4-14中,l1∥l2,AB∥CD,那么AB,CD的數(shù)量有何關(guān)系?引導(dǎo)學(xué)生根據(jù)平行四邊形的定義和性質(zhì)進(jìn)行證明.
②引導(dǎo)學(xué)生用語言簡(jiǎn)練地?cái)⑹鰣D4-14所反映的幾何命題,并強(qiáng)調(diào)它的作用.證題時(shí)可節(jié)省步驟,省掉判定平行四邊形這一步,直接得到夾在兩條平行線間的平行線段相等.
③強(qiáng)調(diào)推論中的條件:“夾”、“平行線間”、“平行線段”的含義和重要性,并做一組辨析練習(xí).
練習(xí)2
(投影)如圖4-15,判斷下列幾組圖形能否體現(xiàn)推論所代表的含義.
(2)根據(jù)圖4-15(d)引出兩條平行線的距離的概念,并通過練習(xí)區(qū)別三個(gè)距離.
練習(xí)3
在圖4-15(d)中,
①點(diǎn)A與點(diǎn)C的距離是線段__的長(zhǎng);
②點(diǎn)A到直線l2的距離是線段__的長(zhǎng);
③兩條平行線l1與l2的距離是線段__或__的長(zhǎng);
④由推論可得:兩條平行線間的距離__.
三、平行四邊形的定義及性質(zhì)的應(yīng)用
1.計(jì)算.
例1填空.
(1)在
(2)在
(3)已知平行四邊形周長(zhǎng)為54,兩鄰邊之比為4∶5,則這兩邊長(zhǎng)度分別為__;
(4)已知
(5)在
說明:通過此題讓學(xué)生熟悉平行四邊形的性質(zhì),會(huì)用它及方程的思想進(jìn)行計(jì)算,并復(fù)習(xí)平行四邊形的面積公式.
2.證明.
例2 已知:如圖4-16,
分析:
(1)盡量利用平行四邊形的定義和性質(zhì),避免證三角形全等.
(2)考慮特殊化情形.在
例3已知:如圖4-17,A′B′∥BA,B′C′∥CB,C′A′∥AC.求證:(1)∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;(2)△ABC的頂點(diǎn)分別是△B′C′A′各邊的中點(diǎn).
著重引導(dǎo)學(xué)生先分解基本圖形,圖中有3個(gè)平行四邊形:
例4 已知:如圖4-18(a),
分析:
(1)引導(dǎo)學(xué)生證明以O(shè)E,OF為邊的兩個(gè)三角形全等,如證△AOE≌△COF或證△BOE≌△DOF.
(2)根據(jù)學(xué)生實(shí)際,對(duì)圖4-18(a)可作適當(dāng)引申,如圖4-18(b),(c),(d),并歸納結(jié)論如下:過平行四邊形對(duì)角線的交點(diǎn)作直線交對(duì)邊或?qū)叺难娱L(zhǎng)線,所得對(duì)應(yīng)線段相等.
(3)圖4-18是一組重要的基本圖形,熟悉它的性質(zhì)對(duì)解答復(fù)雜問題是很有幫助的.
3.供選用例題.
(1)從平行四邊形的一個(gè)銳角頂點(diǎn)作平行四邊形的兩條高線.如果這兩條高線的夾角為135°,則這個(gè)平行四邊形相鄰兩內(nèi)角的度數(shù)為__;若高線分別為1cm和2cm,則平行四邊形的周長(zhǎng)為__,面積為___;若兩條高線夾角為120°呢?
(2)如圖4-19,在△ABC中,AD平分∠BAC,過D作DE∥AC交AB于E,過E作EF∥DC交AC于F.求證:AE=FC.
(3)如圖4-20,在
四、師生共同小結(jié)
1.平行四邊形與四邊形的關(guān)系.
2.學(xué)習(xí)了平行四邊形哪些方面的性質(zhì)?
3.兩條平行線的距離是怎樣定義的?有什么性質(zhì)?
五、作業(yè)
課本第143頁第2,3,4,5,6題.
課堂教學(xué)設(shè)計(jì)說明
本教學(xué)設(shè)計(jì)需2課時(shí)完成.
這節(jié)內(nèi)容分2課時(shí).第1課時(shí)在復(fù)習(xí)四邊形的有關(guān)知識(shí)的基礎(chǔ)上,用對(duì)比的方式引入平行四邊形的概念,充分體現(xiàn)了平行四邊形在四邊形體系中的地位,然后,教師應(yīng)啟發(fā)學(xué)生從邊、角、對(duì)角線三個(gè)方面探索平行四邊形的性質(zhì),使知識(shí)更加系統(tǒng),更符合學(xué)生的認(rèn)知規(guī)律,而且突出了第1課時(shí)的重點(diǎn),同時(shí)更能培養(yǎng)學(xué)生主動(dòng)探求知識(shí)的精神和思維的條理性.第2課時(shí)重點(diǎn)應(yīng)用平行四邊形的定義、性質(zhì)進(jìn)行計(jì)算和證明,教師注意讓學(xué)生鞏固基礎(chǔ)知識(shí)和基本技能,加強(qiáng)對(duì)解題思路的分析,解題思想方法的概括、指導(dǎo)和結(jié)論的升華.
【第二冊(cè)平行四邊形及其性質(zhì)】相關(guān)文章:
鹽的化學(xué)性質(zhì)及其應(yīng)用說課稿06-07
《小數(shù)的性質(zhì)》教學(xué)反思08-22
等式的性質(zhì)教學(xué)反思08-24
人教版分?jǐn)?shù)的性質(zhì)說課稿11-04
等式的性質(zhì)教學(xué)反思03-24
菱形的性質(zhì)教學(xué)反思04-22