- 相關(guān)推薦
數(shù)學(xué)教案-同底數(shù)冪的除法
教學(xué)建議
1.知識結(jié)構(gòu):
2.教材分析
。1)重點和難點
重點: 準(zhǔn)確、熟練地運用法則進行計算.同底數(shù)冪的除法性質(zhì)是冪的運算性質(zhì)之一,是整式除法的基礎(chǔ),一定要打好這個基礎(chǔ).
難點: 根據(jù)乘、除互逆的運算關(guān)系得出法則.教科書中根據(jù)除法是乘法的逆運算,從計算 和 這兩個具體的同底數(shù)的冪的除法,到計算底數(shù)具有一般性的 ,逐步歸納出同底數(shù)冪除法的一般性質(zhì).所以乘、除互逆的運算關(guān)系得出法則是本節(jié)的難點.
。2)教法建議:
1.教科書中根據(jù)除法是乘法的逆運算,從計算 和 這兩個具體的同底數(shù)的冪的除法,到計算底數(shù)具有一般性的 ,逐步歸納出同底數(shù)冪除法的一般性質(zhì).教師講課時要多舉幾個具體的例子,讓學(xué)生運算出結(jié)果,接著,讓學(xué)生自己舉幾個例子,再計算出結(jié)果,最后,讓學(xué)生自己歸納出同底數(shù)的冪的除法法則.
2.性質(zhì)歸納出后,不要急于講例題,要對法則做幾點說明、強調(diào),以引起學(xué)生的注意.(1)要強調(diào)底數(shù) 是不等于零的,這是因為,若 為零,則除數(shù)為零,除法就沒有意義了.(2)本節(jié)不講零指數(shù)與負(fù)指數(shù)的概念,所以性質(zhì)中必須規(guī)定指數(shù) 都是正整數(shù),并且 ,要讓學(xué)生運用時予以注意.
重點、難點分析
1.同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減,即 ( , 、 都是正整數(shù),且 ).
2.指數(shù)相等的同底數(shù)的冪相除,商等于1,即 ,其中 .
3.同底數(shù)冪相除,如果被除式的指數(shù)小于除式的指數(shù),則出現(xiàn)負(fù)指數(shù)冪,規(guī)定
。ㄆ渲 , 為正整數(shù)).
4.底數(shù) 可表示非零數(shù),或字母或單項式、多項式(均不能為零).
5.科學(xué)記數(shù)法:任何一個數(shù) (其中1 , 為整數(shù)).
同底數(shù)冪的除法(第一課時)
一、教學(xué)目標(biāo)
1.掌握同底數(shù)冪的除法運算性質(zhì).
2.運用同底數(shù)冪的除法運算法則,熟練、準(zhǔn)確地進行計算.
3.通過總結(jié)除法的運算法則,培養(yǎng)學(xué)生的抽象概括能力.
4.通過例題和習(xí)題,訓(xùn)練學(xué)生的綜合解題能力和計算能力.
5.滲透數(shù)學(xué)公式的簡潔美、和諧美.
二、重點難點
1.重點
準(zhǔn)確、熟練地運用法則進行計算.
2.難點
根據(jù)乘、除互逆的運算關(guān)系得出法則.
三、 教學(xué)過程(www.panasonaic.com)
1.創(chuàng)設(shè)情境,復(fù)習(xí)導(dǎo)入
前面我們學(xué)習(xí)了同底數(shù)冪的乘法,請同學(xué)們回答如下問題,看哪位同學(xué)回答得快而且準(zhǔn)確.
(1)敘述同底數(shù)冪的乘法性質(zhì).
。2)計算:① ② ③
學(xué)生活動:學(xué)生回答上述問題.
.(m,n都是正整數(shù))
【教法說明】 通過復(fù)習(xí)引起學(xué)生回憶,鞏固同底數(shù)冪的乘法性質(zhì),同時為本節(jié)的學(xué)習(xí)打下基礎(chǔ).
2.提出問題,引出新知
思考問題:() .(學(xué)生回答結(jié)果)
這個問題就是讓我們?nèi)デ笠粋式子,使它與 相乘,積為 ,這個過程能列出一個算式嗎?
由一個學(xué)生回答,教師板書.
這就是我們這節(jié)課要學(xué)習(xí)的同底數(shù)冪的除法運算.
3.導(dǎo)向深入,揭示規(guī)律
我們通過同底數(shù)冪相乘的運算法則可知,
那么,根據(jù)除法是乘法的逆運算可得
也就是
同樣,
,
∴ .
那么 ,當(dāng)m,n都是正整數(shù)時,如何計算呢?
。ò鍟
學(xué)生活動:同桌研究討論,并試著推導(dǎo)得出結(jié)論.
師生共同總結(jié):
教師把結(jié)論寫在黑板上.
請同學(xué)們試著用文字概括這個性質(zhì):
【公式分析與說明】 提出問題:在運算過程當(dāng)中,除數(shù)能否為0?
學(xué)生回答:不能.(并說明理由)
由此得出:同底數(shù)冪相除,底數(shù) .教師指出在我們所學(xué)知識范圍內(nèi),公式中的m、n為正整數(shù),且m>n,最后綜合得出:
一般地,
這就是說,同底數(shù)冪相除,底數(shù)不變,指數(shù)相減.
4.嘗試反饋,理解新知
例1 計算:
。1) (2)
例2 計算:
。1) (2)
學(xué)生活動:學(xué)生在練習(xí)本上完成例l、例2,由2個學(xué)生板演完成之后,由學(xué)生判斷板演是否正確.
教師活動:統(tǒng)計做題正確的人數(shù),同時給予肯定或鼓勵.
注意問題:例1(2)中底數(shù)為(-a),例2(l)中底數(shù)為(ab),計算過程中看做整體進行運算,最后進行結(jié)果化簡.
5.反饋練習(xí),鞏固知識
練習(xí)一
。1)填空:
、 、
、 ④
。2)計算:
① 、
③ 、
學(xué)生活動:第(l)題由學(xué)生口答;第(2)題在練習(xí)本上完成,然后同桌互閱,教師抽查.
練習(xí)二
下面的計算對不對?如果不對,應(yīng)怎樣改正?
。1) 。2)
。3) (4)
學(xué)生活動:此練習(xí)以學(xué)生搶答方式完成,注意訓(xùn)練學(xué)生的表述能力,以提高興趣.
四 總結(jié)、擴展
我們共同總結(jié)這節(jié)課的學(xué)習(xí)內(nèi)容.
學(xué)生活動:①同底數(shù)冪相除,底數(shù)__________,指數(shù)________。
、谟蓪W(xué)生談本書內(nèi)容體會.
【教法說明】 強調(diào)“不變”、“相減”.學(xué)生談體會,不僅是對本節(jié)知識的再現(xiàn),同時也培養(yǎng)了學(xué)生的口頭表達能力和概括總結(jié)能力.
五、布置作業(yè)
P143 1.(l)(3)(5),2.(l)(3),3.(l)(3).
參考答案
略.
六、板書設(shè)計
7.8 同底數(shù)冪的除法
例1 解(l) 。2)
∴ 例2 解(l) (2)
∴
∴
一般地
同底數(shù)冪相除 底數(shù)不變、指數(shù)相減
運算形式 運算方法
教學(xué)建議
1.知識結(jié)構(gòu):
2.教材分析
。1)重點和難點
重點: 準(zhǔn)確、熟練地運用法則進行計算.同底數(shù)冪的除法性質(zhì)是冪的運算性質(zhì)之一,是整式除法的基礎(chǔ),一定要打好這個基礎(chǔ).
難點: 根據(jù)乘、除互逆的運算關(guān)系得出法則.教科書中根據(jù)除法是乘法的逆運算,從計算 和 這兩個具體的同底數(shù)的冪的除法,到計算底數(shù)具有一般性的 ,逐步歸納出同底數(shù)冪除法的一般性質(zhì).所以乘、除互逆的運算關(guān)系得出法則是本節(jié)的難點.
。2)教法建議:
1.教科書中根據(jù)除法是乘法的逆運算,從計算 和 這兩個具體的同底數(shù)的冪的除法,到計算底數(shù)具有一般性的 ,逐步歸納出同底數(shù)冪除法的一般性質(zhì).教師講課時要多舉幾個具體的例子,讓學(xué)生運算出結(jié)果,接著,讓學(xué)生自己舉幾個例子,再計算出結(jié)果,最后,讓學(xué)生自己歸納出同底數(shù)的冪的除法法則.
2.性質(zhì)歸納出后,不要急于講例題,要對法則做幾點說明、強調(diào),以引起學(xué)生的注意.(1)要強調(diào)底數(shù) 是不等于零的,這是因為,若 為零,則除數(shù)為零,除法就沒有意義了.(2)本節(jié)不講零指數(shù)與負(fù)指數(shù)的概念,所以性質(zhì)中必須規(guī)定指數(shù) 都是正整數(shù),并且 ,要讓學(xué)生運用時予以注意.
重點、難點分析
1.同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減,即 ( , 、 都是正整數(shù),且 ).
2.指數(shù)相等的同底數(shù)的冪相除,商等于1,即 ,其中 .
3.同底數(shù)冪相除,如果被除式的指數(shù)小于除式的指數(shù),則出現(xiàn)負(fù)指數(shù)冪,規(guī)定
(其中 , 為正整數(shù)).
4.底數(shù) 可表示非零數(shù),或字母或單項式、多項式(均不能為零).
5.科學(xué)記數(shù)法:任何一個數(shù) (其中1 , 為整數(shù)).
同底數(shù)冪的除法(第一課時)
一、教學(xué)目標(biāo)
1.掌握同底數(shù)冪的除法運算性質(zhì).
2.運用同底數(shù)冪的除法運算法則,熟練、準(zhǔn)確地進行計算.
3.通過總結(jié)除法的運算法則,培養(yǎng)學(xué)生的抽象概括能力.
4.通過例題和習(xí)題,訓(xùn)練學(xué)生的綜合解題能力和計算能力.
5.滲透數(shù)學(xué)公式的簡潔美、和諧美.
二、重點難點
1.重點
準(zhǔn)確、熟練地運用法則進行計算.
2.難點
根據(jù)乘、除互逆的運算關(guān)系得出法則.
三、 教學(xué)過程(www.panasonaic.com)
1.創(chuàng)設(shè)情境,復(fù)習(xí)導(dǎo)入
前面我們學(xué)習(xí)了同底數(shù)冪的乘法,請同學(xué)們回答如下問題,看哪位同學(xué)回答得快而且準(zhǔn)確.
(1)敘述同底數(shù)冪的乘法性質(zhì).
。2)計算:① ② ③
學(xué)生活動:學(xué)生回答上述問題.
.(m,n都是正整數(shù))
【教法說明】 通過復(fù)習(xí)引起學(xué)生回憶,鞏固同底數(shù)冪的乘法性質(zhì),同時為本節(jié)的學(xué)習(xí)打下基礎(chǔ).
2.提出問題,引出新知
思考問題:() .(學(xué)生回答結(jié)果)
這個問題就是讓我們?nèi)デ笠粋式子,使它與 相乘,積為 ,這個過程能列出一個算式嗎?
由一個學(xué)生回答,教師板書.
這就是我們這節(jié)課要學(xué)習(xí)的同底數(shù)冪的除法運算.
3.導(dǎo)向深入,揭示規(guī)律
我們通過同底數(shù)冪相乘的運算法則可知,
那么,根據(jù)除法是乘法的逆運算可得
也就是
同樣,
,
∴ .
那么 ,當(dāng)m,n都是正整數(shù)時,如何計算呢?
。ò鍟
學(xué)生活動:同桌研究討論,并試著推導(dǎo)得出結(jié)論.
師生共同總結(jié):
教師把結(jié)論寫在黑板上.
請同學(xué)們試著用文字概括這個性質(zhì):
【公式分析與說明】 提出問題:在運算過程當(dāng)中,除數(shù)能否為0?
學(xué)生回答:不能.(并說明理由)
由此得出:同底數(shù)冪相除,底數(shù) .教師指出在我們所學(xué)知識范圍內(nèi),公式中的m、n為正整數(shù),且m>n,最后綜合得出:
一般地,
這就是說,同底數(shù)冪相除,底數(shù)不變,指數(shù)相減.
4.嘗試反饋,理解新知
例1 計算:
。1) (2)
例2 計算:
(1) (2)
學(xué)生活動:學(xué)生在練習(xí)本上完成例l、例2,由2個學(xué)生板演完成之后,由學(xué)生判斷板演是否正確.
教師活動:統(tǒng)計做題正確的人數(shù),同時給予肯定或鼓勵.
注意問題:例1(2)中底數(shù)為(-a),例2(l)中底數(shù)為(ab),計算過程中看做整體進行運算,最后進行結(jié)果化簡.
5.反饋練習(xí),鞏固知識
練習(xí)一
。1)填空:
① 、
、 、
。2)計算:
、 、
③ 、
學(xué)生活動:第(l)題由學(xué)生口答;第(2)題在練習(xí)本上完成,然后同桌互閱,教師抽查.
練習(xí)二
下面的計算對不對?如果不對,應(yīng)怎樣改正?
(1) 。2)
(3) 。4)
學(xué)生活動:此練習(xí)以學(xué)生搶答方式完成,注意訓(xùn)練學(xué)生的表述能力,以提高興趣.
四 總結(jié)、擴展
我們共同總結(jié)這節(jié)課的學(xué)習(xí)內(nèi)容.
學(xué)生活動:①同底數(shù)冪相除,底數(shù)__________,指數(shù)________。
、谟蓪W(xué)生談本書內(nèi)容體會.
【教法說明】 強調(diào)“不變”、“相減”.學(xué)生談體會,不僅是對本節(jié)知識的再現(xiàn),同時也培養(yǎng)了學(xué)生的口頭表達能力和概括總結(jié)能力.
五、布置作業(yè)
P143 1.(l)(3)(5),2.(l)(3),3.(l)(3).
參考答案
略.
六、板書設(shè)計
7.8 同底數(shù)冪的除法
例1 解(l) 。2)
∴ 例2 解(l) 。2)
∴
∴
一般地
同底數(shù)冪相除 底數(shù)不變、指數(shù)相減
運算形式 運算方法
【數(shù)學(xué)教案-同底數(shù)冪的除法】相關(guān)文章:
同底數(shù)冪的乘法初中數(shù)學(xué)第二冊教案(精選11篇)04-13
數(shù)學(xué)教案:除法02-04
《分?jǐn)?shù)除法》數(shù)學(xué)教案01-02
數(shù)學(xué)教案《筆算除法》03-22
數(shù)學(xué)教案:除法15篇02-05